Harmonic Functions on an Annulus

April 20, 2012

Lemma 1. Let $p(z)_{y}=q(z)_{x}$ on a convex set W in \mathbb{C}. Then $v(z)=\int_{z_{0}}^{z} p d x+q d y$ where $z \in W, z_{0} \in W$ is well defined, can be computed along any curve from z_{0} to z in W, and satisfies $v(z)_{x}=p(z), v(z)_{y}=q(z)$.

Proof. This is a result we proved last quarter.
Theorem 1. Let $p(z)_{y}=q(z)_{x}$ on $A=\{z: r<|z|<R\}$. Suppose that $\int_{|z|=a} p d x+q d y=0$ where $r<a<R$. Let $v(z)=\int_{C} p d x+q d y$ where C is the curve that consisting of the positively oriented arc of the circle of radius a from a to ae $e^{i \theta}$ and then on the line segment from $a e^{i \theta}$ to $z=b e^{i \theta}$. Then v is well defined and differentiable; and $v_{x}=p, v_{y}=q$.

Proof. Because $\int_{|z|=a} p d x+q d y=0$, we could also compute v by going along the circle $|z|=a$ in a clockwise direction. Let z_{0} be a fixed point in A. By using the lemma we can compute $v(z)$ near z_{0} by using the definition to compute $v\left(z_{0}\right)$ and then add the integral from z_{0} to z along any curve in some convex set around z_{0}. Now we can prove $v_{x}\left(z_{0}\right)=p, v_{y}\left(z_{0}\right)=q$ by using the lemma.

Corollary 1. Let u be harmonic in $A=\{z: r<|z|<R\}$. If $\int_{|z|=a} \frac{\partial u}{\partial n} d s=0$ then u has a harmonic conjugate v in A and $u=\Re(f)$ where f is analytic in A.

Proof. let $p=-u_{y}, q=u_{x}$. Since u is harmonic, $p_{y}=q_{x}$ and

$$
\int_{|z|=a} p d x+q d y=\int_{|z|=a}-u_{y} d x+u_{x} d y=\int_{|z|=a} \frac{\partial u}{\partial n} d s=0 .
$$

By the theorem there is a function v such that $v_{x}=-u_{y}, v_{y}=u_{x}$ so u has a harmonic conjugate in A.
Corollary 2. Let u be a harmonic function in $A=\{z: r<|z|<R\}$ and let $P=\int_{|z|=a} \frac{\partial u}{\partial n} d s$. Then

$$
u-\frac{P}{2 \pi} \log |z|=\Re(f),
$$

where f is analytic in A.
Proof. Let $w=u-\frac{P}{2 \pi} \log |z|$. Then w is harmonic and

$$
\int_{|z|=a} \frac{\partial w}{\partial n} d s=P-\frac{P}{2 \pi} 2 \pi=0 .
$$

