On Binary Cyclotomic Polynomials

Jeremy West

June 6, 2016

1 Introduction

The mth cyclotomic polynomial is the lowest degree, unique polynomial divisor of $(x-1)$ with real coefficients. These take the forms

$$
\begin{gather*}
\Phi_{m}(x)=\Pi_{j=1}^{m}\left(x-e^{2 i \pi(j / m)}\right), j \text { and } m \text { relatively prime } \tag{1}\\
\Phi_{m}(x)=\Sigma_{n=0}^{m-1} a_{n} x^{n} \tag{2}\\
\Phi_{m}(x)=\Pi_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}, \tag{3}
\end{gather*}
$$

where $d \mid n$ means those n that do not divide d , and where $\mu(n)$ is the Möbius function. It is defined by

$$
\mu(n)= \begin{cases}0, & n \text { has a repeated prime factor or is not an integer } \\ 1, & n \text { has an even number of prime factors } \\ -1, & n \text { has an odd number of prime factors }\end{cases}
$$

In this paper I shall reproduce several results about these coefficients. The first of these results will be the case of $\mathrm{m}=\mathrm{p}$, where all the a_{n} are 1. In the case of $\mathrm{m}=2 \mathrm{p}, \Phi_{m}(x)=\Phi_{p}(-x)$. Several other results shall be presented, culminating in the result

2 Notation

Throughout this paper the letters p and q shall be used exclusively to denote primes. $\Phi_{m}(x)$ shall be the mth cyclotomic polynomial. $\phi(m)$ shall be the degree of $\Phi_{m}(x) . \theta(m)$ shall be the number of non-zero coefficients of Φ_{m}, and θ_{0} and θ_{1} shall be, respectively, the number of positive and negative coefficients.

3 Lemmas

I shall prove a number of lemmas and other minor points to begin with, mostly taken from [3]. First, a proof that

$$
\Phi_{m}(x)=\Pi_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}
$$

Consider $f(n)=\Pi_{d \mid n} g(d)$.

$$
\begin{array}{r}
\Pi_{d \mid n} f(n / d)^{\mu(d)}=\Pi_{d \mid n}\left(\Pi_{m \mid(n / d)} g(m)\right)^{\mu(d)} \\
=\Pi_{m \mid n}\left(\Pi_{d \mid(n / m)} g(m)\right)^{\mu}(d) \\
=\Pi_{m \mid n} g(m)^{\Sigma_{d \mid(n / m)} g(m)^{\mu(d)}}=g(n)
\end{array}
$$

Therefore $g(n)=\Pi_{d \mid n} f(n / d)^{\mu(d)}$. If we define

$$
f(n)=x^{n}-1=\Pi_{d \mid n} \Phi_{d}(x),
$$

then

$$
\begin{array}{r}
g(n)=\Phi_{n}(x)=\Pi_{d \mid n} f(n / d)^{\mu(d)} \\
=\Pi_{d \mid n}\left(x^{n / d}-1\right)^{\mu(d)}=\Pi_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)} .
\end{array}
$$

Lemma 1 if $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{l}^{a_{l}}, a_{i}>0$, and $N=p_{1} p_{2} \ldots p_{l}$, then $\Phi_{n}(x)=\Phi_{N}\left(x^{n / N}\right)$.

Proof.

$$
\begin{array}{r}
\Phi_{n}(x)=\Pi_{d \mid n}\left(x^{n / d}-1\right)^{\mu(d)}=\Pi_{d \mid\{n, N\}}\left(x^{n / d}-1\right)^{\mu(d)} \\
=\Pi_{d \mid N}\left(\left(x^{n / N}\right)^{N / d}-1\right)^{\mu(d)}=\Phi_{N}\left(x^{n / N}\right) .
\end{array}
$$

Lemma 2 if $n>1$, then $x^{\phi(n)} \Phi_{n}(1 / x)=\Phi_{n}(x)$.

Proof.

$$
\begin{array}{r}
\Phi_{n}(1 / x)=\Pi_{d \mid n}\left((1 / x)^{d}-1\right)^{\mu(n / d)} \\
=\Pi_{d \mid n}\left(1-x^{d}\right)^{\mu(n / d)} \Pi_{d \mid n}\left(1 / x^{d}\right)^{\mu(n / d)}
\end{array}
$$

since $\Sigma_{d \mid n} d * \mu(n / d)=\phi(n)$, this is the desired result. One consequence of this is that the coefficients of Φ are symmetric, or $a_{j}=a_{j}(\phi(n)-j)$.

4 Case $1(\mathrm{~m}=\mathrm{p})$

Theorem 1 Let $m=p$ be prime. Then $\Phi_{m}(x)=\sum_{n=0}^{p-1} x^{n}$
Proof: First note that $x^{p}-1=(x-1)\left(x^{p-1}+x^{p-2}+\ldots+x+1\right)$ (The elephant-teacup identity). $(x-1)$ is not a factor unique to $x^{m}-1 \quad$ for $m \quad 1$. $x^{p-1}+x^{p-2}+\ldots+x+1$ clearly has no zeros for $x \geq 0$; for $p=2$, this problem is trivial; for $p>2$, and therefore odd, it is simple to show that there are no zeros in $\{x<-1\}$: Each term of even power can be paired with it's neighboring term of lesser degree, and these pairings are positive in $\{x<-1\}$. In $\{-1<x<0\}$ the terms can be paired in the reverse order: $1+x, x^{2}+x^{3}$, and so on. All these terms will be positive. For $x=-1, x^{p-1}+x^{p-2}+\ldots+x+1$ is simply 1 . The polynomial $x^{p-1}+x^{p-2}+\ldots+x+1$ therefore has no zeros on the real line, and is not factorable in real coefficients. Therefore, $\Phi_{p}(x)=x^{p-1}+x^{p-2}+\ldots+x+1=\Sigma_{n=0}^{p-1} x^{n}$

5 Case $2(\mathrm{~m}=2 \mathrm{p}, \mathrm{p} \neq 2)$

Theorem 1 Let $m=2 p$ Then $\Phi_{m}(x) \quad=\quad \Sigma_{n=0}^{p-1}(-x)^{n}$
Proof: First note that $x^{2 p}-1=\left(x^{p}-1\right)\left(x^{p}+1\right)$. The divisors of $\left(x^{p}-1\right)$ are also divisors of lower cyclotomic polynomials, so we can refine our search to $\left(x^{p}+1\right)$. This can be rewritten as $-\left((-x)^{p}-1\right)$. Thus, it has been shown that for p an odd prime

$$
\begin{equation*}
\Phi_{2 p}(x)=\Sigma_{n=0}^{p-1}(-x)^{n}=\Phi_{p}(-x) \tag{4}
\end{equation*}
$$

6 Case 3 ($\mathrm{m}=\mathrm{pq}$)

Considering the results of case 1 , note that

$$
\begin{equation*}
\Phi_{p q}(x)=\left(x^{p q}-1\right)(x-1) /\left(\left(x^{p}-1\right)\left(x^{q}-1\right)\right) \tag{5}
\end{equation*}
$$

and that $\Phi_{p q}(1)=1$ (for this, factor out all the $(x-1)$ terms). $\theta_{0}(p q)=1+\theta_{1}(p q)$, and

$$
\theta(p q)=2 \theta_{0}(p q)-1
$$

At this point, we assume that $q>p$, and define u by

$$
\begin{equation*}
(q u)(\text { modulo } p)=-1,(0<u<p) \tag{6}
\end{equation*}
$$

Carlitz gives a proof in [1] that $\theta_{0}(p q)=(p-u)(u q+1) / p$. The formula holds for p, q relatively prime, but not necessarily prime themselves.

7 References

[1] Carlitz [1966] The Number of Terms in the Cyclotomic Polynomial $F_{p q}(x)$, American Mathematical Monthly Vol. 73, No. 9 (Nov., 1966), pp. 979-981
[2] Fouvry [2013] On Binary Cyclotomic Polynomials, Algebra and Number Theory Vol. 7, No. 5 (2013)
[3] Thangadurai [1999] On the Coefficients of Cyclotomic Polynomials, http://bprim.org/cyclotomicfieldbook/th.pdf

