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1. Introduction

The knapsack function, in its elementary form, given a particular integer vector
a = (a1, · · · , am), is the function from Zm → Z given by

fa(x) =

m∑
i=1

ai · xi.

There is a natrual generalization of this funciton to arbitrary rings. For a ring R,
a suset S of R, and a ∈ Rm, we define fa : Sm → R in the same way as above.

There have been many attempts at cryptographic applications of these func-
tions that have been broken, most notably the Merkle-Hellman cryptosystem, con-
structed in [3] by Ralph Merkle and Martin Hellman in 1978 (which is very early;
for comparison, RSAwas first published in 1977), which is based on the assumption
that it is intractible to, in general, find some nonzero x ∈ {0, 1}m so that fa(x) = 0.
(This problem is called the subset-sum problem). It was shown by Adi Shamir [10]
that this assumption is false.

In this paper, however, we examine a different instance of this problem, in par-
ticular taking R = Z[α]/〈αn − 1〉. Closely following Peikert and Rosen [8], we will
show that, assuming the worst-case intractibility of a particular problem on integer
lattices that the resulting family of functions {fa} is collision resistant. That is, we
will show that it is intractible to find distinct x, x′ so that fa(x) = fa(x′), which,
because fa is linear, is, in fact, a stronger condition than that it be intractible to
find nonzero x such that fa(x) = 0.

A hash function is one that shrinks its input. In particular, we take functions
h : {1, 2, · · ·K} → {1, 2, · · · k} for k much smaller than K. The hash functions
h : S → that are useful in cryptography are those with (some of) the properties:

(1) Given some h(m), it is infeasible to reconstruct m.
1
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(2) It is infeasible to construct m,m′ so that h(m) = h(m′).
(3) For no meaning of ”similar” (independent of h) do similar but distinct m,m′

have similar hash values h(m) and h(m′).
(4) It is computationally fast to compute h.

Note that property 2 is stronger than property 1. In [4], Micciancio proved that,
assuming hardness results of a problem on cyclic lattices (which will be discussed
later), a particular collection of knapsack functions have the property 1. Peikert
and Rosen [8], which we will reproduce, consider a different (but similar) collection
of knapsack functions, and demonstrate that they have the proprty 2.

One of the foundational problems of lattice-based cryptography is the shortest
vector problem (SVP, see Definition 4.4.1), which asks that, given an additive subset
of Zn, expressed in terms of a lattice basis (that is, we are given an integer matrix
B which yields a lattice BZn), we find a vector with the shortest magnitude. This
has been proven (for example, by Micciancio, in [5], even within an approximation

factor
√

2) to be not solvable in polynomial time (under unproved but foundational
conjectures) in the dimension n. In particular, he proves that SVP is not in RP .

Our result is based on the assumption that subIncSVP (see Definition 4.4.4)
is hard. That is, our proof is a reduction from subIncSVP to finding collisions
in our hash functions. In subIncSVP, we restrict the lattices that we consider to
the cyclic lattices, those closed under the map (a1, · · · , an) 7→ (a2, · · · , an, a1), and
subIncSVP asks that, given some large enough lattice vector c, we find another
lattice vector c′ with ‖c′‖ ≤ ‖c‖. There is not (currently) a sufficient hardness
result on subIncSVP, but subIncSVP is equivalent to the restriction of SVP to
cyclic lattices (see [8]), and it is conjectured that this problem is also hard.

An interesting (and appealing) fact about lattice cryptography is that many of
its proofs of hardness of average-case problems, which are those that allow use-
ful cryptographic constructions, go by way of a reduction from that average-case
problem to some worst-case problem. Ajtai’s initial constructions of one-way hash
functions in [1] is of this form, as is our result.

In practice, lattice-based cryptosystems are often slower than their more common
counterparts, and cannot be implemented for practical applications (although the
restriction to cyclic lattices makes things somewhat faster). They do not, however,
seem to be vulnerable to quantum attacks, as are the conventional cyrptosystems,
which are based on integer factorizaion or the discrete logarithm problem.

2. Algebra

2.1. Definitions and elementary results. We will give an ad hoc collection of
definitions and results of elementary ring theory, a more thorough exposition of
which can be found in, for example, [2].

Definition 2.1.1. A commutative1 ring (X,+, ·) is a set X equipped with two
operations +, · : X2 → X (and we write x1 + x2 and x1 · x2 or simply x1x2)
satisfying the following:

(1) Associativity of addition: x1 +(x2 +x3) = (x1 +x2)+x3 for all x1, x2, x3 ∈
X.

(2) Commutativity of addition: x1 + x2 = x2 + x1 for all x1, x2 ∈ X.

1The qualifier commutative refers to the axiom 6. If we omit 6 (and require that the other
multiplicitive properties be two-sided), we are left with a ring.
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(3) Additive identity: There is an element of X, denoted by 0 and called an
additive identity, such that x+ 0 = x for all x ∈ X.

(4) Additive inverses: For each x ∈ X, there is an element of X, which can
be shown to be unique, denoted by −x and called the additive inverse of x
such that x+ (−x) = 0.

(5) Associativity of multiplication: x1 ·(x2 ·x3) = (x1 ·x2) ·x3 for all x1, x2, x3 ∈
X.

(6) Commutativity of multiplication: x1 · x2 = x2 · x1 for all x1, x2 ∈ X.
(7) Multiplicitive identity: There is an element of X, denoted by 1 and called

a multiplicitive identity, such that x · 1 = x for all x ∈ X.
(8) Distributivity: x1 · (x2 + x3) = x1 · x2 + x1 · x3 and for all x1, x2, x3 ∈ X.

We will say that a subset S of a ring R is a subring of R if S itself satisfies the
ring axioms under the addition and multiplication operations it inherits from R.

Through most of this paper, we will consider only the following rings:

• R, the real numbers,
• Z, the integers,
• Zm, the integers reduced modulo some m ∈ Z,
• the Cartesian product Kn, where K is one of the above rings, addition is

defined component-wise, and multiplication by convolution (see Definition
4.1.1),

• K[α], the ring of polynomials in α with coefficients in K, where K is any of
the fields above, where addition and multiplication are naturally extended
from K, and

• the quotient rings K[α]/〈αn − 1〉 for a ring K, which will be discussed
shortly, and of which Zm is a special case.

The verification that these are in fact commutative rings follows from their familiar
properties.

Definition 2.1.2. An element x of a ring R is a zero divisor if there is some y 6= 0
such that xy = yz = 0.

As a concrete example, notice that although Z does not have zero divisors, Zm
for m not prime does have zero divisors, because if q divides m, then we can write
pq = m = 0 for some p.

Definition 2.1.3. An integer domain is a ring that has no zero divisors.

Then it can be shown that Z is an integer domain, and that Zp is an integer
domain if and only if p is prime.

Definition 2.1.4. A finitely generated ideal in a commutative ring R is a set of
the form {y1a1 + · · ·+ ymam : yi ∈ R} for some subset A = {a1, · · · , am} ⊂ R, and
we write {y1a1 + · · ·+ ymam : yi ∈ R} = 〈A〉.
Definition 2.1.5. For an ideal J of a commutative ring R, the quotient ring R/J
is the collection of subsets of R of the form x = {y : x− y ∈ J}.
Proposition 2.1.6. The sets y of a quotient ring R/J partition R and have the
structure of a ring, with operations induced by the map φ : R/J → R given by
y 7→ y.

We will make extensive use of this construction with quotient groups similar to
Z[α]/〈αn − 1〉, which we give here as an example.
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Example 2.1.7. By Z[α]/〈αn − 1〉, we denote a set of polynomials in α of degree
less than n, with coefficients in Z, along with a multiplicative structure by which
we identify αn − 1 with 0. That is, we can multiply two elements Z[α]/〈αn − 1〉 as
we would in Z[α], then reduce modulo αn − 1, much as we do when we deal with
modular arithmetic in Z. For example, with n = 4, we write

(α3 + 2α)(α2) = α5 + 2α3 = (α4)(α) + 2α3 = α+ 2α3.

One of the properties of Z[α]/〈αn − 1〉 that we will use (see Theorem 6.1.1) is
that it is not an integral domain. For example, the elephant-teacup identity gives

(α− 1)(αn−1 + · · ·+ α+ 1) = αn − 1 = 0,

but neither α− 1 nor αn−1 + · · ·+ α+ 1 is zero in Z[α]/〈αn − 1〉.

Proposition 2.1.8. Let a, b, and c in some ring R, and suppose that ab = c. Let
I = 〈a〉, J = 〈b〉, and K = 〈c〉 be principal ideals in R, then I/J ∼= R/K.

3. Computability

3.1. Asymptotic Analysis and Polynomial Time Algorithms.

Definition 3.1.1. A function f(n) is said to be O(g(n)), written as f(n) ∈ O(g(n))
or f(n) = O(g(n)), if

lim sup
n→∞

f(n)/g(n)

is finite. Also, we write f(n) ∈ Θ(g(n)) if f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)).

We will use these ideas to consider the runtime of an algorithm. Roughly, the
runtime is a measure of the number of simple calculations that a computer has to
perform in order to complete the algorithm. We will not be more precise about these
concepts than to use the rather intuitive definitions of an algorithm as a sequence
of steps that can be performed by a computer to solve some problem, given some
parameters, and the runtime the number of arithmetic operations, dependent on
the parameters passed to the algorithm, required to perform them.

To illustrate these ideas, in place of a formal definition, we will give a well-known
example from linear algebra.

Example 3.1.2 (Gram-Schmidt Orthogonalization Algorithm). We will construct
an algorithm A that takes as input a list of vectors in Rm and produces an orthog-
onal list of vectors such that the first k elements of both lists span the same space,

and we write A({b1, · · · bn}) =
{
b̃1, · · · b̃n

}
. The algorithm proceeds as follows:

(1) Let B = (b1).
(2) For each i ∈ [2, · · ·n], compute

b̃i = bi −
i−1∑
j=1

〈bi, bj〉
〈bj , bj〉

bj ,

and let B ← (B|b̃i).
(3) Output B.

A proof of the correctness of the algorithm is an elementary result of linear algebra,
and we will analyze its runtime. In doing so, we will assume that simple operations
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such as arithmetic operations on two real numbers2 or the definition something (let
a = 4) take time 1. Then the first step is performed in O(1) time. The second step
requires that we compute this sum for each value of i. For fixed i, to compute the
summand requires 3m+ 1 operations (m each to compute 〈bi, bj〉 and 〈bj , bj〉, one
to divide these results, and m to multiply this through bj), which we repeat (i− 1)
times, for a total of (i − 1)(3m + 1) + i operations. Then, since we compute this,
we sum over i, so the second step requires a total of

n+

n∑
i=1

[(i− 1)(3m+ 1) + i] = 3
2mn

2 + n2 + 9
2mn− 6m+ 3n− 3

operations and note that this expression is in O(mn2) (in writing this, we mean to
consider the expression separately as a function of m and as a function of n). The
final step runs in O(1) time, so the entire algorithm runs in time O(1 +mn2 + 1) =
O(mn2) time.

Determining the smallest possible runtime over any algorithm that solves a par-
ticular problem is of primary interest to many areas of computer science, including
ours, because of the direct effects these minimum runtimes have on our ability to
solve the problems in practice. For this reason, we often consider together collec-
tions of runtimes that behave similarly. For example, any algorithm with a runtime
in O(nc) for some constant c is said to be polynomial-time, and any algorithm with
a runtime in O(exp(nc)) for some constant c is said to run in exponential time.
Finally, we will say that a function ε(n) is negligable if ε grows more slowly than
any polynomial in 1/n, that is if ε(n) /∈ O(1/nc) for all constants c.

3.2. Reductions.

Definition 3.2.1. Given two problems A and B, we will say that there is a poly-
nomial time recuction from A to B if it is the case that if there is an algorithm
for B that runs in time O(g(n)), then there is also an algorithm for A that runs in
time O(ncg(n)) for some c.

The emphasis given to polynomial time algorithms is not unintentional; we could
certainly consider other classes of reductions, but we often consider problems that
can be solved in polynomial time to be easy and those that cannot to be hard. One
reason for this is that this provides a noticible threshold for theoretical consider-
ations; it is often the case that we consider a problem that can be solved easily
in exponential time, but determining whether it can be solved in polynomial time
is not trivial. The other reason for this division is that it provides a reasonable
approximation to a distinciton between problems that are feasible to solve using
physical computers and those that are not.

Notice, then, that the existance of a reduction from A to B means that B is at
least as hard to solve as A, because if we can solve B, then we have an algorithm
to solve A in time greater only by a polynomial factor. This is not, however a

2In fact, we consider operations that require a single CPU operation to take time 1, and

neglect operations that a computer would perform as allocating memory. Then division of two
numbers requires (often) significantly more time than addition of two numbers, and the time to

add two numbers grows with the magnitude of the numbers if the numbers become too large for

the computer to process in a single operation. However, we will usually implicitly assume that the
numbers we work with are bounded so that these differences will appear only as constant factors,

which we can disregard in considering asymptotic behaviour.
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symmetric relation. A reduction from A to B does not mean that A and B are in
any sense equivalent; even if A reduces to B, it is possible that A be much easier
than B.

In constructing a reduction from A to B, we often make use of an oracle for B.
That is, we assume an object F which we can supply with a particular instance
of a problem, and it will give us a solution in constant time. Then to construct a
reduction from A to B, we need only to construct a polynomial time algorithm for
A assuming O. As a trivial example, consider the following:

Example 3.2.2. There is a polynomial time reduction to from factoring integers
to factoring integers divisible by 7.

We will assume an oracle F that, given a number m known to be divisible by 7,
will return an ordered list (p1, · · · , pr) of primes so that p1 · · · pr = m.

Using F , can factor an arbitrary integer m in the following way:

(1) Compute M = 7m
(2) Give M to F , which will return a list (p1, · · · , pn) of primes, one of which

is 7.
(3) Remove a 7 from the list (p1, · · · , pn).

4. Lattices

4.1. Identification of Z[α]/〈αn−1〉 with Zn. The elements of Z[α]/〈αn−1〉 can
be uniquely represented as polynomials of degree at most n− 1, so we can identify

Z[α]/〈αn−1〉 with Zn as a0 + · · ·+an−1z
n−1 j→ (a0, · · · an−1). Certainly j respects

the additive structure (that is, j(s1 + s2) = j(s1) + j(s2) for s1, s2 ∈ Z[α]/〈αn− 1〉)
of the two sets, and moreover, it induces a multiplicitive structure on Zn:

Definition 4.1.1. The convolution of a ∈ Zn and b ∈ Zn, writen as a ⊗ b is the
element j(j−1(a) · j−1(b)) of Zn, where j is the identification described above.

With this multiplicitive structure, Zn is isomorphic to Z[α]/〈αn − 1〉.
Finally, the introduction of Zn gives us a norm on Z[α]/〈αn − 1〉, and we will

write ‖a‖ for the Euclidean L2 norm ‖a‖ =
√
a2

0 + · · ·+ a2
n, and ‖a‖∞ for the

maximum norm ‖a‖∞ = max {|ai|}, We will change between the notations x(α) ∈
Z[α]/〈αn − 1〉 and x ∈ Zn readily and without comment.

4.2. Cyclic Lattices.

Definition 4.2.1. Given some B = [b1, · · · , bm] ∈ Zn×m where the bj are lin-
early independent in Rn and have coefficients in Zn, we define the set L (B) =
{β0b0 + · · ·+ βmbm : βk ∈ Z}, and we say that L (B) is a lattice with basis B.

For a = (a1, a2, · · · , an) ∈ Zn, we define the rotation of a to be the vector

rot(a) = (an, a1, · · · , an−1) and the matrix Rotd(a)Rn×d with jth column rotj(c)
(where the superscript is a composition).

Proposition 4.2.2. b = rot c if and only if b(α) = αc(α).

Proof. Let ψ be be the bijection given by

(a0, a1, · · · cn−1) 7→ a0 + a1α+ · · ·+ an−1α
n−1.
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Then we want to show that b = rot c if and only if ψ(b) = αψ(c), which holds if
and only if b = ψ−1(αψ(c)). We write b = (b0, · · · , bn−1) and a = (a0, · · · , bn−1).
Then

αψ(c) = c0α+ · · ·+ cn−1α
n = c0α+ · · ·+ cn−2α

n−1 + cn−1,

so

ψ−1(αψ(c)) = (cn−1, c0, · · · , cn−2),

which is equal to b if and only if b = rot c. �

We say that a lattice L (B) is cyclic if it is closed under rotation, that is if
rot v ∈ L (B) whenever v ∈ L (B). But this is equivalent to requiring that the
lattice generated by B be an ideal in Z[α]/〈αn − 1〉. That is,

Proposition 4.2.3. A lattice basis B = (b1, · · · , bn) generates a cyclic lattice if
and only if the subring {c1b1(α) + · · ·+ cnbn(α)} is an ideal in Z[α]/〈αn − 1〉.

Proof. We first show that that an ideal J in Z[α]/〈αn − 1〉 is a cyclic lattice. But
this is the case if J is closed under rot , which we have shown to be equivalent to
multiplication by α. But certainly J is closed under multiplication by α.

Now consider an cyclic lattice L (B), and we show that the subring {c1b1(α) + · · ·+ cnbn(α)}
is closed under multiplication by elements of Z[α]/〈αn−1〉. But for some a0 + · · ·+
anα

n−1,

(a0 + · · ·+ an−1α
n−1)(c1b1 + · · ·+ cnbn) =

n−1∑
j=0

αj(ajc1b1 + · · ·+ ajcnbn).

but each of the ajc1b1 + · · · + ajcnbn is in L (B) because L (B) is additive. Then
αj(ajc1b1 + · · · + ajcnbn) is in L (B) because L (B) is closed under rot , which is
equivalent to multiplication by α, and finally the sum is in L (B) again because B
is additive. �

Lemma 4.2.4. Let c ∈ Zn, and Φ(α) ∈ Z[α] so that Φ(α) divides αn − 1, and
suppose that c(α) and Φ(α) are coprime over C[α], and say that Φ(α) has degree d
Then the set

{
c, rot(c), · · · , rotd−1(c)

}
is linearly independent.

Proof. Let t0, · · · , td−1 such that 0 =
∑
i ti roti(c), and we will show the tj are zero.

Define t(α) = t0 + · · ·+ td−1α
n−1, and t(α)c(α) = 0 in Z[α]/〈αn − 1〉, so (αn − 1)

divides t(α)c(α), and we write t(α)c(α) = h1(α)(αn − 1). But also Φ(α) divides
αn − 1, so we write αn − 1 = h2(α)Φ(α). But then

t(α)c(α) = h1(α)(αn − 1) = h1(α)h2(α)Φ(α),

so each root of Φ(α) must also be a root of t(α)c(α). But c(α) and Φ(α) are coprime
over R[α], so all of the roots of Φ(α) must be roots of t(α). But if t(α) is nonzero,
this is impossible because Φ(α) has degree d, and t(α) has degree at most d − 1.
Then each tj must be zero. �

This is not an insignificant additional structure to place on the lattices we con-
sider; not only does it, as in [8], give us more control over the lattices in the
theoretical context, but the resulting practical applications seem to be much faster
to compute. Moreover, it seems to be the case that the worst-case problems on
general lattices that we would like to consider can be restricted to cyclic lattices
without sacrificing hardness.
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4.3. Cyclotomic Polynomials. In addition to the restriction to cyclic lattices we
will propose a restriction to cyclotomic subspaces of Rn, which makes use of the
factorization of αn − 1 in Z[α]/〈αn − 1〉.
Definition 4.3.1. The cyclotomic polynomial Φk(α) is the monic polynomial with
roots exactly the kth primitive roots of unity. That is, for a primitive kth root ζ
of unity,

Φk(α) =
∏

j∈[1,k]
gcd (j,k)=1

(α− ζj)

Proposition 4.3.2. The cyclotomic polynomials Φk(α) are irreducible over Z[α],
and αn − 1 is a product of the cyclotomic polynomials, as

αn − 1 =
∏
j|n

Φk(α).

Definition 4.3.3. The cyclotomic subspace HΦ for some product of cyclotomic
polynomials Φ, is the subset of Rn given by

HΦ = {x ∈ Rn : Φ(α) divides x(α) over R[α]} .
Proposition 4.3.4. HΦ is a linear subspace of Rn.

Proposition 4.3.5. HΦ is closed under rot.

4.4. Worst-case Problems on Lattices. We will define some of the standard
problems on lattices. These will be parametrized by an approximation factor γ(n),
which is a function of our security parameter, and by a lattice parameter ζ, which is
some parameter of the lattice, usually taken to be, for example, λ1(B), the length of
the shortest vector in L (B) in Definition 4.4.1 or ηε(B), the smoothing parameter
in Definition 4.4.4

Definition 4.4.1. The short vector problem SVP, for an approximation factor
γ(n) and a lattice parameter ζ, requires that, for a lattice L (B) of dimension n,
we compute some lattice vector v ∈ L (B) with magnitude ‖v‖ ≤ γ(n)ζ(L (B)).

Definition 4.4.2. The short independent vectors problem SIVP, for an approxi-
mation factor γ(n) and a lattice parameter ζ, requires that, for a lattice L (B) of
dimension n, we compute a list of n linearly independent lattice vectors (v1, · · · , vn)
such that ‖vi‖ ≤ γ(n)ζ(L (B)).

Definition 4.4.3. The incremental short vector problem IncSVP, for an approxi-
mation factor γ(n) and a lattice parameter ζ, requires that, for a lattice L (B) of
dimension n, and a lattice vector c with ‖c‖ ≥ γ(n)ζ(L (B)), we compute a non-zero
lattice vector c′ with ‖c′‖ ≤ ‖c‖ /2.

In this paper and in ring-based lattice cryptography, we use generalized versions
of these problems. For example, the problem used in the main reduction of this
paper in Section 6.3 is:

Definition 4.4.4. The cyclotomic incremental short vector problem subIncSVPζγ ,
for an approximation factor γ(n) and a lattice parameter ζ, requires that, given
a cyclic lattice L (B) of dimension n, a polynomial Φ(α) = (αn − 1)/Φk(α) for
some cyclotomic polynomial Φk(α), and a lattice vector c ∈ L (B) ∩ HΦ, with
‖c‖ ≥ γ(n)ζ(L (B) ∩ HΦ), we compute a nonzero lattice vector c′ ∈ L (B) ∩ HΦ

with ‖c′‖ ≤ ‖c‖ /2.
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In the course of working with SVP, we consider a function fA : Zn×m → Zn.
This function itself can yield a useful hash function. Inded it is a special case of
the more general collection of hash functions of interest for us here.

Definition 4.4.5. For a ring R and a subset S of R, along with some integer m,
we define H(R,S,m) to be the collection of functions from Sm to R of the form

fa(x) =

m∑
j=1

ajxj

for a ∈ Rm, where we have written a = (a1, · · · , am) and x = (x1, · · · , xm).

5. Probabiliy Measures on Lattices

5.1. The main theorem of this paper is a probabilistic reduction from an average
case problem. In this section, we will develop the framework to work with the
required concepts concerning probability

Definition 5.1.1. A probability distribution on a set S is a function χ : S → [0, 1]
with

∫
S
χ(x) = 1, were

∫
represents some appropriate integral, including, should S

be countable, a sum.

Definition 5.1.2. For a probability distribution ψ over S and a subset A of S, we
define

Pr [A] =

∫
S

a ∈ Aχ(a) da,

and we often write Pr [Q(a)] for Pr [{a ∈ S : Q(a)}].

We will also consider the natural probability measure induced on the cartesian
product of two sets. If we have χ1 and χ2 probability distributions over X1 and X1

respectively, then we define the function ψ on X×Y given by ψ(a, b) = χ1(a)χ2(b),
which is in fact a probability measure.

We will also define a distance over probability measures.

Definition 5.1.3. For two probability distributions δX and δY on a set S, we
define the statistical distance ∆ (δX , δY ) to be

∆ (δX , δY ) =
1

2

∫
S

|δX(a)− δY (a)| da,

where we again take some appropriate integral
∫

.

The statistical distance is a semimetric. That is,

(1) ∆ (δX , δY ) ≥ 0,
(2) ∆ (δX , δX) = 0,
(3) ∆ (δX , δY ) = ∆ (δY , δX), and
(4) ∆ (δX , δY ) + ∆ (δY , δZ) ≤ ∆ (δX , δZ),

and these properties follow from the familiar properties of the integral. We will also
write ∆ (a, b) for ∆ (ψ, χ) when a and b are random variables distribued according
to ψ and χ respectively.

Proposition 5.1.4. Let ψ1 and χ1 be probability measures over some set S and
let ψ2 and χ2 be probability measures over some set T , and let ψ(a, b) = ψ1(a)ψ2(b)
and χ(a, b) = χ1(a)χ2(b) be the induced probability measures over S × T . Then
∆ (ψ, χ) ≤ ∆ (ψ1, χ1) + ∆ (ψ2, χ2).
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Proposition 5.1.5. For two random variables X and Y over a set A, and an
function f with domain A,

∆ (f(X), f(Y )) ≤ ∆ (X,Y ) ,

with equality of f is bijective.

Proposition 5.1.6. Let X be distributed to χ over S and let Y be destributed to ψ
over S, and suppose that Pr [X ∈ T ] ≥ q and that ∆ (χ, ψ) ≤ ε. Then Pr [Y ∈ T ] ≥
q − ε.

Proof. We will bound Pr [X ∈ T ]− Pr [Y ∈ T ].

|Pr [X ∈ T ]− Pr [Y ∈ T ]| =
∣∣∣∣∫
T

χ(a) da−
∫
T

ψ(a) da

∣∣∣∣
≤
∫
T

|χ(a)− ψ(a)| da

≤
∫
S

|χ(a)− ψ(a)| da

= 2 ∆ (χ, ψ)

≤ ε,

so Pr [Y ∈ T ] ≥ Pr [X ∈ T ]− ε ≥ q − ε. �

We now define a few probability measures that we will make use of. The first is
the uniform distribution UA over some (finite) set A. This is the distribution with
the property that UA(a) = UA(b) for any a, b ∈ A.

We also define a normal distribution over a subspace Rn.

Definition 5.1.7. The Gaussian distribution over a subset H of Rn with dimsen-
sion d with width s > 0, and centered at c ∈ H is given by

DH,s,c(x) =
exp

(
− π ‖x− c‖2 /s2

)
sd

for x ∈ H, and DH,x,c(x) = 0 otherwise.

DH,s,c gives a probability distribution over H. In fact, it can be expressed as
a product of one dimensional Gaussian distributions over an orthonormal basis for
H. More precisely, consider an orthogonal basis (e1, · · · , ed) for H. Then we write

u = u1e1 + · · ·+ uded so that ‖u‖2 = u2
1 + · · ·+ u2

d. Then∫
H

DH,s,c(x) =

∫
H

e−π‖x−c‖
2/s2 dx

=

d∏
j=1

∫ ∞
−∞

e−π(xj−cj)2/s2 dxj = 1.

We also define a Gaussian measure over lattices. For a lattice L (B) ⊂ H with
dimension equal to the dimension of H, define

DL(B),s,c(x) =
DH,s,c(x)∑

v∈L(B)DH,s,c(v)
,
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which is a probability distribution over L (B), because∑
x∈L(B)

DL(B),s,c(x) =

∑
x∈L(B)DL(B),s,c(x)∑
x∈L(B)DL(B),s,c(x)

= 1.

We now introduce a lattice parameter ηε(L (B)) for small ε > 0, called the
smoothing parameter, that will allow us to control this distribution in the following
way:

Lemma 5.1.8. For a lattice L (B) spanning the subspace H of Rn and ε > 0,

∆ (DH,s,c (mod P(B)) , U(P(B))) ≤ ε/2

for any c and for s > ηε(L (B)).

Equivalently, the distribution resulting from the addition of noise distributed
according to DH,s,c to the lattice L (B) is almost uniform. We will use the following
property (proved in [8], 2.16) of Gaussian distributions with width greater than
ηε(L (B)):

Lemma 5.1.9. Let L (B) be a lattice spanning the subspace H of Rn, let c ∈ H,
and s > ηε(L (B)). Then for any v ∈ L (B),

DL(B),s,c(v) ≤ s−d 1 + ε

1− ε
.

We will also use a bound on the product of a lattice vector distributed according
to a Gaussian didstribution with width greater than ηε(L (B)). This was proved3

in [9], Lemma 4.1.

Lemma 5.1.10. For a subspace H of Rn with dimension d, a lattice L (B) spanning
H, positive reals ρ, ε and s > 2ηε(L (b)), vectors c and x, and a vector v distributed
according to DL(B),s,c,

Pr [‖(v − c)⊗ x‖ > ρ] ≤ s
√
d ‖x‖
ρ

.

The lattice parameter was first introduced by Micciancio and Regev [6] The
explicit definition of ηε and subsequent proofs of Lemmas 5.1.8, 5.1.9, and 5.1.10
require some constructions that do not provide additional insight in our context.
They can be found in [8], Definition 2.10ff.

6. Main Results

We now give the main results of [8]. In section 6.1, we will consider the hash
functions H(Znp , [0, D]n,m) for p(n) and D(n) polynomially bounded, which are
the functions considered by Micciancio in [4]. We will show, in section 6.3, that
these are not collision resistant. We will then show that if we restrict the functions
fA(X) to cyclotomic subspaces, the resulting family of hash functions is collision
resistant, assuming that subIncSVP is hard.

3Micciancio [5] gives this result for full-rank lattices, and [8] generalizes to subspaces. The

result actually proved is that Ev∼DL(B),s,c

[
‖(v − c)⊗ x‖2

]
≤ s2d ‖x‖2, and our result follows

from Markov’s inequality and that Var[X] = E[X2]− E[X]2 ≥ 0 for any random variable X.
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6.1. Finding Collisions in H(Znp(n), [0, D]n,m(n)). We will consider the family

of functions H(Znp(n), [0, D(n)]n,m(n)) where p(n) ∈ nΘ(1) and D(n) ∈ nO(1) (that

is, p(n) and D(n) are polynomially bounded), and we will show that for an integer
q that divides n, there is an X ∈ [0, D]n×m such that ‖X‖∞ = 1 and fA(X) = 0
with probability 1/pq (with respect to uniformly chosen A ∈ Zn×mp ). This will
give us something rather stronger than collisions: it gives us second preimages on
[0, D)n×m. This is because fA is additive. In particular, for X ′ ∈ [0, D)n×m, both
X ′ and X ′ +X are in [0, D]n×m and fA(X ′ +X) = fA(X ′) + fA(X) = fA(X ′).

To do this, we will take advantage of the fact that Zp[α]/〈αn−1〉 has zero divisors
for any n. In fact, if q | n (including q = 1), the 0 = αn − 1 = (αq − 1)(αn−q +
αn−2q + · · ·+ 1). Then:

Theorem 6.1.1. Let X = (x1, · · · , xn) with x1(α) = (αn−1)/(αq−1) and xj = 0
for j 6= 1. Then for A ∈ Zn×mp uniformly random, fA(X) = 0 with non-negligible
probablity.

Proof. For A = (a1, · · · an),

fA(X) =

n∑
j=1

aj(α)xj(α)

= a1(α)

(
αn − 1

αq − 1

)
+

n∑
j=1

aj(α)xj(α)

= a1(α)

(
αn − 1

αq − 1

)
,

which is zero if αq−1 divides a1(α). But consider that there are unique s(α), r(α) ∈
Zp[α] with (r(α)) < q so that a1(α) = s(α)(αq − 1) + r(α). But there is a one-
to-one correspondance between s(α) and r(α) over polynomials of degree less than
n/q and q respectively and a1(α) over polynomials of degree less than n, so because
we a1(α) is uniformly random, then so is r(α). But there are pq polynomials of
degree less than q with coefficients in Zp, and exactly one of them, namely 0, will
make a1 divisible by αq − 1, so a1 is divisible by αq − 1 with probability 1/pq, and
so fA(X) = 0 with probability 1/pq. �

This result is sufficient to find second preimages with non-negligible probability
because ‖X‖∞ = ‖x1‖∞ = 1.

6.2. Preventing This Attack. The attack given in the previous section relied
heavily on the fact that Zp[α]/〈αn − 1〉 has zero divisors. A reasonable strategy
to modify our hash funcitons, then, might be to use some integral domain in place
of Zp[α]/〈αn − 1〉. However, we need not make so strong a change; the sufficient
modification that we will now consider is that we require each xi to be divisible
(in Z[α]/〈αn − 1〉) by Φ = (αn − 1)/Φk(α) for some k | n, k 6= 1. That is, rather
than working with X ∈ [0, D]m, we instead work with a smaller subset of our ring,
namely SD,Φ given by

SD,Φ = [0, D]n ∩HΦ,

where HΦ is the cyclotomic subspace (see Definition 4.3.3) Then our particular
attack will fail because,(αn − 1)/(αq − 1), is no longer a valid choice for x1(α).

Restricting X in this way, we effectively work with Z[α]/〈Φk(α)〉, rather than
with Z[α]/〈αn − 1〉, because (Z[α]Φ(α)) /〈αn − 1〉 ∼= Z[α]/〈Φk(α)〉 by Proposition
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2.1.8. Note that although Z[α]/〈Φk(α)〉 is an integral domain, Zp[α]/〈Φk(α)〉 need
not be, so it may seem that although this modification prevents our particular
attack there could be a similar attack using the reducibility of Φ(α) over Zp[α],
but, assuming the worst case hardness of some well-studied cyclic lattice problems,
we will show that there is not.

6.3. Finding Collisions in H(Znp(n), SD(n),Φ,m(n)) is Hard.

Informal Theorem. Under sufficient (reasonable) hypotheses on D, m, p, ε, and
γ there is a probabilistic polynomial time reduction from subIncSVPηεγ to finding
collisions in H(Znp(n), SD(n),Φk , c).

We have thus far only considered non-probabilistic algorithms, but the neces-
sary modification is a natural one. We will assume an oracle F that, given a
uniformly distributed A ∈ Znp(n), gives a collision (X,X ′) with nonnegligible prob-

ability. Then we will construct a c′, and show that, with nonnegligible probability,
c′ solves subIncSVP

ηε(n)

γ(n) (B,Φ(α), c). It is important to recognize the source of

the uncertainty in this approach to understand the significance of the result. The
probability that c′ solves subIncSVP

ηε(n)

γ(n) (B,Φ(α), c) is not dependent on the in-

stance (B,Φ(α), c). This is in contrast to, for example, the attack given in section
6.1, where we found collisions in H(Zp[α]/〈αn − 1〉, SD,Φ(α),m) with nonnegligible
probability, but the uncertainty was due to that our algorithm would work only for
some A, rather than that our algorithm would work for any any instance, but only
sometimes. The distinction is important because in the latter case, we are able
to amplify the probability of success by repetition, but in the former, we cannot.
Then, we were able to invalidate the attack simply by removing those instances on
which the attack would be successful. We cannot, however, do something similar
in the case of Theorem 6.3.7 in order to invalidate our result. This is why this
theorem in fact proves that the hash functions H(Zp[α]/〈αn − 1〉, SD,Φ(α),m) have
desirable cryptographic properties.

The proof of this theorem will go by way of several lemmas concerning an ex-
plicitly constructed value of c′ as a candidate solution for a particular instance of
subIncSVP

ηε(n)

γ(n) .

For an instance (B,Φ(α) = (αn − 1)/Φk, c) of subIncSVPηεγ , and assuming an
oracle F that finds collisions in H(Znp , SD,Φ(α),m) with non-negligible probability
(that is, whose decay is at most 1/q(n) for some polynomial q), we construct (in
polynomial time) a vector c′ as follows:

Algorithm 6.3.1.

(1) Let B′ be a basis4 for L (B) ∩H, which is itself a cyclic lattice. B′ can be
computed easily because we do not require that it be short.

(2) For each integer i ∈ [1,m],

• Generate vi ∈ L (B) ∩H ∩ P(Rotd(c)) uniformly.
• Generate noise yi ∈ H from DH,s for s = ‖c‖ /γ(n), and let y′i ∈
P(L (B′)) with y′i − yi ∈ L (B′).

• Choose bi = (b1i |b2i ) for b1i ∈ Rd and b2i ∈ Rn−d as follows: Choose b2i =
((bi)d, · · · , (bi)n−1) uniformly from [0, 1)n−d. and let wi = Rotn(c)(0, · · · , 0, (bi)d, · · · , (bi)n−1).

4The paper [8] omits B′ and incorrectly uses B in its place. The natural fix for this can be
found at [7].
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Then let G ∈ Rd×n so that GRotd(c) = idd the identity in Rd×d. Such
a G exists by Proposition ??, and it can be computed in polynomial
time by Gaussian elimination. Then let b1i = ((bi)0, · · · , (bi)d−1) =
G(vi + yi − wi).

• Let ai = bbi · pe.
(3) Let A = (a1 (mod p) , · · · , am (mod p)), and give A to F , yielding a collision

(X,X ′). Then let Z = X −X ′.
(4) Output the vector

c′ =

m∑
i=1

[(vi + y′i − yi)⊗ zi]− c⊗
∑m
i=1 ai ⊗ zi

p

=

m∑
i=1

[(
vi + y′i − yi −

c⊗ ai
p

)
⊗ zi

]
.

Lemma 6.3.2. Under the hypotheses of Theorem 6.3.7, Rotn(c) · bi = vi − y′i
Proof. We write bi as (b1i |0, · · · , 0) + (0, · · · , 0|b2i ). Then

Rotn(c) · bi = Rotn(c) · (b1i |0, · · · , 0) + Rotn(c)(0, · · · , 0|b2i )
= Rotn(c) · (b1i |0, · · · , 0) + wi

= Rotd(c) ·G · (vi + y′i − wi) + wi,

from which we want to show that

Rotd(c) ·G · (vi + y′i − wi) = vi + y′i − wi.

But the image of Rotn(c) is equal to the span of the lattice L (B′) because
{

rotj(c) : 0 ≤ j < d
}

,
which are the first d columns of Rotn(c), is linearly independant by ??, and each
rotation of c is in L (B′) because B′ is cyclic. Also, G is surjective because any
v ∈ Rd is equal to G(Rotn(c)v). Then the image of Rotn(c)G is the span of the
lattice L (B′), and there is some v in span ({Rotn(c)}) so that

Rotd(c) ·G · v = vi + y′i − wi.

Now, G is injective over the span of Rotd(c) because GRotd(c) = idd. Then

Gv = GRotd(c) ·G · v = G · (vi + y′i − wi),

and by the injectivity of G, we have v = vi + y′i − wi. �

Lemma 6.3.3. Under the hypotheses of Theorem 6.3.7, the probability that F re-
turns a valid collision in step 3 in the algorithm 6.3.1 is nonnegligible. In particular,

Pr [fA(X) = fA(X ′)] ≥ 1

q(n)
−m(n)ε(n)/2.

Proof. By Proposition 5.1.6,it will be sufficient to bound ∆
(
A,U(Zm×np )

)
by mε/2.

But we will show that ∆
(
ai (mod p) , U(Znp )

)
< ε/2, so that

∆
(
A,U(Zm×np )

)
≤

m∑
1

∆
(
ai (mod p) , U(Znp )

)
≤ mε

2
.

But ai (mod p) = b(bi (mod 1)) · pe because ai = bpbie, so

∆
(
ai (mod p) , U(Znp )

)
≤ ∆ (bi (mod 1) , U([0, 1))n) .
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We consider the construction bi = (b1i |b2i ). By construction, b2i is uniform over
[0, 1)n−d, so by Proposition 5.1.4,

∆ (bi (mod 1) , U([0, 1)n)) ≤ ∆
(
b1i (mod 1) , U([0, 1))d

)
+ ∆

(
b2i (mod 1) , U([0, 1))n−d

)
= ∆

(
b1i (mod 1) , U([0, 1))d

)
.

By construction b1i = G(vi + y′i−wi) = G(vi + y′i)−G(wi) and wi was constructed
injectively from b2i , and G is injective, so since b2i is uniform over [0, 1)n−d, then
G(wi) is unifom over the values it can take. Then

∆
(
b1i (mod 1) , U([0, 1))n

)
= ∆ (G(vi + y′i) (mod 1) , U([0, 1))n) .

Intuitively, this is true because addingG(wi) permutesG(vi+y
′
i) nicely in Rn (mod 1).

Now by Proposition 5.1.5,

∆ (G(vi + y′i) (mod 1) , U([0, 1))n) ≤ ∆
(

Rotd(c)G(vi + y′i) (mod 1) , U(Rotd(c)[0, 1)n)
)

= ∆
(
vi + y′i, U(P(Rotd(c)))

)
.

Now, vi is uniform over L (B′) ∩ P(Rotd(c)), and ∆ (y′i, U(P(L (B′)))) ≤ ε/2 by
Lemma 5.1.8.

Let {u1, · · · , uk} = L (B′)∩P(Rotd(c)), so that vi is uniform over {u1, · · · , uk}.
Then vi + y′i is almost uniform over

⋃
(P (L (B′)) + ui), which is partitioned by

{P (L (B′)) + uj}, because vi + yi is in P(L (B′)) + vi, and given vi fixed, is almost
uniform over that translate. That is,

∆
(
vi + y′i, U

(⋃
(P(L (B′)) + ui)

))
≤ ε/2.

But then

∆
(

(vi + y′i)
(

mod P(Rotd(c))
)
, U
(
P(rotd(c))

))
= ∆

(
(vi + y′i)

(
mod P(Rotd(c))

)
, U
(⋃

(P(L (B′)) + ui)
(

mod P(Rotd(c))
)))

= ∆
(
vi + y′i, U

(⋃
(P(L (B′)) + ui)

))
≤ ε/2.

Putting everything together, then

∆
(
A,U(Zm×np )

)
≤ ε

2
,

so by Proposition 5.1.6,

Pr [fA(X) = fA(X ′)] ≥ 1

q(n)
− ε(n)m(n),

which is nonnegligible. �

Lemma 6.3.4. Under the hypotheses of Theorem 6.3.7, if F returns a valid colli-
sion in step 3, c′ returned by the algorithm 6.3.1 is in the lattice L (B′).

Proof. We will show that each of the terms of the first expression for c′ is in L (B′).
Indeed, both vi and y′i − yi are in L (B′) by construction, and zi ∈ Zn by the
definition of F . Then (vi + y′i − yi)⊗ zi is also in L (B′) because L (B′) is a cyclic
lattice. For the term c ⊗ 1

p

∑
ai ⊗ zi, we’ll show that 1

p

∑
ai ⊗ zi ∈ Zn, so that

we have the convolution of c ∈ H with an integer vector, which will also be in
L (B′). But by the construction of the zi, ai(α) · zi(α) = 0 in Zp[α]/〈αn − 1〉, so
1
pai(α) · zi(α) ∈ Z[α]/〈αn − 1〉, and 1

pai ⊗ zi ∈ Zn. �
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Lemma 6.3.5. Under the hypotheses of Theorem 6.3.7, Pr [c′ 6= 0] ≥ 3/4, condi-
tioned on that F return a valid collision in step 3 of the algorithm 6.3.1.

Proof. Since z 6= 0, we assume witout loss of generality that z1 6= 0. Then c = 0
exactly when(
v1(α) + y′1(α)− y1 +

c(α)a1(α)

p

)
z1(α) =

m∑
j=2

(
vj(α) + y′j(α)− yj +

c(α)aj(α)

p

)
zj(α)

in Z[α]/〈αn−1〉, and we call the right hand side of this equality h(α). But because
everything is in Z[α]Φ(α), this occurs if and only if(

v1(α) + y′1(α)− y1 +
c(α)a1(α)

p

)
z1(α) = h(α)

in Z[α]/〈Φk(α)〉. But z1 cannot be zero in Z[α]/〈Φk(α)〉 because if it were, because
Φ(α) divides z1(α), then z1(α) = Φ(α)Φk(α)r(α) for some r(α), but Φ(α)Φk(α) =
αn − 1, so z1(α) = 0 in Z[α]/〈αn − 1〉, contrary to assumption. Then because
Zp[α]/〈αn−1〉 is an integral domain, there is at most one w(α) so that w(α)z1(α) =
h(α), and we will bound the probability that y′1(α)− y1(α) = w(α).

If there is no such w, then certainly(
v1(α) + y′1(α)− y1 +

c(α)a1(α)

p

)
z1(α) 6= h(α),

and c cannot be zero, so we assume that there is such a w(α), and we bound the
probability that

y′1(α)− y1(α) = w(α)− v1(α)− c(α)a1(α)

p

in Z[α]/〈Φk(α)〉. In fact, v1 was chosen independently from y1, and w and a1

depend only on y′1, not on y1, so for any fixed y′1, y′1 − y1 and w − v1 − c ⊗ a1/p
are independent. Then note that for a y′1 fixed, y′1 = y1 is distributed according to
DL(B′),s,−y′1 because y1 is distributed according to DHΦ,s,0. Then

Pr

[
y′1 − y1 = w − v − c⊗ a

p

]
≤ max {Pr [u = y′1 − y1] : u ∈ L (B′)}

≤ max
{

Pr
[
DL(B′),s,−y′1(w)

]
: w ∈ L (B′)

}
,

which, by Lemma 5.1.9, is at most s−d(1 + ε)(1− ε). But we have already argued
that if c = 0, then y′1 − y1 = w − v1 − c⊗ a1/p, so

Pr [c = 0] ≤ Pr

[
y′1 − y1 = w − v1 −

c⊗ a1

p

]
≤ s−d 1 + ε

1− ε

= (2γ ‖c‖)−d 1 + ε

1− ε

≤ 1

8
· 1 + ε

1− ε
≤ 1

4

for large n. We have assumed without loss of generality that d ≥ 3, because there
are known efficient algorithms for d = 1 and d = 2, so in these cases, the reduction
from subIncSVP to H(Znp , SD,Φk ,m) is trivial. �
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Lemma 6.3.6. Under the hypotheses of Theorem 6.3.7, Pr [‖c′‖ ≤ ‖c‖ /2] ≥ 1/2,
conditioned on that F return a valid collision in step 3 of the algorithm 6.3.1.

Proof. We assume throughout the proof that (X,X ′) is a valid collision. We will
show that

Pr

[
‖c′‖ ≥ ‖c‖

(
mn5/2D

p
+

4mnD

γ

)]
≤ 1

2

By showing

‖c′‖ ≤
m−1∑
i=0

∥∥∥∥(vi + y′i −
c⊗ ai
p

)
⊗ zi

∥∥∥∥+

m−1∑
i=0

‖yi ⊗ zi‖,(1) ∥∥∥∥(vi + y′i −
c⊗ ai
p

)
⊗ zi

∥∥∥∥ ≤ n5/2D

p
,(2)

and

Pr

[
‖yi ⊗ zi‖ ≥ ‖c‖

4mnD

γ

]
≤ 1

2
.(3)

Then by (2),

m−1∑
i=0

∥∥∥∥vi + y′i +
c⊗ ai
p

∥∥∥∥ ≤ mn5/2D

p
,

and by (3)

Pr

[
m−1∑
i=0

‖yi ⊗ zi‖ ≥ ‖c‖
4mnD

γ

]
≤ 1

2
.

By the hypotheses p(n) ≥ 8mn5/2D and γn ≥ 16mnD,

1

2
≥ mn5/2D

p
+

4mnD

γ
.

Then

Pr [‖c′‖ ≥ ‖c‖ /2] ≤ Pr

[
‖c′‖ ≥ ‖c‖

(
mn5/2D

p
+

4mnD

γ

)]
≤ 1

2
.

In fact, (1) follows from an application of the triangle inequality to the second
expression for c′ given in Algorithm 6.3.1.

For (2), vi + y′i = Rotn(c) by the construction of bi and c ⊗ ai = Rotn(c)ai by
Proposition ??. Then

vi + y′i −
c⊗ ai
p

= Rotn(c)bi −
Rotn(c)ai

p
= 1

pRotn(c)(pbi − ai).
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But ‖pbi − ai‖∞ ≤ 1/2 by choice of ai, so ‖pbi − ai‖2 ≤
√
n/2 and Rotn(c) has jth

row rotj(c), so∥∥∥∥vi + y′i +
c⊗ ai
p

∥∥∥∥
∞

= 1
p ‖Rotn(c)(pbi − ai)‖∞

= 1
p max

j

{∣∣〈rotj(c), pbi − ai
〉∣∣}

≤ 1
p max

j
{‖rotn(c)‖2 · ‖pbi − ai‖2}

=
‖c‖2 · ‖pbi − ai‖2

p

≤
√
n ‖c‖
2p

,

and ∥∥∥∥vi + yi +
c⊗ ai
p

∥∥∥∥
2

≤
√
n

∥∥∥∥vi +i +
c⊗ ai
p

∥∥∥∥
∞
≤ n ‖c‖

2p
.

Now, because X,X ′ ∈ [0, D)n×m, we have ‖zi‖∞ ≤ 2D, and ‖zi‖2 ≤ 2
√
nD.

Finally, by the commutativity of ⊗ (inherited from the commutativity of multipli-
cation in Z[α]/〈αn − 1〉), and Proposition ??,∥∥∥∥(vi + y′i +

c⊗ ai
p

)
⊗ zi

∥∥∥∥
∞

=

∥∥∥∥Rotnzi(vi + y′i +
c⊗ ai
p

∥∥∥∥
∞

= max
j

{∣∣∣∣〈rotj(zi),

(
vi + y′i +

c⊗ ai
p

)〉∣∣∣∣}
≤ ‖zi‖2 ·

∥∥∥∥vi + y′i +
c⊗ ai
p

∥∥∥∥
2

≤ ‖c‖ n
3/2D

p
,

and ∥∥∥∥(vi + y′i +
c⊗ ai
p

)
⊗ zi

∥∥∥∥
2

≤
√
n

∥∥∥∥(vi + y′i +
c⊗ ai
p

)
⊗ zi

∥∥∥∥
∞

≤ ‖c‖ n
2D

p
.

For the equation (3), we write yi⊗ zi = ((yi − y′i)− (−y′i))⊗ zi, and notice that,
with y′i fixed, yi−y′i is distributed according to DL(B′),s,−y′i because yi is distributed

according to DL(B′),s,0 by construction, and recall that, as above, ‖zi‖ ≤
√
nD. But

then by Lemma 5.1.10, holding yi fixed,

Pr

[
yi ⊗ zi ≥ ‖c‖

4nD

γ

]
y′i

= Pr

[
((yi − y′i)− (−y′i))⊗ zi ≥ ‖c‖

4nD

γ

]
y′i

≤ s
√
d ‖zi‖

4 ‖c‖nD/γ

≤ s
√
d(
√
nD

4 ‖c‖nd/γ
≤ sγ

4 ‖c‖
=

1

2
. �
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Theorem 6.3.7. For any polynomially bounded functions D(n), m(n) and p(n)
such that p(n) ≥ 8n5/2m(n)D(n), negligible function ε(n), and approximation fac-
tor γ(n) ≥ 16nm(n)D(n), there is a probablistic polynomial time reduction from the

instances (B,Φ(α) = (αn−1)/Φk, c) of subIncSVP
ηε(n)

γ(n) for k|n to finding collisions

in H(Znp(n), SD(n),Φ(α),m(n))

Proof. Algorithm 6.3.1 constructs c′ in polynomial time. Assuming that F returns
a valid collision, c′ is a solution to subIncSVPηεγ with probability at least 1/4 by
Boole’s inequality and Lemmas 6.3.5 and 6.3.6. By Lemma 6.3.3, the probability
that F returns a valid collision is nonnegligible, so c′ solves subIncSVPηεγ with
nonnegligible probability. �
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