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1 Introduction to Perfect Numbers

We define the function σ(n) as the sum of the divisors of n.

We say a number n is perfect if and only if n is the sum of its divisors

excluding itself, or equivalently, if and only if n is half of the sum of its divisors

including itself.

σ(n) = 2n

We will divide perfect numbers into two types: perfect numbers which are

even (divisible by two) and odd (not divisible by two). The even perfect numbers

are all of the form:

2p−1(2p − 1)

where (2p−1) is prime. Prime Numbers of the form (2p−1) are called Mersenne

primes, and only occur if p is prime, although they do not necessarily occur if

p is prime. It is unknown whether or not there are infinitely many Mersenne

primes. There were 27 Mersenne primes known at the time of [2] publication,

but more have been discovered since, bringing the count to 49.

There are no known odd perfect numbers, but there is no proof that they

do not exist. It was conjectured in 1496 that there are no odd perfect numbers.

In 2012, Peter Acquaah and Sergei Konyagin proved that for any odd perfect

number x, any prime factor q satisfies q < (3x)
1
3 , this paper will summarize their

1



paper, explaining the details of their paper. This is useful because it simplifies

the process of checking whether a number is an odd perfect number, because

only prime numbers less than (3x)
1
3 need to be checked, accelerating the search

for odd perfect numbers.

2 Notation

We’ll define some notation that will be used throughout the rest of this paper.

p|q means that p divides q evenly, q is a multiple of p. In other words, there is

some n such that np = q.

p - q is the opposite, in other words p does not divide q.

For a prime p, natural number n, and nonegative integer u, pu||n if pu|n and

pu+1 - n, in other words, p divides n exactly u times.

As stated earlier, σ(n) =
∑
d|n d. In other words the sum of all the divisors of n.

This function is multiplicative, that is σ(MN) = σ(M)σ(N). This is because

if m|M and n|N , mn|MN . The converse is true because if a|MN , each of a’s

prime factors must divide either M or N , so there is some b|M , c|N , such that

bc = a.

3 Mersenne Primes

Earlier we stated that primes of the form (2p − 1) are called Mersenne Primes,

and occur only if p is prime.

Suppose 2p− 1 is prime. Suppose for a contradiction we can write p = q1q2,

where p and q are integers.

2p − 1 = (2q1)q2 − 1

Applying the elephant teacup identity, we learn that

(2p − 1) = (2q1 − 1)((2q1)q2−1 + ...+ 2q1 + 1

So (2q1 − 1)|(2p − 1), a contradiction, since we assumed 2p − 1 was prime.

Note that this is necessary but not sufficient, for example 211 − 1 = 2047,

but 23(89) = 2047.
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4 Cited Results on Perfect Numbers

In [1] Acquaah and Konyagin cite several properties of perfect numbers. They

cite the form of the even perfect numbers from [2], which we will show below.

Acquaah and Konyagin then cite two other papers for three facts about the

properties an odd perfect number must have, namely that if x is an odd perfect

number, x > 101500 from [3], x has at least nine distinct prime factors from [4],

and the total number of prime factors must be at least 101 from [3]. These facts

do not play a large role in the paper.

One result by Euler that does play a crucial role in our proof regarding the

prime factors of odd perfect numbers is that if x is an odd perfect number,

x = Qαm2, with Q and α both congruent to 1 modulo 4, and Q and m coprime.

5 Even Perfect Numbers

This section is an explanation of [2], which [1] cites. The form of even perfect

numbers was first discovered by Euclid, who proved that if (2p − 1) is prime is

then 2p−1(2p − 1) is perfect. I’ll give a brief algebraic proof, although the fact

is too elementary for any of the papers I’m citing to give the proof. Recall that

σ(NM) = σ(N)σ(M), by the multipicativity of σ shown earlier.

Suppose (2a+1 − 1) is prime. Then consider N = 2a(2a+1 − 1). σ(N) =

σ(2a)σ(2a+1 − 1) =
(∑a

k=0 2k
)

(2a+1 − 1 + 1) = (2a+1 − 1)2a+1 = 2N

Euler was the first to prove the converse, that every even perfect number is

of Euclid’s type.

σ(n) =
∑
d|n

(d)

σ(n)

n
=
∑

(1/d),

because for each divisor there is another such d1d2 = n, so d1
n = 1

d2
Let M be

a proper divisor of N (proper divisor here means that M |N and N 6= M .

σ(N)

N
≥ σ(M)

M
,

because expressed as the summation above, σ(N)
N will contain every term σ(M)

M

does, and at least one more (NM ).
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Now assume L = 2aN is perfect a > 0.

σ(L) = 2L

by assumption

σ(2aN) = 2a+1N

σ(2a)σ(N) = 2a+1N

using the multiplicativity (
a∑
k=0

2k

)
σ(N) = 2a+1N

because all the factors of 2a are the numbers 2k 0 ≤ k ≤ a.

(2a+1 − 1)σ(N) = 2a+1N

this is from the formula for a finite geometric sum.

σ(N)

N
=

2a+1

2a+1 − 1

Cohen also states at this stage that this implies (2a+1−1) is a factor of N . This

is because σ(N) must be an integer. Now because σ(N)
N ≥ σ(M)

M ,

σ(N)

N
≥ σ(2a+1 − 1)

2a+1 − 1

σ(2a+1 − 1)

2a+1 − 1
≥ (2a+1 − 1) + 1

2a+1 − 1

because both 2a+1 − 1 and 1 divide 2a+1 − 1.

σ(N)

N
≥ 2a+1

2a+1 − 1

But σ(N)
N = 2a+1

2a+1−1 therefore:

σ(N)

N
=
σ(2a+1 − 1)

2a+1 − 1
=

2a+1

2a+1 − 1

So by the inequality proved earlier, N = 2a+1 − 1 and N = σ(2a+1 − 1) =
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2a+1 − 1 + 1, so N = 2a+1 − 1 must be prime. Therefore L = 2a(2a+1 − 1),

(2a+1−1) prime. We observe that the inequality we will prove for Prime Factors

of odd perfect numbers does not hold in this case, as 496 = 16 ∗ 31 is a perfect

number, but (3 ∗ 496)1/3 < 31.

6 Prime Factors of Odd Perfect Numbers

This section is a summary of Acquaah and Konyagin’s paper, which proves that

for any odd perfect number N , any prime factor q satisfies q < (3x)
1
3 .

Let

n =

k∏
i=1

prii

where pi are all distinct primes. This is the prime factorization of n. By

repeatedly using multiplicativity, as discussed in the section on even perfect

numbers, we know that

σ(n) =

k∏
i=1

σ(prii )

σ(prii ) =

ri∑
j=0

pji ,

a geometric series so

σ(prii ) =
pri+1
i − 1

pi − 1

therefore

σ(n) =

k∏
i=1

pri+1
i − 1

pi − 1

For any odd prime power y = pr, σ(y) =
∑r
i=0 p

i = pr+1−1
p−1 = py−1

p−1 < p
p−1y.

p
p−1 = (1 − 1

p )−1 as p increases, this decreases, so σ(y) < 3
2y, the case where

p = 3.

7 If the prime factor in question divides the odd

perfect number more than once

Let x be an odd perfect number, and q be a divisor of x. Suppose qr||x and

r ≥ 2, qr divides x, so x
qr is an integer, so σ( xqr ) = σ(x)

σ(qr) by multiplicativity,
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so σ(qr) divides σ(x). qr and σ(qr) are also coprime, meaning they share no

factors, because σ(qr) =
∑r
i=0 q

i, the sum of 1 and terms all divisible by q,

which is the only prime factor of qr. Therefore, σ(x) is divisible by qrσ(qr).

Therefore, 2x = σ(x) ≥ qrσ(qr) > q2r ≥ q4. So q < (2x)1/4, and we’re done.

8 If the prime factor in question divides the odd

perfect number only once

From Euler, x = Qαm2, where Q is prime, Q ≡ α ≡ 1 (mod 4), and m and

Q are coprime. Therefore, if q is a prime divisor of x, and q 6= Q, q2|x, so the

inequality shown above holds. Thus, assume q = Q and α = 1. So we can write

x = qm2.

The authors then state that since x is perfect, there is some prime power p

such that p2a||x with q|σ(p2a).

To prove this, first let m =
∏k
i=1 p

ri
i . Then by multiplicativity σ(m) =∏k

i=1 σ(prii ), and σ(m2) =
∏k
i=1 σ(p2rii ). Therefore,

2x = σ(x) = σ(q)σ(m2) = σ(q)

k∏
i=1

σ(p2rii )

We note that for any prii , p2rii ||x, because m2||x, and m and q coprime.

qm2 = σ(q)

k∏
i=1

σ(p2rii )

q and σ(q) are coprime, so q|
∏k
i=1 σ(p2rii ). But q is prime, so it must divide as

least one of the σ(p2rii ) in order to divide the product, therefore, there exists

some prime power p such that p2a||x with q|σ(p2a).

Now we write x as qp2av2.

First suppose that p - σ(q).

2qp2av2 = 2x = σ(x) = σ(q)σ(p2a)σ(v2)

by hypothesis, p2a - σ(q) and p2a - σ(p2a) because prime powers do not divide

the sum of their factors, as shown earlier. Therefore, p2a|σ(v2). Therefore,
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qp2a|σ(p2av2). Therefore σ(p2av2) > qp2a.

2x = σ(x) = (q + 1)σ(p2av2) > q2p2a >
2q2σ(p2a)

3
>

2q2

3

using the σ(y) < 3
2y inequality we showed earlier, so we’re done.

Now for our last case, let p|σ(q). Let u = σ(p2a)/q. σ(p2a) ≡ 1 (mod p) and

q = −1 (mod p), therefore u ≡ −1) (mod p). Furthermore, since σ(p2a) is the

sum of a series with an odd number of terms, and all the terms are odd, and q

is also odd, u is odd. Therefore u 6= p− 1. Therefore, u ≥ 2p− 1.

Let pb||σ(q), by assumption b ≥ 1.

2qp2a−bv2 =
σ(q)

pb
σ(p2a)σ(v2)

Therefore p2b−a||σ(v2). Therefore, b ≤ 2a, and σ(v2) ≥ p2a−b.

p2a+1−1 = (p−1)σ(p2a) = (p−1)uq = (p−1)u(σ(q)−1) = (p−1)uσ(q)−(p−1)u

Therefore, p2a+1 − 1 ≡ (p − 1)uσ(q) − (p − 1)u (mod pb). σ(q) ≡ p2a+1 ≡ 0

(mod pb), so −1 ≡ −(p− 1)u (mod pb). Therefore 1 ≡ (p− 1)u (mod pb). So,

(p− 1)u > pb

Together with σ(v2) ≥ p2a−b, we get

uσ(v2) >
p2a

p− 1

2x = σ(x) = σ(q)σ(p2a)σ(v2) = (q + 1)uqσ(v2).

2x >
p2aq2

p− 1

Then using the σ(y) < 3y
2 inequality we get

2x >
2σ(p2a)q2

3(p− 1)
=

2uq3

3(p− 1)
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Then using u ≥ 2p− 1 we get

2x >
2(2p− 1)q3

3(p− 1)
>

4q3

3

so

(3x)1/3 > 21/3q > q

Finishing the proof. We also note that due to Euler’s form of x, x has at most

one prime factor q ≥ (2x)1/4, in addition to the restriction on all prime factors.
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