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Review of Random Walks on Graphs: A Survey [1]
with Applications to Thermodynamics
And a Digression into the Nature of Harmonicity

Introduction

Consider a system with a set of states and a set of allowable transitions
between pairs of states. We can represent this system as a graph, whose nodes are the
states, and whose edges are possible transitions. In this model, the evolution of the
system corresponds to a random walk on the graph.

A random walk on a graph is a sequence of nodes generated by starting at one
node, and then moving to one of its neighbors selected at random, and then to one of
its neighbors, and so on. Think shuffling a deck of cards. The current permutation of a
deck of cards being shuffled evolves according to a random walk on a graph whose
nodes are permutations, and whose edges relate permutations that can be obtained
from each other via a single shuffling motion.

In this paper I'll summarize some of the results in Lovasz’s 1993 paper Random
Walks on Graphs: A Survey [1] that [ found most interesting. First I'll derive the unique
ordering of access times between nodes--some nodes are “easier to reach and harder
to get away from”, while others are “harder to reach and easier to get away from”, and
describe some consequences and interesting examples.

Next, I'll illustrate the deep connection between random walks and linear
algebra, via the matrix of transition probabilities. Using eigenvalues and the spectral
decomposition, I'll show that a random walk starting at any probability distribution
tends to a unique stationary distribution.

Finally, I'll describe how random walks on graphs bear on statistical
mechanics--in particular the fundamental assumption that all accessible states of a
system are equally likely. I'll use my knowledge of the stationary distribution to prove
the fundamental assumption for strongly reversible physical systems.

Let’s dive in!



Basic Definitions

Let G = (V, E) be a connected graph; let |V| = nand |E| = m. A random walk on G
starts at a node v0; if at the ¢t-th step we are at node vt, we move to a neighbor vi of vt
with probability Pt->i. In what follows, (until I explicitly break this assumption in my
discussion of statistical mechanics), we assume the graph is undirected (transitions
can occur in either direction) and the probability Pj->k of transitioning from node j is
the same for each neighbor k; that is, Pj->k = 1 /out-degree(j).

The node v0 can be fixed, or it can be a random variable drawn from some
initial distribution D0. We denote by Dt the distribution of the random walk after ¢
steps.

The neat thing about this setup is that we can write down a matrix of transition
probabilities M that acts on the vector Dt to produce a vector Dt+1. That is,

Dt+1j = M Dt = Sum(1 <=i <= n of Mij Dtj)
where
Definition (Matrix of Transition Probabilities M): Mij = Pi->j

We’'ll return to this later.
Another very fundamental idea is that of access time.

Definition (Access Time): The access time H(i, j)between two
nodes i and j is the expected number of steps before node j is
visited starting from node i.

One can also look at the return time R(k), which is the expected number of
steps for a random walk starting at node k to return to k--this quantity will be
important later. Or the commute time K(i, j) = H(i, j) + H(j, i), which is the expected
number of steps for a round-trip; or the cover time C-D0, which is the expected
number of steps to reach every node starting from distribution D0. But we’ll stick with
the access time for now.

To illustrate the basic idea of access time, we’ll compute the access time for two
points on a path on nodes 0, ... n - 1 (edges Ei<->(i+1) foriin 0 ... n - 2).



The defaults above are in force, so the path is undirected and the probability of
moving to the left-hand neighbor is equal to the probability of moving to the
right-hand neighbor for each node in the interior.

First, we use a canonical trick and consider immediate neighbors. The access
time H(k, k+1) is one less than the return time R(k+1) on a clipped path where node k
+ 1 is an endpoint.
<Image>
Now we use a fascinating result that I'll prove later when considering the
stationary distribution: the return time R(k) for any node is 2m / deg(k). Thus
H(k,k+1)=R(k)-1=2k/1-1=2k+ 1.
Finally, we proceed inductively to get H(i, k), 0 <= i < k <= n. We have to reach
node k - 1 to get to k; hence
H(i,k)=H(i,k-1)+H(k-1,k)=H(i,k-1) + 2k- 1

So
H(i, k)=H(i,i+1)+...+Hk-1,k)=02i+1)+ (2(i+1)+1)+...+
(2(k-1)+1)

Summing,
H(i,k)=2((Sum1l<=j<=k-10f2j+1)-Sum0<=j<=i-1o0f2j
+1))
=(k-1(k)-({-1)(@{) +k-i
=k"2 -i"2.

Ordering of Access Times

There is a neat property of access times to the effect that the expected time of
touching a set of nodes in order forwards is the same as the expected time of touching
these nodes in order backwards. The property is trivial (boils down to the
commutativity of addition) in the case of two nodes:



K(i,j) = K(j, 1) = H(i, j) + H(j, 1)
But we can extend this to three nodes, via an argument due to Coppersmith, Tetali
and Winkler [2]:

H(u,v) + H(v,w) + H(w, u) = H(u, w) + H(w, v) + H(v, u)

The details of the proof are instructively subtle. We want to show that the
expected number of steps for a walk that starts at u, to hit v, then hit w, then hit u
again for the first time, is the same as the expected number of steps for a walk that
starts at u, to hit w, then hit v, then hit u.

The natural way to do this is to start a walk W at u and end it when it completes
a cycle in the forward direction. W has one cycle in the forwards direction and one
reverse cycle in the backwards direction. The expected length of the forward cycle is
the average of the length of W over all such cyclic walks, weighted by the probabilities
of these walks. And the probabilities of each walk and its corresponding reverse walk
are the same. To see this, consider a (forwards) walk with outcome {u, v1, v2, ... vk, u}.
Its probability is

Pu->v1 Pv1->v2 ... Pvk->u
= (1/deg(u)) (1/deg(v1)) ... (1/deg(vk)).
= (1/deg(u)) (1/deg(vk)) ... (1/deg(v1))
= Pu->vk Pvk->vk -1 ... Pvl->u
Which is the probability of the backwards walk. A sidenote: this is a special case of the
time-reversibility of a random walk on an undirected graph, a fact whose proof I'll
omit:
Definition (time-reversibility). Consider all random walks {vO0, ... vt},
where v0 is drawn from a probability distribution D0. We get a
probability distribution Q on the sequences {v0, vt}. We also get a
distribution Dt on the ending node vt. If we reverse each sequence but
leave its probability unchanged, we get a new probability distribution @’
on the reversed sequences. Time-reversibility means that Q’ is the same
distribution we would get considering random walks from Dt.

Here we start at u and end at u, so D0 = D¢, so, by time reversibility, Q = Q".

So, if we could just say that the length of the backwards cycle is also the length
of W, then both the lengths and the probabilities in our weighted average would be
the same. But there’s an issue. We defined our cycle as starting at u, continuing to v,
then to w, and then ending on the first time we see u again. But the “first time we see u
again” on the reverse walk might not be on the very last node. See below:
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To get around this, instead of considering a single cycle, we fix an integer r,
start a random walk at u, and end it when we have traversed r cycles. We can show
there are also rreverse cycles in the reverse walk. This is because for each cycle in the
forward walk, we can find a reverse cycle in the reverse walk, so there are at least r
reverse cycles. But for each cycle in the reverse walk, we can find a cycle in the
forward walk, so there are no more than r reverse cycles. Hence there are r reverse
cycles.

Furthermore, the sum of the forward cycles’ length is the length of the walk,
and the sum of the backwards cycles is the length of the walk, less the length of a little
piece at the beginning, equal to the length of the walk up until the last u before the
first v is reached.
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As we make rlarge, this little piece (constant expected length wrt r) becomes
insignificant compared to the length of the walk. And so the average length of a
forward cycle on the walk approaches the average length of a backwards cycle on the



reverse walk, which shows that the expected lengths of forwards and backwards
cycles are the same, which concludes the proof.

An interesting digression--once we have this result for 3-cycles, we can extend
it to arbitrary-length cycles, in exactly the same way we can build arbitrary polygons
out of triangles. This is in fact a neat graphical representation; you can see how the
v<->w edges might cancel out.
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Algebraically, we add
H(u, v) + H(v, w) + H(w, u) = H(u, w) + H(w, v) + H(v, u)
+
H(w, v) + H(v, s) + H(s, w) = H(v, w) + H(w, s) + H(s, v)

And cancel the H(v, w) and H(w, v) that appear on both sides to obtain
H(u, v) + H(v, s) + H(s, w) + H(w, u) = H(u, w) + H(w, s) + H(s,v) +
H(v, u).

But we only need the property for 3-cycles to prove the main result of this
section: that the nodes of any graph can be ordered so that if u precedes v in the
ordering, then H(u, v) <= H(v, u). This ordering can be obtained by fixing any node t
and ordering all the nodes u according to the value of H(u, t) - H(t, u).

Proof. If u precedes v, then

H(u, t) - H(t, u) <= H(v, t) - H(t, v), so

H(u, t) + H(t, v) <= H(v, t) + H(t, u).
But subtracting this from

H(u, t) + H(t, v) + H(v, u) = H(u, v) + H(v, t) + H(t, u)
Gives

H(v,u) >=H(u, v) --> H(u, v) <= H(v, u).



How should this be interpreted? I mentioned before that roughly, nodes earlier
in the ordering are easy to get away from but hard to reach, and nodes later in the
ordering are hard to reach but easy to get away from. This interpretation would be
justified if random walks, on average, hit nodes earlier in the list less often than nodes
later in the list. [ can’t prove this in general, but it’s easy to prove that, on average, the
first node in the list is hit less often than the last node in the list.

What I'll actually prove is that the return time R(u) for the first node u is larger
than the return time R(v) for the last node v, but from arguments in the next section
this is equivalent to the above.

All we need is the formula

R(s) = (1 / deg(s)) Sum(q in neighbors(s) of 1 + H(q, 5))
which you can verify with a moment’s thought. Then, since H(r, u) > H(r, v) for all
nodes r, by the ordering, each number being averaged in the sum for R(u) is larger
than each number being averaged for the sum for R(v). So R(u) > R(v), which at the
least sanity-checks our interpretation.

Next up, we verify a far-reaching result with a far clearer interpretation.

The Stationary Distribution: Uniqueness and Existence

In this section, I'll show that, for any connected graph G, there is a unique
stationary distribution S on G.

Definition (Stationary Distribution): A probability distribution
over nodes v1... vk of a graph G is stationary if MS = S, where S is considered as the
column vector [P(v0), P(v1)... P(vk)] and M is the transition probability matrix of G.

I'll also show that a random walk starting from any initial distribution tends to
the stationary distribution as the number of steps taken goes to infinity.

Then, in the next section, we'll use it to justify the fundamental assumption of
statistical mechanics that all accessible states are equally likely.

Step 1: Existence. Let SO(v) = deg(v) / 2m. SO(v) is a stationary distribution.
To see this, let the distribution D be S0 at step t, that is, Dv(t) = SO(v). Then

Dv(t+ 1) = Sum (i in neighbors(v) of Di(t) * Pi->v)

= Sum (i in neighbors(v) of (deg(i) / 2m) * (1 / deg(i)))

= Sum (i in neighbors(v) of 1 / 2m)

= (1 /2m) Sum (i in neighbors(v) of 1)

=deg(v) / 2m

= Dy(t)



So if a distribution D ever equals SO at any step t, then it remains D at step t + 1, which
means SO is stationary.
Step 2: Uniqueness--we prove S(v) = S0(v) for any stationary distribution S and
each node v. We can think of the stationary random walk as a sum of distributions of
random walks starting at each node vi, weighted by probability P(vi) = Si. To see this,
decompose the result of the matrix multiplication S = M S as follows:
S=M"tS=M"t[S10.0]+M*t[0S20...0]+...+ M t[0...0 Sn]
Each of these distributions
Wi=M"t|0,0,...,Si ... 0, 0]
represents the distribution of a walk Zi = {vi, ... vt} starting at node vi, after time t.
Now, the catch; each walk Zi is guaranteed to encounter node v after some
number of steps, since the graph is connected. And after that, the frequency of hitting
v is fixed by the well-defined quantity R(v) as 1/ R(v).
So the average probability over all steps that we are at node v Pavg(v), which is
the total number of steps we are at v as a fraction of the total number of steps t, tends
to the frequency of hitting v, 1/ R(v).
Thus the average probability that we are at node v approaches 1/ R(v) for each
walk Zi as t grows large. This implies that Pavg(v) in each of the walk distributions Wi
approaches 1 / R(v). But S(v) is just a weighted sum over P(v) for each Wi. So Savg(v),
the average value of S(v) over all steps, is a weighted sum over Pavg(v) for each Wi
(averages are linear). Which means, as t goes to infinity,
Savg(v) -> Sum (Si * Pavg(v) in Wi, over all Wi)
=S1(1/R(Wv))+S2(1/R(v))+...+Sn(1/R(v))
=(S1+...+5n)(1/R(v))
=1/ R(v)

But lim Savg(v) =lim S(v) = S(v) since S(v) is constant with t. This means
S(v) =1/ R(v)

This means that P(v) is the same for any stationary distribution S and each
node v. But since we already have one stationary distribution S0, S = SO for any
stationary distribution S; S is unique.

This argument also determines R(v):

1/ R(v) =P(v)inS=P(v)in SO =deg(v) / 2m

— R(v) =2m / deg(v)
As claimed earlier. And we can determine the expected “edge return time” ER(i->j),
the number of steps after an edge has been traversed in one direction until that edge
is traversed in the same direction again. Suppose the edge goes from node i to node j.



Then to traverse the edge again in the same direction, we need to reach node i again.
The expected number of steps to do so is

2m [ deg(i).

But then we need to leave i through the edge from i to j, which has probability

1/ deg(i). The expected number of times we must trial our 1/ deg(i) bernoulli variable
to get a positive result and leave through the correct edge is deg(i); hence we expect
to reach i deg(i) times before traversing the same edge again, and so

ER(i, j) = deg(i) * 2m / deg(i) = 2m,
Independent of the particular edge.

All Walks Lead to the Stationary Distribution

Next, I'll reprise Lovasz'’s proof that any distribution tends to the stationary
distribution. That is, the probability Pi->j(t) of a node starting at i being atj after ¢
steps tends to S(j). If this is true, then the probability Pj(t) of a node being at j after t
steps tends to S(j) no matter the starting distribution D0. We want to use our
transition probability matrix M, plus the spectral theorem from linear algebra.

Theorem (Spectral Theorem [3]): Any symmetric n x n matrix
has exactly n eigenvectors and they can be chosen to form an
orthonormal basis for R”n.

The problem is that M is not symmetric. But we can express it in symmetric
form. We know that M = DA, where A is the adjacency matrix of the graph G that M
corresponds to, and D is a diagonal matrix where Dii = 1/ deg(i).

Definition (Adjacency Matrix) : Aij = 1 if there is an edge i->j, 0
otherwise.
You can verify M = DA, but the idea is that Mij = Aij Dii so that Mij = 0 if there is no
edge from i to j, and otherwise Mijj is 1/ deg(i) as expected.

Now 4 is symmetric (because we assume G is undirected, so Aij = Aji).

And multiplying a symmetric matrix on either side by a diagonal matrix preserves
symmetry. To see this, note Nij = Aij Dii Djj = Aji Djj Dii = Nji. Thus the matrix

N =D % A D %
IS symmetric.

A quick note: given a diagonal matrix D with nonzero entries on the diagonal,
we define D”p for any number p by the diagonal matrix

D"p ii = (Dii)"p.



This definition satisfies the normal rule of exponentials D*p D*s = D*(p+s), and in
particular, D D*-1 =1, so that the inverse matrix corresponds to the -1th power. So
M=DA->A=D-1M->
N =D"% D*-1 M D",
=D"-% M DM .
Which means
M=D"¥% ND"-%.
Now we have M in terms of the symmetric matrix N. The spectral theorem says we
can write
N =Sum(k =1to n of Lk Vk VkT)
Where L1 >= L2 >= ... >= Ln are the eigenvalues of N and V1, ... Vn are the
corresponding eigenvectors of unit length, and VkT signifies the transpose of Vk. To
see this, recall that a rank n matrix like N, considered as a linear transform, is
determined by the values that it sends a set of basis vectors for R”n to. But by the
spectral theorem, the eigenvectors Vk are a basis for R”"n. So all we must show is that
N Vj = Lk Vj for each V.
But this is trivial, because
N Vj = Sum(k = 1 to n of Lk Vk VKT Vj).
Grouping the last terms,
N Vj = Sum(k = 1 to n of Lk Vk (VKT VKk)).

But
VjT Vk = <Vk, Vj>
=0, k /=j since the VK’s are orthogonal
=1, k =j since the VK’s are unit length.
Hence

N Vj = Lk Vij.
So the spectral theorem allows this decomposition. Now I have to invoke another
result from linear algebra.
Theorem (Frobenius-Perron Theorem [4]) : Let Bbe a
irreducible matrix. (Any matrix that corresponds to a
connected undirected graph in the way N does--in the
sense that an entry Bij is nonzero iff there is an edge in the
graph from i to j--is irreducible). Then
1. Bhas areal eigenvalue r that is larger than or equal to all
other eigenvalues in modulus.
2. rcorresponds to a single right eigenvector v.



3. vhasall positive real components.
4. vis the only right eigenvector of B with all positive real
components.

To use the Frobenius-Perron Theorem, we need to find the eigenvector of N
with all positive components. But it’s easy to see that Wi = (deg(i))*%z is an
eigenvector of N with eigenvalue 1, and clearly, all positive components. Hence

L1=1>L2>L3>...>Ln>=-1.
Lovasz also states that Ln >= -1 if our graph G is non-bipartite. Bipartite-ness is a
particular kind of degeneracy where the nodes of G can be partitioned into two sets U
and V such that all edges of G join nodes in U to nodes in V.

Finally, note that the normalized eigenvector V1 corresponding to L1 is given
by

W/ (2m)"Y,
so that Vi is (deg(i) / 2m)" 2 = (S(i)"%2).
Now, we're interested in the probability that a random walk, starting at node i,
is at node j after t steps. Now this is an entry of M t:
Pi->j(t) = (M"b)ij.
To see this, consider the initial distribution DO corresponding to a walk starting at i:
D0i=1,D0j=0,j /=i
Hit this distribution with M t times to produce Dt. Now the catch: matrix
multiplication is associative, so
Dt = (M*¢) DO.
But
Dtk = ((M"t) DO Yk = (M7 t)ik so Dtj = Pi->j(t) = (MAt)ij.
So we want to figure out the limiting value of M*t. We have
M"t=D"¥% N*t D"-%;
Since when multiplying out the formula for M in terms of N, the inner diagonal pieces
cancel off.
Let’s take our spectral formula for N and square it. When we do this, we get a bunch of
terms of the form
LKVKVKT * LjVjVjT
= LkLj VKVKT VjVjT = LKLj Vk (VKT Vj) VjT
= LkLj Vk (VKT Vj) VjT
= LkLj <Vk, Vj> VjT.



Recall that the central inner productis 1 for k = j, 0 otherwise. So all the terms with k
/=j disappear and we are left with
N”2 =Sum(k=1ton of Lk"2 Vk VKT)
— N”t=Sum(k =1 to n of Lk"t Vk VKT)
Which means
Mt = Sum(k =1 to n of Lkt D"% Vk VKT D"-% )
= Q + Sum(k =2 tonof Lk"t D"¥% Vk VKT D"-% )
Where
Q=D"¥% V1VITD"-%

But if G is not bipartite then |Lk| < 1 for k=2, ... n, and so
M”t-> Q as t goes to infinity. So (M"t)ij -> Qij as t goes to infinity.
That is, the probability that a random walk starting at i is at j after ¢ steps goes to Qij
as t goes to infinity. What is Qij? It is
(D"%)ii V1i V1j D%
= (1 /deg())"V2 (deg(i) / 2m)*V%2 (deg(j) / 2m)" Y2 (deg())" V2 )
= deg(j) / 2m
=S()).
So the probability of a random walk starting at any node being at j after ¢ steps tends
to S(j), which is what we wanted to prove. Next, we'll apply this result to statistical
mechanics.

Fundamental Assumption of Statistical Mechanics

First, a very quick bit of background on statistical mechanics. Because of
quantum mechanics, most physical systems can be thought of as having a finite
number of states. So we can consider a graph whose nodes are the states. For
example, in the simple Einstein model, a solid is viewed as a lattice of atoms,
each of which contains a certain discrete positive amount of energy quanta that can
be transferred with neighbors. The state of this solid is a list of the number of quanta
contained in each atom. Typically, we constrain the set of allowed states by a set of
macroscopic system variables--in the case of the Einstein solid, the macrostate is the
total number of energy quanta.

The edges of the graph, which represent transitions of the system, depend on
the system. In the Einstein solid state graph, there is an edge between every pair of
states 51, S2, such that across the states, the number of quanta in all but two



neighboring atoms i and j are the same, but in S1 quanta(i) = x, quanta(j) = y whereas
in S2 quanta(i) = x + 1, quanta(i) =y - 1. This corresponds to atom i gaining a quantum
of energy from atom j.

A random walk on a graph corresponding to a physical system corresponds to
the time-evolution of that system. To make this correspondence accurate, we have to
assume that the physical system evolves in discrete time steps in place of a more
nuanced probability density model of transitioning in time. But we don’t lose any
information this way about the limiting likelihoods of the states. If we want more
information about when transitions happen, we can generate a series of time values
from a Poisson distribution:

t0 =0, ti = t(i-1) + Poi(L), L average time of transition
And map each ti to a corresponding node in the outcome of a random walk. But this is
not our main focus.

Now I'll check the assumptions we made about general graphs above and see
how these assumptions relate to graphs representing physical systems. The
assumption of connectedness carries over--we want to consider a set of states such
that every state can be reached from every other. The assumption that Pi->j ~ deg(i) =
deg(i) / 2m does not necessarily hold--I'll return to this later. The assumption of
undirectedness still holds. In general, the microscopic laws of physics are
time-reversible, so any transition that occurs in one direction can occur in the other.

In fact, we're going to assume--the key assumption of this section:

Definition (Strong Reversibility): Pi->j = Pj->i.

[ originally thought--when drafting this paper--strong reversibility made physical
sense. But I realized in the course of research it is generally not true; it is true,
according to Lewis [5], only if the fundamental assumption of statistical mechanics,
which I had hoped to derive, is true.

Definition (Fundamental Assumption of Statistical

Mechanics): All possible states tend to equal likelihood with time.
If the system has reached equilibrium, then a general principle, argued by Lewis,
forbidding “cyclic equilibrium” comes into effect. That is, consider a large number
(much larger than the number of possible states) of copies of our system S1... Sk, and
call Ni, Nj the average number of such systems in state i and state j. By the
nonexistence of cyclic equilibrium as argued by Lewis, it is not physically possible
that Ni and Nj remain constant while the rate of transition from i to j is different from
the rate of transition from j to i:

Ni Pi->j /= Nj Pj->i.



Hence in equilibrium,
Pi->j = Pj->i only if Ni= Nj,
Which condition is the fundamental assumption of statistical mechanics, since Ni, Nj =
S(i), S(j) in equilibrium.
But I'll argue the converse anyway. If a physical system is strongly reversible, |
can construct a graph that models whatever transition probabilities Pi<->j that system
has, to an arbitrary precision. For example, [ can model a system with this graph T:
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This system, as drawn, violates the assumption we made in previous sections that
Pi->j = deg(i). So we can’t quote the proof from above that all distributions tend to S.

So I'll replace it with this graph T":
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T is regular of degree 3 and Pn->m = 1/ deg(n) = 1/3 for all n, m that are connected by
an edge. But if we think of the nodes in each bubble as a single node, this graph
mimics the behavior of the graph T.

[ can do this in general. Given a graph G on vertices v1, ..., vn with given
transition probabilities Pi->j that are rational with denominator N (N some integer),
I'll replace it with a graph G’, with n * N nodes s1, s2, ..., s(n * N). To do this, I replace



each node vi of G with N nodes. Define, for each i, Qi = {qi1, ... qiN}, the set of N nodes
in G’ corresponding to node vi in G. Each node in Qi is connected to N Pi->j of the nodes
(it doesn’t matter which) in Qj, so that the probability of going to a node in Qj from a
node in Qi is N Pi->i / N = Pi->j. Hence the graph G’ thus produced mimics the graph G,
in the precise sense that P(Qj->Qi) = Pi->].

In terms of random walks, the probability that a walk W starting from initial
distribution DO = [P(v1), ..., P(vn)] on G is at node i after t steps is exactly the same as
the probability that a walk V is at a node in Qi after t steps, starting from any
distribution D on G’ where the sum P(gj) over nodes in Qi = P(vi).

Now (¢’ is subject to the theorem that all distributions tend to the stationary
distribution. That stationary distribution on G’ is uniform, since G’is regular:

P(siy=P=N/2m=1/(N*n).
So the probability of a random walk in G’ being in each set Qi tendsto 1 / n.

Which implies that the probability of a random walk in G being in node vi tends
tol/n.

Returning to our interpretation of the nodes of G as states of a physical system,
this means that all possible states tend to the equal likelihood 1 / n with increasing
time. So we have verified the fundamental assumption of statistical mechanics for
strongly reversible physical systems.

Conclusion

In writing this paper I gained tremendous appreciation for the generality of the
concepts “graph” and “random walk”, both in application and in relation to other
mathematical domains.

We've gotten a glimpse of the relationship with linear algebra, but random
walks on graphs also have close ties to topics in complex analysis like harmonicity.
Briefly, we say that the function P: V -> R on the set of vertices V of a graph is discrete
harmonic if it satisfies the “mean value property” that for each node v of the graph,

P(v) = (1 / deg(v)) Sum(u in neighbors(v), P(u)).
We can define discrete harmonic functions to model voltage in an electrical network
or the equilibrium positions of a set of springs. Or, the expected end position of a
random walk. Suppose we have a subset S of the vertex set Vand and a function P0: S
-> R.
Then we define P(v) for vin V as the expectation of PO(s), where s is the random node
where a random walk starting at v first hits s. P(v) is discrete harmonic--because



expected values satisfy the mean value property above. And P(u) = PO(u) for u in S. P
is closely related to the probabilistic interpretation of harmonic measure. To see this,
approximate the unit disk by a planar graph that fills out the disk--maybe a
rectangular lattice. The boundary of the disk is analogous to the set of outermost
nodes of the lattice S. Define PO(v) = 1 for v in some “contiguous” subset C of S
(analogous to the curve being measured) and PO(v) = 0 for vin S - C. Then P(v) inside
the disk is a discrete harmonic function that agrees with PO on the boundary,
analogous to the solution P’ of the corresponding Dirichlet problem on the unit disk.
But P(v) is the expectation that a walk starting at v ends on C. So by analogy, we might
expect that P’(z), the harmonic measure of C from z, represents the probability that a
“random walk” on the unit disk starting at z ends on C.

And the applications Lovasz surveys range from distributed computing to
electrical networks to estimating volumes of solid bodies, not to mention statistical
mechanics. Suppose that you have to estimate the volume of a body B in R”"n. We can
do this if we can generate a random element of a superset S of B of known volume and
count how many times we hit B. To do this (essentially; the details are complicated)
we fill out S with a fine regular graph G and start a random walk on G. Our theorem
about the stationary distribution ensures that if we walk long enough, the place we
end up at is essentially uniformly distributed. To do this in practice requires estimates
on how fast distributions tend to the stationary distribution, which is another
ballgame entirely.

Random walks on graphs have so many rich applications and mathematical
connections that, to give you a uniformly distributed and representative sample of the
field, I would have to walk, or write, a long time. But [ hope that in this short paper
I've conveyed a little of the sense of power and generality and connectedness, of the
study of random walks on graphs.
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