
Quantum Computing and Shor’s Algorithm

Tristan Moore

June 7, 2016

Abstract

This paper covers the basic aspects of the mathematical formalism
of quantum mechanics in general and quantum computing in particular,
underscoring the differences between quantum computing and classical
computing. This paper culminates in a discussion of Shor’s algorithm, a
quantum computational algorithm for factoring composite numbers that
runs in polynomial time, making it faster than any known classical algo-
rithm for factorization. This paper serves as a survey of Polynomial-Time
Algorithms for Prime Factorization and Discrete Logarithms on a Quan-
tum Computer by Peter Shor[3].

Contents

1 Introduction 1

2 Basics and Definitions 2

3 Quantum Computing 5

4 Reversible computation 6

5 Quantum Fourier Transform 8

6 Shor’s algorithm 10

7 Quantum complexity classes 13

8 References 14

1 Introduction

With the devolopment of computability thoery, many important problems in
computer science and mathematics exist for which there is no known polynomial-
time algorithm. The physicist Richard Feynman seems to have been the first
to observe that quantum mechanics might allow for faster computation than

1

would be allowed on a classical Turing machine, and thus raised the possibility
that a quantum mechanical computer might allow for more robust solutions
to problems that have long plagued classical computer science. Among the
problems for which no known polynomial-time deterministic algorithm exists
is the integer factorization problem, which is thought to be difficult enough to
compute that it forms the basis of most of modern cyrptological systems. Shor’s
algorithm, which this paper provides an exploration of, provides an efficient
polynomial time algorithm that operates on a quantum computer. Although
it has not been formally proven, this has led to speculation that the class of
problems effectively computable by a quantum Turing machine might be broader
than the class of problems computable on classical Turing machines.

2 Basics and Definitions

Here we will state results from the mathematical formulation of quantum me-
chanics and various aspects of quantum computing, as well as various results
from other branches of mathematics as necessary. Many will be given without
proof, and these terms will be referred to throughout the paper. The reader may
skip ahead to the main discussion and refer back to this section as necessary.

Definition 1 (Hilbert Space). A Hilbert space H is a complex vector space
equipped with an inner product 〈x, y〉 that assigns a complex number c for every
pair x, y ∈ H, which satisfies the following properties:

1. The inner product of a pair of elements is the complex conjugate of the
reverse:

〈y, x〉 = 〈x, y〉

2. The product should be linear with respect to the first argument:

〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉

3. The inner product is positive definite:

〈x, x〉 ≥ 0

With equality holding precisely when x = 0.

4. The product is antilinear with respect to the second argument:

〈x, ay1 + by2〉 = a〈x, y1〉+ b〈x, y2〉

For our purposes, Hilbert Spaces will be used to define the state space of
our system. The state space of a quantum system has dimensionality equal to
the number of possible outcomes of a measurement of a given property of the
system. The various outcomes are each represented as vectors that they form
a normalized, orthogonal basis for the state space. The inner product in this

2

space is typically defined in terms of the basis vectors bi of the system, such
that:

〈bibj〉 =

{
1, i = j

0, i 6= j

Each of these bi denote a possible outcome of measurement, with the set of all
bi’s corresponding to the set of all possible measurements of a system. Thus,
the inner product as defined above can be stated informally as ’selecting’ the
component of a state corresponding to a given outcome.

Definition 2 (Quantum State). A quantum state is a vector in the Hilbert space
associated with a system that assigns to each possible outcome of an experiment
a probability.

Typically quantum states are represented in ket notation, where a general
state |ψ〉 =

∑
ai |bi〉 , where |bi〉 represents a basis vector for the state space.

The ai are complex numbers associated with each basis vector such that the
possibility of measuring a given outcome |bi〉 is given by |ai|2. These should
be normalized for all legitimate quantum states, and in this paper we assume
that any given quantum state is normalized. An important note: total phase
does not impact any measurement of a quantum system, i.e. |φ〉 = eiα |ψ〉
implies that |φ〉 is an equivalent state to |ψ〉 . This can be seen by attempting
to measure any observable: |eiαa2i | = |ai|2, so the two states are observably
indistinguishable.

Definition 3 (Operator). An operator is a matrix corresponding to an ob-
servable property of a quantum state. Measuring the observable corresponds to
selecting an eigenstate of the unitary matrix associated with the observable in ac-
cordance to the probabilities contained in the wave function. Quantum operators
have the following properties:

1. All operators are linear and unitary, i.e. A−1 = AT

2. Consequently, all eigenvectors are orthogonal and form a complete or-
thonormal basis.

For our purposes, operators will be used to create the quantum circuitry
used to transform the quantum system under consideration. Operators in this
capacity are sometimes called Quantum Gates. These will be discussed in more
detail later.
Applying an operator to a system corresponds to transforming one quantum
state to another in some manner, while measuring a system involves applying
the associated operator and then selecting out a single outcome from the set of
basis vectors with probability corresponding to the |ai|2. Note that measuring
“collapses” the wave function: repeating a measurement of the same system will
always return the same value. For example, consider |ψ〉 = 1

sqrt2 |a〉 + 1√
2
|b〉 .

Then the probability of measuring either |a〉 or |b〉 is equal to
∣∣∣ 1√

2

∣∣∣2 = 1
2 .

3

Suppose that we measure the system and report a measurement of |a〉 . Then
after the measurement, |ψ〉 = |a〉 , and any repeated measurement will always
return |a〉 .

Definition 4 (Qubit). A quantum bit, or qubit, is a 2-state quantum system
corresponding to a bit of data on a classical computer. In quantum computing,
a qubit is represented as a linear superposition of 1’s and 0’s, expressed in ket-
notation, i.e. |0〉 and |1〉 . For systems of multiple qubits, it is often customary
to collapse the state into multi-qubit states, as in |0101〉 , which corresponds to a
0 on the first qubit, a 1 on the second, and so on. Therefore, our computational
basis has 2n basis states, corresponding to every possible measurement of each
qubit.

Definition 5 (Quantum Entanglement). An quantum system is said to be en-
tangled when pairs or groups of particles are generated such that they cannot
be entirely described independently, rather they must be described together as an
interacting object to fully describe the system.

As an example of an entangled system, consider the wave function |ψ〉 =
1√
2
|01〉 +

1√
2
|10〉 . In this case, there are two possible measurements of the

system: either a 0 is measured on the first qubit and a 1 on the second, or a 1
is measured on the first qubit and a 0 on the second. Suppose we only measure
the first qubit of this system, and report a measurement of 1. We can then
conclude that the system is now in the state |10〉 , because after measuring the
first qubit, the state collapses into the second eigenvector. We can then say that
the first and second qubits are entangled, because a measurement of the first

qubit will change the . However, consider the state |ψ〉 =
1√
2
|00〉 +

1√
2
|10〉 .

These qubits are not entangled. Suppose we measure the first qubit. In either
eigensate, the second qubit is in the 0 state, and thus is independent of any
measurement on the first qubit, so the second state remains unchanged by our
measurement. The same is true for a measurement on the second qubit: Because
the second qubit will always be measured to be in the 0 state, the first qubit
will remain unaltered by said measurement, and in this case will continue to
exist in an equal superposition of |0〉 and |1〉 .
One important result of quantum entaglement is the following theorem:

Theorem 1 (No Cloning Theorem). Given two arbitrary quantum states |ψ〉
and |φ〉 which share a common Hilbert space H, then it is impossible to copy
|ψ〉 onto |φ〉 without destroying |ψ〉 .

A proof of this is beyond the scope of the paper, but can be read about in
[4]

Definition 6 (BQP). A decision problem is said to be in class BQP if there ex-
ists a quantum algorithm that solves the problem with a uniform polynomial-size
quantum gate array such that the probability of returning an incorrect answer is

4

at most 1/3. Note: the probability bound is arbitrary, for any desired accuracy
can be achieved by running the algorithm a polynomial number of times and tak-
ing the majority vote. This is the definition we will take for efficiently solvable
problems on a quantum computer.

Here we define the Euler Totient Function and a theorem of Hardy that will
be used for establishing the polynomial-time bound on Shor’s algorithm.

Definition 7 (Euler Totient Function). The Euler Totient Function φ(n) is a
function on N defined to be the number of positive integers ≤ n that are relatively
prime to n. For example, 1, 2, 4, 7, 8, 11, 13, 14 are all relatively prime to 15, so
φ(15) = 8.

We will present the following theorem of Hardy and Wright for a bound on
the totient function:

Theorem 2 (lim
φ(n) log log(n)

n
= e−γ).

A proof of this can be found in [2]. Another theorem we will require is the
Chinese Remainder theorem, although it will only be briefly cited during the
discussion our factorization algorithm.

Theorem 3 (Chinese Remainder Theorem). Suppose that n1 . . . nk are pairwise
coprime integers. Then for a given sequence of integers a1 . . . ak, there exists
an integer x that is a solution to the following:

x = a1 mod (n1)

· · ·

x = ak mod (nk)

A proof can be found in [2].

3 Quantum Computing

In this section we will give an overview of quantum computing, and in particular
the components necessary to understand Shor’s algorithm. To begin, consider
a system of n two-state components. Normally, the object would be completely
describable with n bits. For a quantum computer, however, this system requires
2n−1 complex numbers, specifically this state is represented as a single point in
a 2n dimensional vector space. For each of the 2n permutations of the system,
there exists a basis vector in the state space for our system, such that the set
of all 2n of these vectors form a complete basis for the system. As an example,
the state vector |000 . . . 0〉 would correspond to the state such that every bit
is given the value 0, while the state vector |10101 . . .〉 corresponds to the state
with the first qubit in the 1 state, the second in the 0 state, and so on. We then

5

consider the state |ψ〉 of the system to be the sum of each state vector |Si〉 with
an associated complex number ai.

ψ =
∑

ai |Si〉

If the machine were to be measured at any point, then the state collapses into
a single eigenstate of the observable, with the probability of any given |Si〉
being selected is equal to |ai|2. After measurement, the quantum state of the
system will be precisely the Si that was returned by the measurement, thus
destroying information of previous state. Therefore, when carrying out our
quantum computing algorithm, we must be careful to never measure the state
until after all computations have been made.
To perform operations on the quantum state in question, unitary operators will
be used to implement logic gates. We will define one such gate here that will
recur in our discussion of Shor’s algorithm. The Hadamard Gate acts on a single

qubit and maps |0〉 to
|0〉 + |1〉√

2
and |1〉 to

|0〉 − |1〉√
2

. In matrix form:

H =

√
2

2

[
1 1
1 −1

]
For our system, we must add two restrictions to make our gates of a uniform
complexity class. The first is that the design of the gate array must be decidable
in polynomial time, as per a classical algorithm. The second is that each number
used in each matrix must be actually computable. Specifically, the first log(n)
digits for a given entry must be computable in polynomial time. Both of these
requirements are implemented to ensure that non-computable information is not
hidden in the design of an efficient circuit that can therefore not be compared
to a Turing Machine.

4 Reversible computation

Because quantum logic gates are reversible at all points and all transformations
are unitary, it follows that a calculation is feasible on a quantum computer if and
only if it is reversible. Any deterministic calculation can be made reversibly[],
and from previous studies into reversible computation[], we can compute any
polynomial time algorithm reversibly so long as the input x is stored in the
system. Note that, by the no cloning theorem, we cannot do this in a quantum
system. Instead, these steps are done by a classical subroutine prior to using a
quantum circuit for the actual computation. A deterministic algorithm can be
modified to be reversible under a quantum computer using a process described
in [2]. Thus, to create an algorithm A that takes x→ A(x), A must be 1 : 1 and
both A and A−1 must be computable in polynomial time. First, we take x to
(x,A(x)) using the previously described method. If we instead are given a A−1

that can be computed in polynomial time and are asked to operate on A(x), we
can map to (A(x), A−1(A(x))) = (A(x), x), making this a reversible process.

6

Although this shows that an algorithm can be made reversible for only a con-
stant increase in time, this also shows that the process takes as much space
as time, and if the classical algorithm uses little space but a larger amount of
time, then this method will produce an algorithm that will greatly increase the
amount of space required. However, for some algorithms we can construct a
different method to create a reversible algorithm without too steep of a price in
space or time: A discussion follows for the example of modular exponentiation,
which will play a part in quantum factorization and provide an example of one
such method to limit the use of space.

The bottleneck of Shor’s algorithm comes from the step for modular expo-
nentiation. Modular exponentiation is, given n, x and r, find xr mod (n). This

is computed classically by repeatedly squaring x mod (n) to get x2
i

mod (n)
for i ≤ log2(r) and then multiply a subset of these powers mod(n) to find xr

mod (n). For numbers consisting ofN bits, this operation isO(N2 logN log logN)
using the Schonhange-Strassen algorithm [3]. Making this reversible would take
O(N2 logN log logN) in space, but one can reuse the space from the repeated
squarings. Thus, we can create an algorithm that takes the same amount of
space as the classical algorithm, which in this case is O(N logN log logN). Al-
though this method does not scale effectively for small numbers, we will choose
to disregard this case, because these cases can be easily treated using a method
similar to long division, and can be done in O(N3) time and O(N) space [3].

We will now formulate a method for constucting a reversible gate array that
can compute (r, xr mod (n)) in O(N) space and O(N3) time. The basis of
this method is a gate array that takes input b and computes b + c mod (n).
Note that c and n are specified by the architecture of the gate, while b is the
input of the gate. For a classical algorithm, addition mod(n) is computable
in O(log(n)) time, so as follows from the previous discussion, we can create a
quantum gate array that is O(log n) in both space and time. The algorithm
for computing (r, xr mod (n)) is essentially identical to the classical algorithm.

First, repeatedly square x l times to obtain x2
i

mod (n) for all i < l. Then,

to obtain xr mod (n) we multiply the powers x2
i

mod (n) such that 2i ap-
pears in the binary expansion of r. In our algorithm, we only need consider
the case where r is treated as the input for the system, while n and x are
both constants that can be built into the structure of the array, which makes
the actual computation of this product much simpler, because n and x can
simply be built into the structure of the gate array and need not be consid-
ered as input values. The process for finding r is expressed by the follow-
ing pseudocode, where ri represents the ith digit in the binary expanion of r:

7

power = 1;
for i = 0 to r − 1 do

if ri == 1 then

power = power ∗ x2i ;
end

end
return power;

Notice that r is not changed by the code, and power returns the value
xr mod (n). Therefore, this code takes the input (r, 1) to (r, xr mod (n)).

Note that, when constructing a gate array, x2
i

mod (n) can be computed by
a classical subroutine and then implemented into the construction of the array.
Thus, implenting this requires a gate array that takes an input b to bc mod (n),
where c and n are allowed to depend on the specific architecture of the array.
Note that if gcd(c, n) 6= 1, then we cannot create a reversible gate array, because
then there are distinct b1 and b2 such that b1c mod (n) = b2c mod (n), so
there is no reversible algorithm such that we can distinguish the b1 from the b2.
Thankfully, this will not be a concern for us, and we only need to deal with the
case where there are no common factors of c and n for our factoring algorithm.
The first stage of this gate is essentially multiplication by repeat addition. It is
shown in pseudocode below:

result = 0;
for i = 0 to r − 1 do

if bi == 1 then
result = result+ 2ic mod (n);

end

end
return result
This subroutine took b as an input and produced (b, bc mod (n)) as an

output. Therefore, we need to erase b to obtain the desired result. We assumed
that gcd(c, b) = 1, so there exists a c−1 mod (n) such that cc−1 = 1 mod (n).
Note that applying c−1 via multiplication to bc mod (n) will reversibly take
bc mod (n) to (bc mod (n), bcc−1 mod (n)) = (bc mod (n), b). Because this
is a reversible operation, it can be reversed to erase b, thus completing our
algorithm. Here is the pseudocode for this stage:

for i = 0 to r − 1 do
if resulti == 1 then

b = b− 2ic−1 mod (n);
end

end
return b

8

5 Quantum Fourier Transform

In this section we present the Quantum Fourier transform, which acts on a quan-
tum state much like a discrete Fourier transform would on a classical computer.
The Quantum Fourier transform is a unitary transform that can be constructed
in polynomial time on a quantum computer. Consider a number a with 0 ≤ a <
q for some q. Then the quantum Fourier transform takes |a〉 to

1
√
q

q−1∑
n=0

|n〉 e2πina/q

This Fourier transform is representable by the unitary matrix as follows:

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

1 ω3 ω6 . . . ω3(N−1)

...
...

...
...

...
1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)


Where ω = e2πi/N is the Nth primitive root of unity. This operator will be
central to Shor’s algorith and will be given the name Aq for the given q.

Theorem 4 (The Quantum Fourier Transform is in P.). We will consider the
special case where q is a power of 2, and deduce that for other q we can ap-
proximate a solution by considering a nearby power of 2. Suppose that q = 2n.
Suppose that a is an integer represented in quantum binary as |an−1an−2 . . . a0〉 .
Allow Hj to indicate a Hadamard gate operating on the jth qubit, and allow Sj,k
to indicate the following matrix:

Sj,k =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθk−j


Where θk−j = π/2k−j. Note that this is a unitary matrix, and therefore is a
constuctable quantum gate. Consider the following sequence of matrices:

Hn−1, Sn−2,n−1, Hn−2, Sn−3,n−2, Sn−3,n−2, . . . H1, S0,n−1, S0,n−2, . . . S0,2, S0,1, H0

That is, we apply the Hk from Hn−1 to H0, and bewteen Hk and Hk−1 we
apply every Sj,k such that k > j. We want to show that this tranforms the state
to 1

q1/2

∑
b exp(2πiac/q) |b〉 , where |b〉 is the bit-reversal of |c〉 , or the number

obtained by reversing each bit of |c〉 . Note, however, that it is quite simple
to simply read the numbers backwards or manually reverse them, and will not
impact runtime.

This circuit consists of n(n−1)
2 gates. Thus, this sequence runs in polynomial

9

time. To prove that this does, in fact, perform a Fourier transform on q, note
that we have n H gates, each containing a factor of 1√

2
, so the total scalar factor

from all of these gates is 1√
2
n = 1

q1/2
. Therefore, the only concern is the total

phase factor e2πi/n Note that the Sj,k do not change the amplitude of any of
the components, and only introduce a phase shift. There is thus only one way
to change a bit ai, and that is through the appropriate gate H. This adds a
phase shift of π to the bits if they are both 1, and otherwise does not change the
system. Further, Sj,k adds a phase of π/2k−j to the phase of both aj and bk if
and only if they are both 1. Thus, the phase on the path from |a〉 to |b〉 is:∑

0≤j<n

πajbj +
∑

0≤j<k<n

πajbk
2k−j

Where the first summation represents the phase shift from each Hadamard oper-
ator applied to the system and the second comes from the Sj,k gates. Note that
the first summand is just the special case in the second where j = k. Therefore,
we can rewrite the whole expression as:∑

0≤j≤k<n

πajbk
2k−j

Recall that c was the bit-reversal of b. Therefore, we reexpress the summation
in the following manner: ∑

0≤j≤k<n

πajcn−1−k
2k−j

If we substitute i for n− 1− k in the sum, we get:

=
∑

0≤j+i<l

2π2j2iajci
2n

Note that multiples of 2π do not affect the phase of the overall system, and
therefore we can ignore them for our purposes. Therefore, we need only sum
over j and i less than n, obtaining:

=

n−1∑
j,i=0

2π2j2iajci
2n

=
2π

2n

n−1∑
j=0

2jaj

n−1∑
i=0

2ici

Recall that q = 2n, a =
∑n−1
j=0 2jaj, and likewise for c. Therefore, the phase

collapses to 2πac
q , which is precisely the phase ampitude for |a〉 → |c〉 . Therefore,

this actually is the quantum fourier transform, and as shown above this is a
polynomial-time reversible quantum algorithm, thus concluding our proof.

Because many of these Sj,k are only adding a small phase factor when k− j
is large, implementing some of these gates would be challenging from a physical
standpoint. Thankfully, these tiny phase factors can be neglected to approxi-
mate a Fourier transform of sufficient accuracy for factoring. Incidentally, this
also will substantially speed up the algorithm, as most of the Sj,k gates are
removed. More can be found in the discussion in [1].

10

6 Shor’s algorithm

Currently, the best classical algorithm for factoring large numbers is the number
field sieve, which is O(exp(log(n)1/3log log(n)2/3)) [3]. Here we introduce Shor’s
algorith, which will factor an integer in O((log(n))2 log log(n) log log log(n)).
What will be presented here will not actually be an algorithm for integer factor-
ization, but instead will be an algorithm for finding the order of an element x
in the multiplicative group, in other words finding the least r such that xr = 1
mod (n). It is known that factorization can be reduced to finding the order
of the element, and thus this algorithm is sufficient for a factorizing algorithm
with only perhaps some polynomial-time classical proccessing, as described in
[3]. Roughly speaking, factoring an odd integer n, given an algorithm for com-
puting the order of a random integer x mod (n), can be done by finding its
order r, and computing gcd(xr/2 − 1, n) using the Euclidean algorithm, which
is in polynomial time. Since (xr/2 − 1)(xr/2 + 1) = xr − 1 ≡ 0 mod (n), the
gcd(xr/2 − 1, n) will only be a trivial divisor if r is odd or xr/2 ≡ −1 mod (n).
We will now present a brief sketch of a proof that, when applied to random x
mod (n), this procedure will produce a factor of n with a probability of at least

1 − 1
2N−1 , where n has N distinct prime factors. Consider n =

∏N
1 pkii , where

pi is prime, and let ri be the order of x mod (paii). Then r is therefore the
least common multiple of the ri’s. Now consider the largest power of 2 dividing
each ri. This algorithm fails if and only if these all agree. Note that if they
are all 1, then r is clearly odd and r/2 is not an integer. If they are all equal
and greater than 1, then xr/2 ≡ −1 mod (n) because xr/2 ≡ −1 mod (paii) for
each i. Then, by the Chinese Remainder Theorem, choosing an x mod (n) at
random is the same as choosing an xi mod (paii) for all i, where paii is, as be-
fore, the ith prime factor of n raised to its respective power. The multiplicative
group is cyclic for any odd prime power pα, so for any odd prime power paii the
probability is at most 1

2 having any particular power of two as the largest divisor
of its order ri. Thus, each of these powers of 2 has at most a probability of 1

2 of
agreeing with the previous ones, so all N of them agree with a probability of at
most 1

2N−1 . Because each of these represents a failed selection, this implies that
the chance that we select an appropriate x is at least 1 − 1

2N−1 . This works as
long as n is odd and not a power of a prime, but mercifully there already exist
algorithms that work classically to factor prime powers [3].

We now present a general proof for finding the order of x mod (n) on a
quantum computer. Our computer will consist of two registers each containing
integers represented in binary, as well as some workspace that will be reset to
|0〉 at the end of each subroutine.
Suppose we are given some x and n. To compute the least r such that xr ≡ 1
mod (n), first find the q such that n2 ≤ q ≤ 2n2 and that q is some integer
power of 2. Note that from now on q, x, and n are constants and will not be
modified for the duration of the algorithm.
Put the first register in the uniform superposition of states representing integers

11

a mod (q), which leaves our machine in the state:

1

q1/2

q−1∑
a=0

|a〉 |0〉

Where the |0〉 represents the empty second register. This leaves every bit in the
first register in the superposition 1√

2
(|0〉 + |1〉).

Now, we can compute xa mod (n) in the second register, which is still reversible
because a is stored in the first register. This leaves our machine in the state:

1

q1/2

q−1∑
a=0

|a〉 |xa mod (n)〉

If we now apply the Fourier Transform Aq to register 1, as described previously,
we map |a〉 to

1

q1/2

q−1∑
c=0

e2πiac/q |c〉 .

Therefore, our machine is now in the state:

1

q

q−1∑
a=0

q−1∑
c=0

e2πiac/q |c〉 |xa mod (n)〉 .

Now, we observe our machine, measuring both the |c〉 and |xa mod (n)〉 states.
For given k, the probability of the machine ending in

∣∣c, xk mod (n)〉 is given
by

1

q

∣∣∣∣∣ ∑
a:xa≡xk

e2πiac/q

∣∣∣∣∣
2

Because the order of x has been computed to be r, the sum is over all a satisfying
a ≡ k mod (r). Writing a = br + k:∣∣∣∣∣∣1q

(q−k−1)/r∑
b=0

e2πi(br+k)c/q

∣∣∣∣∣∣
2

Notice that e2πikc/q is constant and has modulus 1. Consider rc = {rc}q, where
{rc}q indicates the residue that is congruent to rc mod (q) and is in the range
−q/2 < {rc}q ≤ q/2. We seek to show that if we can make {rc}q small enough
then we can bound the error in the measurement by 1/3 as is specified by class
BQP solutions. We can expand the sum into the following integral to obtain an
upper bound on the probability:

1

q

∫ r/q(q−k−1)/r

0

e2πib{rc}q/qdb+O

(
|q − k − 1|

rq
(e2πi{rc}q/q − 1)

)

12

Consider the error term on the right. Suppose that we allow |{rc}q| ≤ r/2.
Then the entire error term is bounded from above by O(1/q). If we consider the
integral, then for |{rc}q| ≤ r/2 we will show that the integral is large, meaning
that the pprobability of obtaining a state of the form

∣∣c, xk mod (n)〉 is large.
Note that this condition is only dependent on c. Suppose u = rb/q, du = r/qdb:

=
1

r

∫ (q−k−1)/q

0

e2πi{rc}qu/rdu

Because k < r, approximating the upper limit by 1 results in only a O(1/q)
error. Therefore:

1

r

∫ 1

0

e2πi{rc}qu/rdu

Suppose we allow {rc}/r to vary between 1/2 and −1/2. Then the integral can
be minimized with {rc} = ±r/2. In this case the absolute value of the integral
is 2/(πr). Squaring this to find a lower bound on the probability, we find that

the probability is bound by 4
π2r2 <

1

3r2
, for sufficiently large n. The probability

of seeing
∣∣c, xk mod (n)〉 is bounded by 1/3r2 if

−r
2

< rc − dq ≤ r

2
. Dividing

by rq gives us

∣∣∣∣ cq − d

r

∣∣∣∣ ≤ 1

2q
. c and q are known, and there is at most one d

that satisfies this inequality. We can obtain d/r in lowest terms via continued
fraction analysis on c/q [3]. If d found this way is relatively prime to r, we
can thus compute r to complete the problem. There are φ(r) possibile values
of d such that d is relatively prime to r. There are also r values of xk, so
there are rφ(r) ways of obtaining a satisfactory

∣∣c, xk mod (n)〉 . Each of these
states occurs with probability 1/3r2. Therefore, we get a sufficient state with
probability φ(r)/3r. Using a theorem of Hardy, φ(r)/r > δ/ log log(r) for some
δ. Thus, with O(log log(r)) repititions, we can achieve a satisfactory probability
of finding a sufficient state.

7 Quantum complexity classes

Currently, the relation between quantum complexity classes and their classical
analogues is unknown. The practicallity of a quantum computer stems largely
from its abillity to efficiently solve problems that are not thought to be solvable
efficiently with a classical computer. If quantum computation cannot extend
the class of functions that can be solved efficiently, then their use will most
likely be largely relegated to mostly specialized and limited usage.
To begin our discussion of quantum complexity classes, we will begin with a
brief overview of classical complexity classes. We make the following definitions
in this section:

1. A problem is in P if it can be solved by a deterministic polynomial-time
Turing Machine. These are the problems that are considered to be ’easy

13

enough’ to compute efficiently on a Turing Machine. An important result
of complexity theory is that primality testing is in P.

2. A problem is in NP if it is solvable by a nondeterministic polynomial-time
Turing machine. A nondeterministic polynomial-time Turing machine is
allowed to have any number of paths to reach an answer, but at least one
of these paths must result in a Turing Machine that accepts the input
and terminates in polynomial time if the answer is yes, and every path
must reject if the answer is no. We define a problem x to be in class
NP-COMPLETE ⊂ NP if, given any problem p ∈ NP, p can be reduced
to x with polynomial time and space modifications. In other words, an
algorithm that can solve x in polynomial time can be used to show that
all of NP can be solved in polynomial time.

3. Problem x has a complement x created by reversing the yes and no an-
swers. For instance, consider the problem of primality testing. Then the
complement is determining if a number is composite.

4. co−NP is the class of problems x such that x is in NP. It is generally con-
sidered to be highly unlikely that co-NP = NP. Therefore, if a problem is
in NP and co-NP-COMPLETE, then it is most likely not NP-COMPLETE,
because this would imply that NP = co-NP.

The integer factorization problem is interesting in that there is no known polynomial-
time solution, and yet it is not believed to exist in either NP-COMPLETE or
in co-NP-COMPLETE. Because it is known to be NP and co-NP, if it were to
exist in either class this would imply NP = co-NP, which is evidence to suggest
that is not in either class. However, no efficient polynomial-time algorithm has
been found. This leads some to suggest that the factorization problem instead
lives in NP-intermediate, a class of problems not thought to be in NP-I (the I
stands for intermediate), a hypothetical class of problems that are not in P or
NP-COMPLETE, which is non-empty if and only if P 6= NP. It would seem that
the usefulness of quantum mechanical processing would extend naturally to at
least a subset of NP-I, if it were to exist. Note that integer factorization is not
the only problem in BQP for which there is no known polynomial algorithm:
the discrete logarithm is also shown in [3] to be in BQP, which has also been
proposed to exist in NP-I. As the study of quantum computing is relatively
young, even in comparison to complexity theory in general, it remains to be
seen how far BQP can be extended. Ultimately, for BQP to see practicality in
real-world computing problems, BQP would likely have to be extended to NP-
COMPLETE in order to be efficient for most computationally expensive and
interesting problems.

8 References

1. D. Coppersmith, An approximate Fourier transform useful in quantum
factoring, IBM Research Report RC 19642 (1994).

14

2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Num-
bers, Fifth ed.(1979), Oxford University Press, New York.

3. P. Shor, Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer,SIAM J.Sci.Statist.Comput.
26 (1997) 1484

4. Wootters, William; Zurek, Wojciech. ”A Single Quantum Cannot be
Cloned”. Nature 299 (1982): 802803

15

