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1 Introduction

The mth cyclotomic polynomial is the lowest degree, unique polynomial divisor of (z — 1) with real
coefficients. These take the forms

Dy (z) = 1L (2 — >/ i and m relatively prime (1)
O (2) = Sy ana” 2)
Oy () = Mg (2 — 1)/ D, (3)
where d|n means those n that do not divide d, and where p(n) is the Mobius function. It is defined by
0, n has a repeated prime factor or is not an integer
win) =<1, n has an even number of prime factors

—1, n has an odd number of prime factors

In this paper I shall reproduce several results about these coefficients. The first of these results will be
the case of m = p, where all the a,, are 1. In the case of m = 2p, ®,,,(z) = ®,(—x). Several other results
shall be presented, culminating in the result

2 Notation

Throughout this paper the letters p and q shall be used exclusively to denote primes. ®,,(x) shall be the
mth cyclotomic polynomial. ¢(m) shall be the degree of ®,,(x). 6(m) shall be the number of non-zero
coefficients of ®@,,, and 6y and 6, shall be, respectively, the number of positive and negative coefficients.

3 Lemmas

I shall prove a number of lemmas and other minor points to begin with, mostly taken from [3]. First, a
proof that
D, () = Mgy (a? — )P0/ D,

Consider f(n) = Ily,g(d).
gy f (n/d)"'D = Ty (T 2y g () )19
= L0 (L gy (n/my 9 (m) )" (d)
= T jug(m) P/ m9m"™ = g(n)
Therefore g(n) = Iy, f(n/d)"?. If we define
fn) =2" =1 =1g,P4(x),
then
g(n) = ®n(x) = Mgy f (n/d)*?
= Hd|n($n/d —1)Hd = Hd\n(xd —1)r/d)



Lemma 1 if n = p{'p3*>.pf, a; > 0, and N = pipa...py, then ®,(z) = ®x(x"/V).

Proof.
D, (2) = Mg (2™ = DD =TIy, wy (a4 = 1)1D
= Ty (@) ¥/ 1D = @ (/).
Lemma 2 if n > 1, then z?™®,,(1/2) = ®,(z).

Proof.
@, (1/2) = Mapp ((1/)* = 1)1/
= Hd\n(l - xd)#(n/d)nd\n(l/xd)ﬂ(n/d)

since Xgj,,d * pu(n/d) = ¢(n), this is the desired result. One consequence of this is that the coefficients of
® are symmetric, or a; = a;(¢(n) — j).

4 Casel (m = p)

Theorem 1 Let m = p be prime. Then — @, (x) = EZ;Bx”
Proof: First note that 27 —1 = (x—1) (2P~ +2P~2+...4+2+1) (The elephant-teacup identity). (z—1) is not
a factor unique to x™ — 1 for m #* 1.
xP~1 4 2P=2 4 .+ x + 1 clearly has no zeros for x > 0; for p = 2, this problem is trivial; for

p > 2, and therefore odd, it is simple to show that there are no zeros in {# < —1}: Each term of
even power can be paired with it’s neighboring term of lesser degree, and these pairings are positive in
{z < —1}. In {~1 < 2 < 0} the terms can be paired in the reverse order: 1+ z, 2% + 23, and so on.
All these terms will be positive. For z = —1, 2P~ + 2P=2 + ... + 2 + 1 is simply 1. The polynomial
2P~ 4+ 2P72 4 .+ 2+ 1 therefore has no zeros on the real line, and is not factorable in real coefficients.
Therefore, ®,(x) = 2P ' + 2P 2 4 .. 4 x4+ 1=P_{z"

n=0

5 Case 2 (m = 2p, p # 2)
Theorem 1 Let m = 2p. Then — ®,,(x) = S (—z)"

Proof: First note that 22’ — 1 = (2P — 1)(2? + 1). The divisors of (2P — 1) are also divisors of lower
cyclotomic polynomials, so we can refine our search to (zP + 1). This can be rewritten as —((—z)? — 1).
Thus, it has been shown that for p an odd prime

2y (@) = 2o (—2)" = By(—2) (4)

6 Case 3 (m = pq)
Considering the results of case 1, note that
Dpg(z) = (a7 =D (z = 1) /(=" = 1)(z = 1)) ()
and that ®,,(1) =1 (for this, factor out all the (x — 1) terms). 6o(pq) = 1 + 61(pq), and
0(pq) = 260(pq) — 1.
At this point, we assume that ¢ > p, and define u by
(qu)(modulo p) = =1, (0 < u < p). (6)

Carlitz gives a proof in [1] that 8y(pq) = (p — u)(ug + 1)/p. The formula holds for p, q relatively prime,
but not necessarily prime themselves.
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