On Binary Cyclotomic Polynomials

Jeremy West

June 6, 2016

1 Introduction

The mth cyclotomic polynomial is the lowest degree, unique polynomial divisor of (x - 1) with real coefficients. These take the forms

 $\Phi_m(x) = \prod_{j=1}^m (x - e^{2i\pi(j/m)}), \ j \ and \ m \ relatively \ prime$ (1)

$$\Phi_m(x) = \sum_{n=0}^{m-1} a_n x^n \tag{2}$$

$$\Phi_m(x) = \Pi_{d|n} (x^d - 1)^{\mu(n/d)},\tag{3}$$

where d|n means those n that do not divide d, and where $\mu(n)$ is the Möbius function. It is defined by

$$\mu(n) = \begin{cases} 0, & n \text{ has a repeated prime factor or is not an integer} \\ 1, & n \text{ has an even number of prime factors} \\ -1, & n \text{ has an odd number of prime factors} \end{cases}$$

In this paper I shall reproduce several results about these coefficients. The first of these results will be the case of m = p, where all the a_n are 1. In the case of m = 2p, $\Phi_m(x) = \Phi_p(-x)$. Several other results shall be presented, culminating in the result

2 Notation

Throughout this paper the letters p and q shall be used exclusively to denote primes. $\Phi_m(x)$ shall be the mth cyclotomic polynomial. $\phi(m)$ shall be the degree of $\Phi_m(x)$. $\theta(m)$ shall be the number of non-zero coefficients of Φ_m , and θ_0 and θ_1 shall be, respectively, the number of positive and negative coefficients.

3 Lemmas

I shall prove a number of lemmas and other minor points to begin with, mostly taken from [3]. First, a proof that

$$\Phi_m(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$$

Consider $f(n) = \prod_{d|n} g(d)$.

$$\Pi_{d|n} f(n/d)^{\mu(d)} = \Pi_{d|n} (\Pi_{m|(n/d)} g(m))^{\mu(d)}$$

= $\Pi_{m|n} (\Pi_{d|(n/m)} g(m))^{\mu} (d)$
= $\Pi_{m|n} g(m)^{\sum_{d|(n/m)} g(m)^{\mu(d)}} = g(n)$

Therefore $g(n) = \prod_{d|n} f(n/d)^{\mu(d)}$. If we define

$$f(n) = x^n - 1 = \prod_{d|n} \Phi_d(x),$$

then

$$g(n) = \Phi_n(x) = \prod_{d|n} f(n/d)^{\mu(d)}$$
$$= \prod_{d|n} (x^{n/d} - 1)^{\mu(d)} = \prod_{d|n} (x^d - 1)^{\mu(n/d)}.$$

Lemma 1 if $n = p_1^{a_1} p_2^{a_2} \dots p_l^{a_l}$, $a_i > 0$, and $N = p_1 p_2 \dots p_l$, then $\Phi_n(x) = \Phi_N(x^{n/N})$.

Proof.

$$\Phi_n(x) = \Pi_{d|n} (x^{n/d} - 1)^{\mu(d)} = \Pi_{d|\{n,N\}} (x^{n/d} - 1)^{\mu(d)}$$
$$= \Pi_{d|N} ((x^{n/N})^{N/d} - 1)^{\mu(d)} = \Phi_N (x^{n/N}).$$

Lemma 2 if n > 1, then $x^{\phi(n)} \Phi_n(1/x) = \Phi_n(x)$.

Proof.

$$\Phi_n(1/x) = \prod_{d|n} ((1/x)^d - 1)^{\mu(n/d)}$$
$$= \prod_{d|n} (1 - x^d)^{\mu(n/d)} \prod_{d|n} (1/x^d)^{\mu(n/d)}$$

since $\sum_{d|n} d * \mu(n/d) = \phi(n)$, this is the desired result. One consequence of this is that the coefficients of Φ are symmetric, or $a_j = a_j(\phi(n) - j)$.

4 Case 1 (m = p)

Theorem 1 Let m = p be prime. Then $\Phi_m(x) = \sum_{n=0}^{p-1} x^n$

Proof: First note that $x^{p}-1 = (x-1)(x^{p-1}+x^{p-2}+...+x+1)$ (The elephant-teacup identity). (x-1) is not a factor unique to $x^{m} - 1$ for $m \neq 1$. $x^{p-1} + x^{p-2} + ... + x + 1$ clearly has no zeros for $x \ge 0$; for p = 2, this problem is trivial; for p > 2, and therefore odd, it is simple to show that there are no zeros in $\{x < -1\}$: Each term of even power can be paired with it's neighboring term of lesser degree, and these pairings are positive in $\{x < -1\}$. In $\{-1 < x < 0\}$ the terms can be paired in the reverse order: 1 + x, $x^{2} + x^{3}$, and so on. All these terms will be positive. For x = -1, $x^{p-1} + x^{p-2} + ... + x + 1$ is simply 1. The polynomial $x^{p-1} + x^{p-2} + ... + x + 1$ therefore has no zeros on the real line, and is not factorable in real coefficients. Therefore, $\Phi_{p}(x) = x^{p-1} + x^{p-2} + ... + x + 1 = \sum_{n=0}^{p-1} x^{n}$

$5 \quad \text{Case 2} \ (\text{m}=2\text{p}, \, \text{p}\neq 2) \\$

Theorem 1 Let m = 2p. Then $\Phi_m(x) = \sum_{n=0}^{p-1} (-x)^n$

Proof: First note that $x^{2p} - 1 = (x^p - 1)(x^p + 1)$. The divisors of $(x^p - 1)$ are also divisors of lower cyclotomic polynomials, so we can refine our search to $(x^p + 1)$. This can be rewritten as $-((-x)^p - 1)$. Thus, it has been shown that for p an odd prime

$$\Phi_{2p}(x) = \sum_{n=0}^{p-1} (-x)^n = \Phi_p(-x) \tag{4}$$

6 Case 3 (m = pq)

Considering the results of case 1, note that

$$\Phi_{pq}(x) = (x^{pq} - 1)(x - 1)/((x^p - 1)(x^q - 1))$$
(5)

and that $\Phi_{pq}(1) = 1$ (for this, factor out all the (x-1) terms). $\theta_0(pq) = 1 + \theta_1(pq)$, and

$$\theta(pq) = 2\theta_0(pq) - 1.$$

At this point, we assume that q > p, and define u by

$$(qu)(modulo \ p) = -1, \ (0 < u < p).$$
(6)

Carlitz gives a proof in [1] that $\theta_0(pq) = (p-u)(uq+1)/p$. The formula holds for p, q relatively prime, but not necessarily prime themselves.

7 References

[1] Carlitz [1966] The Number of Terms in the Cyclotomic Polynomial $F_{pq}(x)$, American Mathematical Monthly Vol. 73, No. 9 (Nov., 1966), pp. 979-981

[2] Fouvry [2013] On Binary Cyclotomic Polynomials, Algebra and Number Theory Vol. 7, No. 5 (2013)

[3] Thangadurai [1999] On the Coefficients of Cyclotomic Polynomials, http://bprim.org/cyclotomicfieldbook/th.pdf