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1 Introduction

This paper will be a review of Gary Brookfield’s paper “Factoring Forms” [1],
which gives necessary and sufficient conditions for the factorization of polyno-
mials in three variables where every term has degree 2 or every term has degree
3.

2 Definition of Terms

2.1 Forms

A form is a polynomial where each term has the same degree. The polyno-
mial ¥3 + 22175 + 23 is a form in two variables of degree two, the polynomial
rt + 3w12203 + 52323 + 3wo73 is a form in three variables of degree four. The
polynomial 3 +x2 + 21 +1 is not a form, because it has terms of degree varying
from zero to three. We call forms of degree one linear, forms of degree two
quadratic, forms of degree three cubic, and for the purposes of this paper we
don’t care about forms of higher degree. We call forms in two variables binary
forms, and we call forms in three variables ternary forms.

When manipulating polynomials and forms, and discussing their degree, we
run the danger of having terms we expected to exist accidentally canceling out.
Therefore, before we discuss the subject of forms further, we need to show that
if p and ¢ are forms where p # 0 and ¢ # 0, then pq # 0. This lemma was not
mentioned in the paper I am reviewing, this is my own proof of the result.

Define a total ordering on terms of given degree as follows: Consider the
first variable for which the two forms have different degrees. The form with a
smaller degree of this variable is smaller. If there is no variable where the forms
differ, the forms are equal. This is essentially the lexicographical order on the
list of degrees.

Now consider three terms: a, b, c, where a is a term of degree n, and b and
c are terms of degree m and b < c.

Consider the products ab and ac, which are both terms of degree n+m. We
have some variable x; where b and c first differ. For all the variables before x;,
ab and ac have the same degree for that variable. At x;, ab has smaller degree



than ac, so ab < ac. From this, we get if a < b and ¢ < d then ac < ad < bd.
Therefore, this order interacts nicely with multiplication.

Now, take two forms p and g not equal to 0. So they have at least one
non-zero term, so they have a largest non-zero term, since the set of terms is
finite and totally ordered. Let the largest term of p be b, and the largest term
of ¢ be d. For any other term a in p, a < b, and for any other term ¢ in ¢, ¢ < d.
Therefore, for any pair of terms a, ¢ which is not b, d, we have ab < cd, so there
is only one pair of terms in p and ¢ which comes out to bd. The coefficient of this
term is therefore the product of the coefficients of b in p and d in ¢, which are
non-zero by assumption, so pg has a term with non-zero coefficient, so pg # 0.

When we take the product of two forms, we multiply each term in the first
form by each term in the second form, and add them all together. Therefore, if
the first form has degree n, and the second form has degree m, then the product
will be a form of degree n+m, and we know by the above zero product property
that the terms will not accidentally cancel.

Furthermore, the product of two polynomials, at least one of which is not
a form, cannot be a form. The proof of this was omitted from the paper I am
reviewing. Assume that we have a polynomial p of degree n, that factors into
one polynomial ¢, and another polynomial r; where 7 is not a form. Let a be
the minimum degree of the terms of ¢, and let b be the maximum degree of
the terms of ¢. Let ¢ be the minimum degree of the terms of r, and let d be
the maximum degree of the terms of r. Since we assumed r is not a form, c is
strictly less than d. Split up the terms of ¢ and r by their degree, that is, write
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where ¢; and r; are forms of degree . By choice of a, b, ¢, and d, we know
that qq, qp, rc, 7q # 0. Therefore, q,7r. and ¢,ry are both non-zero. Furthermore,
notice that these make up all of the terms of lowest and highest degree of p = qr,
and that the degree of g,r. is a+ ¢, which is strictly less than the degree of gyrq,
which is b+ d = n, since ¢ < d. Therefore, p has terms of degree a + ¢ < n, so
p is not a form. Therefore, the factors of a form are themselves forms.

2.2 Homogenization

Now we show that there is a bijection between polynomials of degree less than
or equal to n in k variables and forms of degree n in k + 1 variables, which
process we will call homogenization. Let w be the name of the new variable.
To go from a polynomial to a form, multiply each term (which will have degree
less than or equal to n) by a power of w such that the term has degree exactly
n. To go from a form back to a polynomial, set w equal to 1.

As an example, consider the third degree polynomial

3+ 2zy +y® + 3+ 2y + 1.



The homogenized version of this is
23 + 2zyw + y?w + 3zw? + 2yw? + w3,

Homogenizing polynomials to a fixed degree n has nice structure preserving
properties. The sum of the homogenization of two polynomials (of degree less
than or equal to n) is the homogenization of the sum. Additionally, if we have
two terms of degree a and b homogenized to degree n and m respectively, then
the product of the homogenized terms will have a factor of w™*™ =% so the
product of the homogenized terms will be the homogenization to degree n + m
of the product of the terms. Combining this with the lemma about sums, we
can extend this to say that the product of two polynomials of degree a and b
homogenized to degree n and m respectively is the homogenization to degree
n+ m of the product. Therefore, if we have polynomials p, ¢, and r such that p
factors as gr, then the homogenization of ¢ to degree n and the homogenization
of r to degree m factor the homogenization of p to degree n+m, and vice versa.

Since homogenization preserves factorization, we can answer questions about
the factorization of polynomials by answering questions about the factorizations
of forms in one more variable. Results for forms of three variables and low degree
are presented in this paper.

2.3 Factorization

We will call a form reducible if the form can be factored at all (remember that
these factors must of necessity be themselves forms), and completely reducible
if the form can be factored into linear forms. Note that if a quadratic form is
reducible at all, then it is completely reducible. To simplify the discussion, we
allow the coefficients of our forms and factors to be complex numbers.

Note that any binary form is completely reducible. We can simply un-
homogenize it by setting x5 = 1, ending up with a polynomial in x;. The
fundamental theorem of algebra says that we can then factor it into linear
factors, which when re-homogenized will factor the original binary form.

The question we pursue in this paper is which ternary forms are completely
reducible.

2.4 Linearly independent

Remember that a set of vectors is linearly independent if the only time a linear
combination of those vectors is 0 is when all the coefficients are 0.

Lemma 1. If f is a quadratic ternary form, then there exist linearly indepen-

dent u,v € C3 such that f(u) = f(v) = 0.

Proof. Let f be a quadratic ternary form. We write

f(21,m2,23) = f1127 + fo2x3 + f3375 + fra7172 + f132123 + fozTaxs.



Suppose fi11 # 0. Then
f(2,1,0) = f112® + fi2z + foo,

so we can solve for z in the complex plane and obtain at least one 0 at u =
(20,1,0). In the exact same manner, we find a zero of f(z,0,1) = f112%+ fizz+
fas at v = (21,0,1). Any linear combination au+bv will have second component
a and third component v, so au + bv is only 0 when a = b =0, so u and v are
linearly independent.

Symmetrically, the same holds if fo2 # 0 or f33 # 0.

It remains to consider when fi1; = fao = f33 = 0. But then f(1,0,0) =
£(0,1,0) = 0, so taking v = (1,0,0) and v = (0, 1,0) works.

Therefore, for every quadratic form f, there exist linearly independent u, v €
C? such that f(u) = f(v) = 0. Q.E.D.

2.5 Hessian

The Hessian is the determinant of the matrix of second partial derivatives of
a function. For a ternary form such as we will be studying in this paper, the
Hessian, denoted as H, is
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If f is a quadratic form, then we have
fla1,2,23) = f1127 + f2213 + fa3x3 + frawiao + fi3z1@3 + foswaxs.
Calculating the Hessian, we find

2fi1 fiz  fis
H(f)=|fiz 2fa2 fo3
fiz faz 2fas

H(f) = 8f11fonf3s + frafosfiz + fisfiafos — 2f11fas — 2f33f i — 2fo0fis

which is a constant.
Now, we consider how the Hessian changes with a linear change of variables:

T1 uyp v w 'A%
T=|T2)| = [|u2 V2 w2 y2 | = Ay,
I3 Uz Vs wWs Y3

where A is invertible, equivalently u, v, and w are linearly independent, equiv-
alently det A # 0.
That is, we consider

F(y) = f(Ay).



Note that this transformation preserves the degree of forms, and if f is a form
of degree n, and f = pq, and p and ¢ are forms of degree r and s respectively,
then

p(Ay)q(Ay) = f(Ay) = F(y),

and p(Azx) and ¢(Ax) are again forms of degree r and s. This can be generalized
to any finite number of factors, so if p is completely reducible to linear factors,
then F' is also completely reducible. Since A is invertible, we can just consider
A~ to show that if F is completely reducible, then f is completely reducible
as well.

Now we ask what is H(F)?

Well, we have

0y, [ (Ay)] = w101 f (Ay) + u202 f(Ay) + us0s f(Ay) = Zuﬁ f(Ay)

=1

(similarly for d,, and 9,,). In matrix notation (Vf is the gradient of f), we
have VF = ATV .
Taking another partial derivative, we have
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(Again, similarly for the other partial derivatives). In matrix notation,
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The multiplicative property of determinants gives
H(F) = (det A)*H(f).

Therefore, H(F') is 0 if and only if H(f) is 0.

3 Proof of the case of quadraic ternary forms

The main theorem in this paper, is that:
1. A quadratic ternary form f is completely reducible if and only if H(f) = 0.

2. A cubic ternary form f is completely reducible if and only if H(f) = Af
for some constant A.

We will reproduce the proof of the quadratic case of this theorem; the cubic
case can be proved using the same methods.



Lemma 2. If f is a quadratic ternary form that can be completely reduced, then
H(f) = 0.

Proof. First, assume that f is a quadratic ternary form that can be completely
reduced:
f = (axy + bxo + cx3)(dzy + exs + fx3),

f = adx? + bex3 + cfx3 + (ae + bd)r12 + (af + cd)x1x3 + (bf + ce)xazs.
Calculating the Hessian of such an f, we find that

H(f) =8abcdef + 2(ae + bd)(af + cd)(bf + ce)

—2ad(bf + ce)® — 2be(af + cd)?® — 2cf(ae + bd)?

=12abcde f — 12abede f
+ 2adb® f* — 2adb® 2
+ 2adc?e* — 2adc?e?
+ 2bea® f? — 2bea’ f*
+ 2bec?d* — 2becd?
+ 2cfa?e? — 2cfa’e?
+ 2¢fb%d? — 2cfb?d?

=0.

Therefore, if f is completely reducible, then H(f) = 0. Q.E.D.

Lemma 3. If f is a quadratic ternary form with no 2 or x3 term, and H(f) =
0, then f is completely reducible

Proof. We assume f has the form

[ = f3373 + fraz129 + fia3z123 + fozTozs.

Computing the Hessian of f, we find
H(f) = 2f12f13f23 — 2f33f 7o = 2f12(f1sf23 — fasf12) = 0.

We have two cases.
If f12 = 0, then
[ =x3(fisx1 + fazxe + fazrs),

so f is completely reducible.
If fi2 # 0, then f13fo3 = f33f12. Notice that

(fi272 + fiaz3)(fi2x1 + fa373) — (fi3fos — f3sfi2)23 = fiof,

but the second term drops, so

1
= E(fma?z + f1323)(f1271 + fa373),
so f is completely reducible. Q.E.D.



Theorem 1. If f is a quadratic ternary form with H(f) = 0, then f is com-
pletely reducible.

Proof. Assume f is a quadratic ternary form with H(f) = 0. By Lemma 1 there
are linearly independent u,v € C? such that f(u) = f(v) = 0, and that we can
choose a third vector w € C3 so that {u, v, w} is linearly independent. We let

L Y
A=fu v w], y=|y
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and take

F(y) = f(Ay) = Fiiy; + Fooys + Fs3y3 + Fioviye + Fisyiys + Fasyoys.

Note that F'(1,0,0) = Fi; = f(u) = 0 and F(0,1,0) = Fa; = f(v) =0, so the
y? and y3 terms drop. Additionally, H(F) = (det A)? -0 = 0. Therefore, F is
completely reducible by the special case Lemma 3 we proved above, and so f is
completely reducible as well. Q.E.D.

Thus, a quadratic ternary form f is completely reducible if and only if

H(f) =0.
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