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Abstract The Riemann hypothesis is, and will hopefully remain for a long time,
a great motivation to uncover and explore new parts of the mathematical world.
After reviewing its impact on the development of algebraic geometry we discuss
three strategies, working concretely at the level of the explicit formulas. The first
strategy is “analytic” and is based on Riemannian spaces and Selberg’s work on the
trace formula and its comparison with the explicit formulas. The second is based
on algebraic geometry and the Riemann-Roch theorem. We establish a framework
in which one can transpose many of the ingredients of the Weil proof as reformu-
lated by Mattuck, Tate and Grothendieck. This framework is elaborate and involves
noncommutative geometry, Grothendieck toposes and tropical geometry. We point
out the remaining difficulties and show that RH gives a strong motivation to develop
algebraic geometry in the emerging world of characteristic one. Finally we briefly
discuss a third strategy based on the development of a suitable “Weil cohomology”,
the role of Segal’s Γ -rings and of topological cyclic homology as a model for “ab-
solute algebra” and as a cohomological tool.

1 Introduction

Let π(x) := #{p | p ∈P, p < x} be the number of primes less than x with 1
2 added

when x is prime. Riemann [96] found for the counting function 1

f (x) := ∑
1
n

π(x
1
n ),
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1 Similar counting functions were already present in Chebyshev’s work
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the following formula involving the integral logarithm function Li(x) =
∫ x

0
dt

log t ,

f (x) = Li(x)−∑
ρ

Li(xρ)+
∫

∞

x

1
t2−1

dt
t log t

− log2 (1)

in terms2 of the non-trivial zeros ρ of the analytic continuation (shown as well as
two proofs of the functional equation by Riemann at the beginning of his paper) of
the Euler zeta function

ζ (s) = ∑
1
ns

Reading Riemann’s original paper is surely still the best initiation to the subject. In
his lecture given in Seattle in August 1996, on the occasion of the 100-th anniversary
of the proof of the prime number theorem, Atle Selberg comments about Riemann’s
paper: [99]

It is clearly a preliminary note and might not have been written if L. Kronecker had not
urged him to write up something about this work (letter to Weierstrass, Oct. 26 1859). It
is clear that there are holes that need to be filled in, but also clear that he had a lot more
material than what is in the note3. What also seems clear : Riemann is not interested in an
asymptotic formula, not in the prime number theorem, what he is after is an exact formula!

The Riemann hypothesis (RH) states that all the non-trivial zeros of ζ are on the
line 1

2 + iR. This hypothesis has become over the years and the many unsuccessful
attempts at proving it, a kind of “Holy Grail” of mathematics. Its validity is indeed
one of the deepest conjectures and besides its clear inference on the distribution of
prime numbers, it admits relations with many parts of pure mathematics as well as
of quantum physics.

It is, and will hopefully remain for a long time, a great motivation to uncover and
explore new parts of the mathematical world. There are many excellent texts on RH,
such as [12] which explain in great detail what is known about the problem, and the
many implications of a positive answer to the conjecture. When asked by John Nash
to write a text on RH4, I realized that writing one more encyclopedic text would
just add another layer to the psychological barrier that surrounds RH. Thus I have
chosen deliberately to adopt another point of view, which is to navigate between
the many forms of the explicit formulas (of which (1) is the prime example) and
possible strategies to attack the problem, stressing the value of the elaboration of
new concepts rather than “problem solving”.

• RH and algebraic geometry

We first explain the Riemann-Weil explicit formulas in the framework of adeles
and global fields in §2.1. We then sketch in §2.3 the geometric proof of RH for

2 More precisely Riemann writes ∑ℜ(α)>0

(
Li(x

1
2 +αi)+Li(x

1
2−αi)

)
instead of ∑ρ Li(xρ ) using

the symmetry ρ → 1−ρ provided by the functional equation, to perform the summation.
3 See [52] Chapter VII for detailed support to Selberg’s comment
4 My warmest thanks to Michael Th. Rassias for the communication
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function fields as done by Weil, Mattuck, Tate and Grothendieck. We then turn
to the role of RH in generating new mathematics, its role in the evolution of
algebraic geometry in the XX-th century through the Weil conjectures, proved
by Deligne, and the elaboration by Grothendieck of the notions of scheme and of
topos.

• Riemannian Geometry, Spectra and trace formulas

Besides the proof of analogues of RH such as the results of Weil and of Deligne,
there is another family of results that come pretty close. They give another natural
approach of RH using analysis, based on the pioneering work of Selberg on trace
formulas. These will be reviewed in Section 3 where the difficulty arising from
the minus sign in front of the oscillatory terms will be addressed.

• The Riemann-Roch strategy: A Geometric Framework

In Section 4, we shall describe a geometric framework, established in our joint
work with C. Consani, allowing us to transpose several of the key ingredients of
the geometric proof of RH for function fields recalled in §2.3. It is yet unclear if
this is the right set-up for the final Riemann-Roch step, but it will illustrate the
power of RH as an incentive to explore new parts of mathematics since it gives a
clear motivation for developing algebraic geometry in characteristic 1 along the
line of tropical geometry. This will take us from the world of characteristic p
to the world of characteristic 1, and give us an opportunity to describe its rela-
tion with semi-classical and idempotent analysis, optimization and game theory5,
through the Riemann-Roch theorem in tropical geometry [4, 56, 92].

• Absolute Algebra and the sphere spectrum

The arithmetic and scaling sites which are the geometric spaces underlying the
Riemann-Roch strategy of Section 4 are only the semiclassical shadows of a more
mysterious structure underlying the compactification of SpecZ that should give
a cohomological interpretation of the explicit formulas. We describe in this last
section an essential tool coming from algebraic topology: Segal’s Γ -rings and
the sphere spectrum, over which all previous attempts at developing an absolute
algebra organize themselves. Moreover, thanks to the results of Hesselholt and
Madsen in particular, topological cyclic homology gives a cohomology theory
suitable to treat in a unified manner the local factors of L-functions.

5 one of the topics in which John Nash made fundamental contributions
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2 RH and algebraic geometry

I will briefly sketch here the way RH, once transposed in finite characteristic, has
played a determining role in the upheaval of the very notion of geometric space
in algebraic geometry culminating with the notions of scheme and topos due to
Grothendieck, with the notion of topos offering a frame of thoughts of incompara-
ble generality and breadth. It is a quite remarkable testimony to the unity of math-
ematics that the origin of this discovery lies in the greatest problem of analysis and
arithmetic.

2.1 The Riemann-Weil explicit formulas, Adeles and global fields

Riemann’s formula (1) is a special case of the “explicit formulas” which establish
a duality between the primes and the zeros of zeta. This formula has been extended
by Weil in the context of global fields which provides a perfect framework for a
generalization of RH since it has been solved, by Weil, for all global fields except
number fields.

2.1.1 The case of ζ

Let us start with the explicit formulas (cf. [113, 115, 11, 93]). We start with a func-
tion F(u) defined for u ∈ [1,∞), continuous and continuously differentiable except
for finitely many points at which both F(u) and F ′(u) have at most a discontinuity
of the first kind, 6 and such that, for some ε > 0, F(u) = O(u−1/2−ε). One then
defines the Mellin transform of F as

Φ(s) =
∫

∞

1
F(u)us−1du (2)

The explicit formula then takes the form

Φ(
1
2
)+Φ(−1

2
)− ∑

ρ∈Zeros
Φ(ρ− 1

2
) = ∑

p

∞

∑
m=1

log p p−m/2F(pm)+ (3)

+(
γ

2
+

logπ

2
)F(1)+

∫
∞

1

t3/2F(t)−F(1)
t(t2−1)

dt

where γ =−Γ ′(1) is the Euler constant, and the zeros are counted with their multi-
plicities i.e. ∑ρ∈Zeros Φ(ρ− 1

2 ) means ∑ρ∈Zeros order(ρ)Φ(ρ− 1
2 ).

6 and at which the value of F(u) is defined as the average of the right and left limits there
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2.1.2 Adeles and global fields

By a result of Iwasawa [76] a field K is a finite algebraic number field, or an alge-
braic function field of one variable over a finite constant field, if and only if there
exists a semi-simple (i.e. with trivial Jacobson radical [78]) commutative ring R con-
taining K such that R is locally compact, but neither compact nor discrete and K is
discrete and cocompact in R. This result gives a conceptual definition of what is a
“global field” and indicates that the arithmetic of such fields is intimately related to
analysis on the parent ring R which is called the ring of adeles of K [114, 104]. It
is the opening door to a whole world which is that of automorphic forms and rep-
resentations, starting in the case of GL1 with Tate’s thesis [104] and Weil’s book
[114]. Given a global field K, the ring AK of adeles of K is the restricted product of
the locally compact fields Kv obtained as completions of K for the different places
v of K. The equality dax = |a|dx for the additive Haar measure defines the module
Mod : Kv → R+, Mod(a) := |a| on the local fields Kv and also as a group homo-
morphism Mod : CK→R∗+ where CK = GL1(AK)/K× is the idele class group. The
kernel of the module is a compact subgroup CK,1 ⊂CK and the range of the module
is a cocompact subgroup Mod(K)⊂R∗+. On any locally compact modulated group,
such as CK or the multiplicative groups K∗v , one normalizes the Haar measure d∗u
uniquely so that the measure of {u | 1≤ |u| ≤Λ} is equivalent to logΛ when Λ→∞.

2.1.3 Weil’s explicit formulas

As shown by Weil, in [115], adeles and global fields give the natural framework for
the explicit formulas. For each character χ ∈ ĈK,1 one chooses an extension χ̃ to CK
and one lets Zχ̃ be the set (with multiplicities and taken modulo the orthogonal of
Mod(K), i.e. {s ∈ C | qs = 1,∀q ∈Mod(K)}) of zeros of the L-function associated
to χ̃ . Let then α be a nontrivial character of AK/K and α = ∏ αv its local factors.
The explicit formulas take the following form, with h∈S (CK) a Schwartz function
with compact support:

ĥ(0)+ ĥ(1)− ∑
χ∈ĈK,1

∑
Zχ̃

ĥ(χ̃,ρ) = ∑
v

∫ ′
K∗v

h(u−1)

|1−u|
d∗u (4)

where the principal value
∫ ′
K∗v is normalized by the additive character αv (cf. [27]

Chapter II, 8.5, Theorem 2.44 for the precise notations and normalizations) and for
any character ω of CK one lets

ĥ(ω,z) :=
∫

h(u)ω(u) |u|z d∗u, ĥ(t) := ĥ(1, t) (5)

For later use in §4.1 we compare (3) with the Weil way (4) of writing the explicit
formulas. Let the function h be the function on CQ given by h(u) := |u|− 1

2 F(|u|)
(with F(v) = 0 for v< 1). Then ĥ(ω,z) = 0 for characters with non-trivial restriction
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to CQ,1 = Ẑ×, while ĥ(1,z) = Φ(z− 1
2 ). Moreover note that for the archimedean

place v of K=Q one has, disregarding the principal values for simplicity,∫
K∗v

h(u−1)

|1−u|
d∗u =

∫
R∗

h(u)
|1−u−1|

d∗u

=
1
2

∫
∞

1
h(t)

(
1

|1− t−1|
+

1
|1+ t−1|

)
dt
t
=
∫

∞

1

t3/2F(t)
t(t2−1)

dt

where the 1
2 comes from the normalization of the multiplicative Haar measure of R∗

viewed as a modulated group. In a similar way, the normalization of the multiplica-
tive Haar measure on Q∗p shows that for the finite place associated to the prime p
one gets the term ∑

∞
m=1 log p p−m/2F(pm).

2.2 RH for function fields

When the module Mod(K) of a global field is a discrete subgroup of R∗+ it is of the
form Mod(K) = qZ where q is a prime power, and the field K is the function field
of a smooth projective curve C over the finite field Fq.

Already at the beginning of the XX-th century, Emil Artin and Friedrich Karl
Schmidt have generalized RH to the case of function fields. We refer to the text of
Cartier [18] where he explains how Weil’s definition of the zeta function associated
to a variety over a finite field slowly emerged, starting with the thesis of E. Artin
where this zeta function was defined for quadratic extensions of Fq[T ], explaining
F. K. Schmidt’s generalization to arbitrary extensions of Fq[T ] and the work of Hasse
on the Riemann hypothesis for elliptic curves over finite fields.

When the global field K is a function field, geometry comes to the rescue. The
problem becomes intimately related to the geometric one of estimating the number
N(qr) := #C(Fqr) of points of C rational over a finite extension Fqr of the field of
definition of C. The analogue of the Riemann zeta function is a generating function:
the Hasse-Weil zeta function

ζC(s) := Z(C,q−s), Z(C,T ) := exp

(
∑
r≥1

N(qr)
T r

r

)
(6)

The analogue of RH for ζC was proved by André Weil in 1940. Pressed by the
circumstances (he was detained in jail) he sent a Comptes-Rendus note to E. Car-
tan announcing his result. Friedrich Karl Schmidt and Helmut Hasse had previously
been able to transpose the Riemann-Roch theorem in the framework of geometry
over finite fields and shown its implications for the zeta function: it is a rational frac-
tion (of the variable T ) and it satisfies a functional equation. But it took André Weil
several years to put on solid ground a general theory of algebraic geometry in finite
characteristic that would justify his geometric arguments and allow him to transpose
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the Hodge index theorem in the form due to the Italian geometers Francesco Severi
and Guido Castelnuovo at the beginning of the XX-th century.

2.3 The proof using Riemann-Roch on C̄×C̄

Let C be a smooth projective curve over the finite field Fq. The first step is to extend
the scalars from Fq to an algebraic closure F̄q. Thus one lets

C̄ :=C⊗Fq F̄q (7)

This operation of extension of scalars does not change the points over F̄q, i.e. one
has C̄(F̄q) =C(F̄q). The Galois action of the Frobenius automorphism of F̄q raises
the coordinates of any point x ∈ C(F̄q) to the q-th power and this transformation
of C(F̄q) coincides with the relative Frobenius Frr := FrC× Id of C̄, where FrC is
the absolute Frobenius of C (which is the identity on points of the scheme and the
q-th power map in the structure sheaf). The relative Frobenius Frr is F̄q-linear by
construction and one can consider its graph in the surface X = C̄×F̄q

C̄ which is
the square of C̄. This graph is the Frobenius correspondence Ψ . It is important to
work over an algebraically closed field in order to have a good intersection theory.
This allows one to express the right hand side of the explicit formula (4) for the zeta
function ζC as an intersection number D.∆ , where ∆ is the diagonal in the square
and D=∑akΨ

k is the divisor given by a finite integral linear combination of powers
of the Frobenius correspondence. The terms ĥ(0), ĥ(1) in the explicit formula are
also given by intersection numbers D.ξ j, where

ξ0 = e0×C̄ , ξ1 = C̄× e1 (8)

where the e j are points of C̄. One then considers divisors on X up to the additive
subgroup of principal divisors i.e. those corresponding to an element f ∈K of the
function field of X . The problem is then reduced to proving the negativity of D.D
(the self-intersection pairing) for divisors of degree zero. The Riemann-Roch theo-
rem on the surface X gives the answer. To each divisor D on X corresponds an index
problem and one has a finite dimensional vector space of solutions H0(X ,O(D))
over F̄q. Let

`(D) = dimH0(X ,O(D)) (9)

The best way to think of the sheaf O(D) is in terms of Cartier divisors, i.e. a global
section of the quotient sheaf K ×/O×X , where K is the constant sheaf correspond-
ing to the function field of X and OX is the structure sheaf. The sheaf O(D) associ-
ated to a Cartier divisor is obtained by taking the sub-sheaf of K whose sections on
Ui form the sub OX -module generated by f−1

i ∈ Γ (Ui,K ×) where the fi represent
D locally. One has a “canonical” divisor K and Serre duality

dimH2(X ,O(D)) = dimH0(X ,O(K−D)) (10)
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Moreover the following Riemann-Roch formula holds

2

∑
0
(−1) jdimH j(X ,O(D)) =

1
2

D.(D−K)+χ(X) (11)

where χ(X) is the arithmetic genus. All this yields the Riemann-Roch inequality

`(D)+ `(K−D)≥ 1
2

D.(D−K)+χ(X) (12)

One then applies Lemma 1 to the quadratic form s(D,D′) = D.D′ using the ξ j of
(8). One needs three basic facts ([62])

1. If `(D)> 1 then D is equivalent to a strictly positive divisor.
2. If D is a strictly positive divisor then

D.ξ0 +D.ξ1 > 0

3. One has ξ0.ξ1 = 1 and ξ j.ξ j = 0.

One then uses (12) to show (see [62]) that if D.D > 0 then after a suitable rescaling
by n > 0 or n < 0 one gets `(nD) > 1 which shows that the hypothesis (2) of the
following simple Lemma 1 is fulfilled, and hence that RH holds for ζC,

Lemma 1. Let s(x,y) be a symmetric bilinear form on a vector space E (over Q or
R). Let ξ j ∈ E, j ∈ {0,1}, be such that

1. s(ξ j,ξ j) = 0 and s(ξ0,ξ1) = 1.
2. For any x ∈ E such that s(x,x)> 0 one has s(x,ξ0) 6= 0 or s(x,ξ1) 6= 0.

Then one has the inequality

s(x,x)≤ 2s(x,ξ0)s(x,ξ1) , ∀x ∈ E (13)

The proof takes one line but the meaning of this lemma is to reconcile the “naive
positivity” of the right hand side of the explicit formula (4) (which is positive when
h≥ 0 vanishes near u = 1) with the negativity of the left hand side needed to prove
RH (cf. §3.1 (17) below).

At this point we see that it is highly desirable to find a geometric framework
for the Riemann zeta function itself, in which the Hasse-Weil formula (6), the
geometric interpretation of the explicit formulas, the Frobenius correspon-
dences, the divisors, principal divisors, Riemann-Roch problem on the curve
and the square of the curve all make sense.

Such a tentative framework will be explained in Section 4. It involves in par-
ticular the refinement of the notion of geometric space which was uncovered by
Grothendieck and to which we now briefly turn.
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2.4 Grothendieck and the notion of topos

The essential ingredients of the proof explained in §2.3 are the intersection theory
for divisors on C̄× C̄, sheaf cohomology and Serre duality, which give the formu-
lation of the Riemann-Roch theorem. Both owe to the discovery of sheaf theory by
J. Leray and the pioneering work of J. P. Serre on the use of sheaves for the Zariski
topology in the algebraic context, with his fundamental theorem comparing the al-
gebraic and analytic frameworks. The next revolution came from the elaboration by
A. Grothendieck and M. Artin of etale `-adic cohomology. It allows one to express
the Weil zeta function of a smooth projective variety X defined over a finite field Fq
i.e. the function Z(X , t) given by (6) with t = q−s which continues to make sense in
general, as an alternate product of the form

Z(X , t) =
2dimX

∏
j=0

det(1− tF∗ | H j(X̄et,Q`))
(−1) j+1

(14)

where F∗ corresponds to the action of the Frobenius on the `-adic cohomology and
` is a prime which is prime to q. This equality follows from a Lefschetz formula for
the number N(qr) of fixed points of the r-th power of the Frobenius and when X =C
is a curve the explicit formulas reduce to the Lefschetz formula. The construction
of the cohomology groups H j(X̄et,Q`) is indirect and they are defined as :

H j(X̄et,Q`) = lim←−
n

(
H j(X̄et,Z/`nZ)

)
⊗Z`

Q`

where X̄et is the etale site of X̄ . Recently the etale site of a scheme has been refined
[5] to the pro-etale site whose objects no longer satisfy any finiteness condition.
The cohomology groups H j(X̄proet,Q̄`) are then directly obtained using the naive
interpretation (without torsion coefficients). One needs to pay attention in (14) to
the precise definition of F , it is either the relative Frobenius Frr or the Geometric
Frobenius Frg which is the inverse of the Arithmetic Frobenius Fra. The product
Fra ◦Frr = Frr ◦Fra is the absolute Frobenius Fr which acts trivially on the `-adic
cohomology. To understand the four different incarnations of “the Frobenius” it is
best to make them explicit in the simplest example of the scheme SpecR where
R = F̄q[T ] is the ring of polynomials P(T ) = ∑a jT j, a j ∈ F̄q

• Geometric Frobenius: ∑a jT j 7→ ∑a1/q
j T j

• Relative Frobenius: P(T ) 7→ P(T q)
• Absolute Frobenius: P(T ) 7→ P(T )q

• Arithmetic Frobenius: ∑a jT j 7→ ∑aq
jT

j

The motivation of Grothendieck for developing etale cohomology came from the
search of a Weil cohomology and the Weil conjectures which were solved by
Deligne in 1973 ([45]).

In his quest Grothendieck uncovered several key concepts such as those of
schemes and above all that of topos, in his own words:
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C’est le thème du topos, et non celui des schémas, qui est ce “lit”, ou cette “rivière pro-
fonde”, où viennent s’épouser la géométrie et l’algèbre, la topologie et l’arithmétique,
la logique mathématique et la théorie des catégories, le monde du continu et celui des
structures “discontinues” ou “discrètes”. Si le thème des schémas est comme le cœur
de la géométrie nouvelle, le thème du topos en est l’enveloppe, ou la demeure. Il est
ce que j’ai conçu de plus vaste, pour saisir avec finesse, par un même langage riche en
résonances géométriques, une “essence” commune à des situations des plus éloignées les
unes des autres, provenant de telle région ou de telle autre du vaste univers des choses
mathématiques.

3 Riemannian Geometry, Spectra and trace formulas

Riemannian Geometry gives a wealth of “spectra” of fundamental operators associ-
ated to a geometric space, such as the Laplacian and the Dirac operators.

3.1 The Selberg trace formula

In the case of compact Riemann surfaces X with constant negative curvature −1,
the Selberg trace formula [97], takes the following form where the eigenvalues of
the Laplacian are written in the form7 λn = −( 1

4 + r2
n). Let δ > 0, h(r) be an an-

alytic function in the strip |ℑ(r)| ≤ 1
2 + δ and such that h(r) = h(−r) and with

(1+ r2)1+δ |h(r)| being bounded. Then [97, 98, 69], with A the area of X ,

∑h(rn) =
A

4π

∫
∞

−∞

tanh(πr)h(r)rdr+ ∑
{T}

logN(T0)

N(T )
1
2 −N(T )−

1
2

g(logN(T )) (15)

where g is the Fourier transform of h, i.e. more precisely g(s) = 1
2π

∫
∞

−∞
h(r)e−irsdr.

The logN(T ) are the lengths of the periodic orbits of the geodesic flow with
logN(T0) being the length of the primitive one. Already in 1950-51, Selberg saw
the striking similarity of his formula with (3) which (cf. [69]) can be rewritten in the
following form, with h and g as above and the non-trivial zeros of zeta expressed in
the form ρ = 1

2 + iγ ,

∑
γ

h(γ) = h(
i
2
)+h(− i

2
)+

1
2π

∫
∞

−∞

ω(r)h(r)dr−2∑Λ(n)n−
1
2 g(logn) (16)

where

ω(r) =
Γ ′

Γ

(
1
4
+ i

r
2

)
− logπ,

Γ ′

Γ
(s) =

∫ 1

0

1− ts−1

1− t
dt− γ , ∀s,ℜ(s)> 0

7 where the argument of rn is either 0 or −π/2
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and Λ(n) is the von-Mangoldt function with value log p for powers p` of primes
and zero otherwise. Moreover Selberg found that there is a zeta function which cor-
responds to (15) in the same way that ζ (s) corresponds to (16). The role of Hilbert
space is crucial in the work of Selberg to ensure that the zeros of his zeta function
satisfy the analogue of RH. This role of Hilbert space is implicit as well in RH which
has been reformulated by Weil as the positivity of the functional W (g) defined as
both sides of (16). More precisely the equivalent formulation is that W (g ? g∗) ≥ 0
on functions g which correspond to Fourier transforms of analytic functions h as
above (i.e. even and analytic in a strip |ℑz| ≤ 1

2 + δ ) where for even functions one
has g∗(s) := g(−s) = g(s). Moreover by [13, 17], it is enough, using Li’s criterion
(cf. [83, 13]), to check the positivity on a small class of explicit real valued functions
with compact support. In fact for later purposes it is better to write this criterion as

RH ⇐⇒ s( f , f )≤ 0 , ∀ f |
∫

f (u)d∗u =
∫

f (u)du = 0 (17)

where for real compactly supported functions on R∗+, we let s( f ,g) := N( f ? g̃)
where ? is the convolution product on R∗+, g̃(u) := u−1g(u−1), and

N(h) :=
∞

∑
n=1

Λ(n)h(n)+
∫

∞

1

u2h(u)−h(1)
u2−1

d∗u+ ch(1) , c =
1
2
(logπ + γ) (18)

The Selberg trace formula has been considerably extended by J. Arthur and plays
a key role in the Langland’s program. We refer to [1] for an introduction to this vast
topic.

3.2 The minus sign and absorption spectra

The Selberg trace formula [97, 98] for Riemann surfaces of finite area, acquires
additional terms which make it look e.g. in the case of X = H/PSL(2,Z) (where H
is the upper half plane with the Poincaré metric) even more similar to the explicit
formulas, since the parabolic terms now involve explicitly the sum

2
∞

∑
n=1

Λ(n)
n

g(2logn)

Besides the square root in the Λ(n) terms in the explicit formulas (16)

−2
∞

∑
n=1

Λ(n)

n
1
2

g(logn)

there is however a striking difference which is that these terms occur with a positive
sign instead of the negative sign in (16), as discussed in [69] §12. This discussion
of the minus sign was extended to the case of the semiclassical limit of Hamiltonian
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systems in physics in [6]. In order to get some intuition of what this reveals, it is
relevant to go back to the origin of spectra in physics, i.e. to the very beginning
of spectroscopy. It occurred when Joseph Von Fraunhofer (1787-1826) could iden-
tify, using self-designed instruments, about 500 dark lines in the light coming from
the sun, decomposed using the dispersive power of a spectroscope such as a prism
(cf. Figure 1). These dark lines constitute the “absorption spectrum” and it took
about 45 years before Kirchhoff and Bunsen noticed that several of these Fraun-
hofer lines coincide (i.e. have the same wave length) with the bright lines of the
“emission” spectrum of heated elements, and showed that they could be reobtained
by letting white light traverse a cold gas. In his work on the trace formula in the
finite covolume case, Selberg had to take care of a superposed continuous spectrum
due to the presence of the non-compact cusps of the Riemann surface.

Fig. 1 The three kinds of
spectra occuring in spec-
troscopy: 1) The top one is the
“continuous spectrum” which
occurs when white light is de-
composed by passing through
a prism. 2) The middle one
is the “emission spectrum”
which occurs when the light
emitted by a heated gas is de-
composed by passing through
a prism and gives shining
lines-a signature of the gas-
over a dark background. 3)
The third one is the “absorp-
tion spectrum” which occurs
when white light traverses a
cold gas and is then decom-
posed by passing through a
prism. It appears as dark lines
in a background continuous
spectrum. The absorption
lines occur at the same place
as the emission lines.

���������� ��������

�������� ��������

���������� ��������

3.3 The adele class space and the explicit formulas

I had the chance to be invited at the Seattle meeting in 1996 for the celebration of
the proof of the prime number theorem. The reason was the paper [14] (inspired
from [79]) in which the Riemann zeta function appeared naturally as the partition
function of a quantum mechanical system (BC system) exhibiting phase transitions.
The RH had been at the center of discussions in the meeting and I knew the analogy
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between the BC-system and the set-up that V. Guillemin proposed in [64] to explain
the Selberg trace formula using the action of the geodesic flow on the horocycle
foliation. To a foliation is associated a von Neumann algebra [22], and the horocycle
foliation on the sphere bundle of a compact Riemann surface gives a factor of type
II∞ on which the geodesic flow acts by scaling the trace. An entirely similar situation
comes canonically from the BC-system at critical temperature and after interpreting
the dual system in terms of adeles, I was led by this analogy to consider the action
of the idele class group of Q on the adele class space, i.e. the quotient Q×\AQ of
the adeles AQ of Q by the action of Q×. I knew from the BC-system that the action
of Q×, which preserves the additive Haar measure, is ergodic for this measure and
gives the same factor of type II∞ as the horocycle foliation. Moreover the dual action
scales the trace in the same manner.

Let K be a global field and CK =GL1(AK)/K× the idele class group. The module
Mod : CK→R∗+ being proper with cocompact range, one sees that the Haar measure
on the Pontrjagin dual group of CK is diffuse. Since a point is of measure 0 in a
diffuse measure space there is no way one can see the absorption spectrum without
introducing some smoothness on this dual which is done using a Sobolev space
L2

δ
(CK) of functions on CK which (for fixed δ > 1) is defined as

||ξ ||2 =
∫

CK
|ξ (x)|2 ρ(x)d∗x, ρ(x) := (1+ log |x|2)δ/2 (19)

Definition 1. Let K be a global field, the adele class space of K is the quotient
XK = AK/K× of the adeles of K by the action of K× by multiplication.

We then consider the codimension 2 subspace S (AK)0 of the Bruhat-Schwartz
space S (AK) (cf. [15]) given by the conditions f (0) = 0 ,

∫
f dx = 0 The Sobolev

space L2
δ
(XK)0 is the separated completion of S (AK)0 for the norm with square

|| f ||2 =
∫

CK
| ∑

q∈K∗
f (qx)|2 ρ(x) |x|d∗x (20)

Note that by construction all functions of the form f (x) = g(x)− g(qx) for some
q ∈ K× belong to the radical of the norm (20), which corresponds to the operation
of quotient of Definition 1. In particular the representation of ideles on S (AK)
given by

(ϑ(α)ξ )(x) = ξ (α−1x) ∀α ∈ GL1(AK) , x ∈ AK (21)

induces a representation ϑa of CK on L2
δ
(XK)0. One has by construction a natural

isometry E : L2
δ
(XK)0 → L2

δ
(CK) which intertwines the representation ϑa with the

regular representation of CK in L2
δ
(CK) multiplied by the square root of the module.

This representation restricts to the cokernel of the map E, which splits as a direct
sum of subspaces labeled by the characters of the compact group CK,1 = KerMod
and its spectrum in each sector gives the zeros of L-functions with Grössencharakter.
The shortcoming of this construction is in the artificial weight ρ(x), which is needed
to see this absorption spectrum but only sees the zeros which are on the critical line
and where the value of δ artificially cuts the multiplicities of the zeros (cf. [24]).
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This state of affairs is greatly improved if one gives up trying to prove RH but
retreats to an interpretation of the explicit formulas as a trace formula. One simply
replaces the above Hilbert space set-up by a softer one involving nuclear spaces
[90]. The spectral side now involves all non-trivial zeros and, using the preliminary
results of [24, 25, 16] one gets that the geometric side is given by:

Trdistr

(∫
h(w)ϑ(w)d∗w

)
= ∑

v

∫
K×v

h(w−1)

|1−w|
d∗w (22)

We refer to [24, 90, 27] for a detailed treatment. The subgroups K×v ⊂ CK =
GL1(AK)/GL1(K) arise as isotropy groups. One can understand why the terms
h(w−1)

|1−w|
occur in the trace formula by computing, formally as follows, the trace

of the scaling operator T = ϑw−1 when working on the local field Kv completion of
the global field K at the place v, one has

T ξ (x) = ξ (wx) =
∫

k(x,y)ξ (y)dy

so that T is given by the distribution kernel k(x,y) = δ (wx− y) and its trace is

Trdistr(T ) =
∫

k(x,x)dx =
∫

δ (wx− x)dx =
1

|w−1|

∫
δ (z)dz =

1
|w−1|

When working at the level of adeles one treats all places on the same footing
and thus there is an overall minus sign in front of the spectral contribution. Thus the
Riemann spectrum appears naturally as an absorption spectrum from the adele class
space. As such, it is difficult to show that it is “real”. While this solves the problem
of giving a trace formula interpretation of the explicit formulas, there is of course
still room for an interpretation as an emission spectrum. However from the adelic
point of view it is unnatural to separate the contribution of the archimedean place.

4 The Riemann-Roch strategy: A Geometric Framework

In this section we shall present a geometric framework which has emerged over the
years in our joint work with C. Consani and seems suitable in order to transpose the
geometric proof of Weil to the case of RH. The aim is to apply the Riemann-Roch
strategy of §2.3. The geometry involved will be of elaborate nature inasmuch as it
relies on the following three theories:

1. Noncommutative Geometry.
2. Grothendieck topoi.
3. Tropical Geometry.
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4.1 The limit q→ 1 and the Hasse-Weil formula

In [102] (cf. §6), C. Soulé, motivated by [89] (cf. §1.5) and [103, 106, 81, 46, 47, 80],
introduced the zeta function of a variety X over F1 using the polynomial counting
function N(x)∈Z[x] associated to X . The definition of the zeta function is as follows

ζX (s) := lim
q→1

Z(X ,q−s)(q−1)N(1), s ∈ R (23)

where Z(X ,q−s) denotes the evaluation at T = q−s of the Hasse-Weil exponential
series

Z(X ,T ) := exp

(
∑
r≥1

N(qr)
T r

r

)
(24)

For instance, for a projective space Pn one has N(q) = 1+q+ . . .+qn and

ζPn(F1)(s) = lim
q→1

(q−1)n+1
ζPn(Fq)(s) =

1
∏

n
0(s− k)

It is natural to wonder on the existence of a “curve” C suitably defined over
F1, whose zeta function ζC(s) is the complete Riemann zeta function ζQ(s) =
π−s/2Γ (s/2)ζ (s) (cf. also [89]). The first step is to find a counting function N(q) de-
fined for q ∈ [1,∞) and such that (23) gives ζQ(s). But there is an obvious difficulty
since as N(1) represents the Euler characteristic one should expect that N(1) =−∞

(since the dimension of H1 is infinite). This precludes the use of (23) and also seems
to contradict the expectation that N(q)≥ 0 for q∈ (1,∞). As shown in [30, 31] there
is a simple way to solve the first difficulty by passing to the logarithmic derivatives
of both terms in equation (23) and observing that the Riemann sums of an integral
appear from the right hand side. One then gets instead of (23) the equation:

∂sζN(s)
ζN(s)

=−
∫

∞

1
N(u)u−sd∗u (25)

Thus the integral equation (25) produces a precise equation for the counting function
NC(q) = N(q) associated to C:

∂sζQ(s)
ζQ(s)

=−
∫

∞

1
N(u)u−sd∗u (26)

One finds that this equation admits a solution which is a distribution and is given
with ϕ(u) := ∑n<u nΛ(n), by the equality

N(u) =
d

du
ϕ(u)+κ(u) (27)

where κ(u) is the distribution which appears in the explicit formula (3),
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∞

1
κ(u) f (u)d∗u =

∫
∞

1

u2 f (u)− f (1)
u2−1

d∗u+ c f (1) , c =
1
2
(logπ + γ)

The conclusion is that the distribution N(u) is positive on (1,∞) and is given by

N(u) = u− d
du

(
∑

ρ∈Z
order(ρ)

uρ+1

ρ +1

)
+1 (28)

where the derivative is taken in the sense of distributions, and the value at u = 1 of

the term ω(u) = ∑
ρ∈Z

order(ρ)
uρ+1

ρ +1
is given by 1

2 +
γ

2 +
log4π

2 − ζ ′(−1)
ζ (−1) .

Fig. 2 This represents a func-
tion J(u) which is a primitive
of the counting distribution
N(u). This function is in-
creasing and tends to −∞

when u→ 1. The wiggly
graph represents the approxi-
mation of J(u) obtained using
the symmetric set Zm of the
first 2m zeros, by

Jm(u)=
u2

2
−∑

Zm

order(ρ)
uρ+1

ρ +1
+u

Note that J(u)→−∞ when
u→ 1+

JHuL = à N HuL â u
JmHuL
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The primitive J(u) = u2

2 −ω(u)+u of N(u) is an increasing function on (1,∞),
but tends to −∞ when u→ 1+ while its value J(1) is finite. The tension between
the positivity of the distribution N(q) for q > 1 and the expectation that its value
N(1) should be N(1) = −∞ is resolved by the theory of distributions: N is finite as
a distribution, but when one looks at it as a function its value at q = 1 is formally
given by

N(1) = 2− lim
ε→0

ω(1+ ε)−ω(1)
ε

∼−1
2

E logE, E =
1
ε

which is−∞ and in fact reflects, when ε→ 0, the density of the zeros. Note that this
holds independently of the choice of the principal value in the explicit formulas. This
subtlety does not occur for function fields K since their module Mod(K) is discrete
so that distributions and functions are the same thing. There is one more crucial
nuance between the case K=Q and the function fields: the distribution κ(u) which
is the archimedean contribution to N(u) in (27), does not fulfill the natural inequality
N(q)≤ N(qr) expected of a counting function. This is due to the terms |1−u|−1 in
the Weil explicit formula, which as explained in §2.1.3 contribute non-trivially at
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the archimedean place, and indicate that the counting needs to take into account an
ambient larger space and transversality factors as in [64]. In fact, we have seen in
Section 3.3 that the noncommutative space of adele classes of a global field provides
a framework to interpret the explicit formulas of Riemann-Weil in number theory as
a trace formula, and that the geometric contributions give the right answer. In [31],
we showed that the quotient

XQ :=Q×\AQ/Ẑ× (29)

of the adele class space Q×\AQ of the rational numbers by the maximal compact
subgroup Ẑ× of the idele class group, gives by considering the induced action of
R×+, the above counting distribution N(u), u ∈ [1,∞), which determines, using the
Hasse-Weil formula in the limit q→ 1, the complete Riemann zeta function. The
next step is to understand that the action of R×+ on the space XQ is in fact the action
of the Frobenius automorphisms Frλ on the points of the arithmetic site– an object
of algebraic geometry–over Rmax

+ . To explain this we first need to take an excursion
in the exotic world of “characteristic one”.

4.2 The world of characteristic 1

The key words here are: Newton polygons, Thermodynamics, Legendre transform,
Game theory, Optimization, Dequantization, Tropical geometry. One alters the basic
operation of addition of positive real numbers, replacing x+y by x∨y := max(x,y).
When endowed with this operation as addition and with the usual multiplication, the
positive real numbers become a semifield Rmax

+ . It is of characteristic 1, i.e. 1∨1 = 1
and contains the smallest semifield of characteristic 1, namely the Boolean semifield
B= {0,1}. Moreover, Rmax

+ admits non-trivial automorphisms and one has

GalB(Rmax
+ ) := AutB(Rmax

+ ) = R∗+, Frλ (x) = xλ , ∀x ∈ Rmax
+ , λ ∈ R∗+

thus providing a first glimpse of an answer to Weil’s query in [112] of an algebraic
framework in which the connected component of the idele class group would ap-
pear as a Galois group. More generally, for any abelian ordered group H we let
Hmax = H ∪ {−∞} be the semifield obtained from H by the max-plus construc-
tion, i.e. the addition is given by the max, and the multiplication by +. In particular
Rmax is isomorphic to Rmax

+ by the exponential map (cf. [57]). Historically, and
besides the uses of Rmax in idempotent analysis and tropical geometry which are
discussed below, an early use of Rmax occurred in the late fifties in the work of
R. Cuninghame-Green in Birmingham, who established the spectral theory of ir-
reducible matrices with entries in Rmax (cf. [41]) and in the sixties, in Leningrad,
where Vorobyev used the Rmax formalism in his work motivated by combinatorial
optimization, and proved a fundamental covering theorem. A systematic use of the
Rmax algebra was developed by the INRIA group at the beginning of the 80’s in their
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work on the modelization of discrete event systems [20]. We refer to [57, 58] for a
more detailed history of the subject, and for overwhelming evidence of its relevance
in mathematics. We shall just give here a sample of this evidence starting by a really
early occurrence in the work of C.G.J. Jacobi8 and hoping to convince the reader
that it would be a mistake to dismiss this algebraic formalism and the analogy with
ordinary algebra as trivial.

4.2.1 Optimization, Jacobi

One of the early instances, around 1840, of the use of matrices over Rmax is the
work of C.G.J. Jacobi [77] on optimal assignment problems, where he states

Problema
Disponantur nn quantitates h(i)k quaecunque in schema Quadrati, ita ut habeantur n series
horizontales et n series verticales, quarum quaeque est n terminorum. Ex illis quantitati-
bus eligantur n transversales, i.e. in seriebus horizontalibus simul atque verticalibus diversis
positae, quod fieri potest n! modis; ex omnibus illis modis quaerendus est is, qui summam
n numerorum electorum suppeditet maximam.

In other words, given a square matrix mik = h(i)k he looks for the maximum over
all permutations σ of the quantity ∑m jσ( j). Using the algebraic rules of Rmax one
checks that he is in fact computing the analogue of the determinant for the matrix
mik. In fact the perfect definition of the determinant is more subtle and was obtained
in the work of Gondran-Minoux [61], instead of max∑m jσ( j) where σ runs over all
permutations, one uses the signature of permutations and considers the pair

(det+(mik),det−(mik)), det±(mik) = max ∑
sign(σ)=±

m jσ( j)

The remarkable fact is that the Cayley-Hamilton theorem now holds, as the equality
of two terms P+(m) = P−(m) corresponding to the characteristic polynomial P =
(P+,P−). Each of the terms P±(m)∈Mn(Rmax) is computed from the original matrix
m∈Mn(Rmax) using the rules of matrices with entries in Rmax which turn Mn(Rmax)
into a semiring.

4.2.2 Idempotent analysis

The essence of the theory of semiclassical analysis in physics rests in the compar-
ison of quantum systems with their semiclassical counterpart, [63, 65, 66, 54, 6].
In the eighties V. P. Maslov and his collaborators developed a satisfactory alge-
braic framework which encodes the semiclassical limit of quantum mechanics. They
called it idempotent analysis. We refer to [82, 84] for a detailed account and just
mention briefly some salient features here. The source of the variational formula-
tions of mechanics in the classical limit is the behavior of sums of exponentials

8 I am grateful to S. Gaubert for pointing out this early occurrence
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∑e−
S j
h̄ ∼ e−

infS j
h̄ , when h̄→ 0

which are, when h̄→ 0, dominated by the contribution of the minimum of S. The
starting observation is that one can encode this fundamental principle by simply
conjugating the addition of numbers by the power operation x 7→ xε and passing to
the limit when ε → 0. The new addition of positive real numbers is

lim
ε→0

(
x

1
ε + y

1
ε

)ε

= max{x,y}= x∨ y

and one recovers Rmax
+ as the natural home for semiclassical analysis. The super-

position principle of quantum mechanics, i.e. addition of vectors in Hilbert space,
now makes sense in the limit and moreover the “fixed point argument” proof of
the Perron-Frobenius theorem works over Rmax

+ and shows that irreducible compact
operators have one and only one eigenvalue9, thus reconciling classical determin-
ism with the quantum variability. But the most striking discovery of this school
of Maslov, Kolokolstov and Litvinov [82, 84] is that the Legendre transform which
plays a fundamental role in all of physics and in particular in thermodynamics in the
nineteenth century, is simply the Fourier transform in the framework of idempotent
analysis!

The contact between the INRIA school and the Maslov school was established
in 92 when Maslov was invited in the Seminar of Jacques Louis Lions in College
de France. At the BRIMS HP-Labs workshop on Idempotency in Bristol (1994)
organized by J. Gunawardena, several of the early groups of researchers in the field
were there, and an animated discussion took place on how the field should be named.
The names max-plus, exotic, tropical, idempotent were considered, each one having
its defaults.

4.2.3 Tropical geometry, Riemann-Roch theorems and the chip firing game

The tropical semiring Nmin =N∪{∞}with the operations min and + was introduced
by Imre Simon in [101] to solve a decidability problem in rational language theory.
His work is at the origin of the term “tropical” used in tropical geometry which is a
vast subject, see e.g. [59, 53, 91, 87]. We refer to [108] for an excellent introduction
starting from the sixteenth Hilbert problem. In its simplest form (cf. [56]) a tropical
curve is given by a metric graph Γ (i.e. a graph with a usual line metric on its
edges). The natural structure sheaf on Γ is the sheaf O of real valued functions
which are continuous, convex, piecewise affine with integral slopes. The operations
on such functions are given by the pointwise operations of Rmax-valued functions,
i.e. ( f ∨g)(x) = f (x)∨g(x) for all x ∈ Γ and similar for the product which is given
by pointwise addition. One also adjoins the constant −∞ which plays the role of the
zero element in the semirings of sections. One proceeds as in the classical case with

9 as mentioned above, this result was obtained already for matrices in 1962 by R. Cuninghame-
Green
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the construction of the sheaf K of semifields of quotients and finds the same type of
functions as above but no longer convex. Cartier divisors make sense and one finds
that the order of a section f of K at a point x∈Γ is given by the sum of the (integer
valued) outgoing slopes. The conceptual explanation of why the discontinuities of
the derivative should be interpreted as zeros or poles is due to Viro, [109] who
showed that it follows automatically if one understands that10 the sum x∨ x of two
equal terms in Rmax should be viewed as ambiguous with all values in the interval
[−∞,x] on equal footing. In their work Baker and Norine [4] proved in the discrete
set-up of graphs (where g is the genus and K the canonical divisor) the Riemann-
Roch equality in the form

r(D)− r(K−D) = Deg(D)−g+1 (30)

where by definition r(D) := max{k | H0(D− τ) 6= {−∞} , ∀τ ≥ 0, Deg(τ) = k}
and H0(D) is the Rmax-module of global sections f of the associated sheaf OD i.e.
sections of K such that D+( f ) ≥ 0. The essence of the proof of [4] is that the
inequality Deg(D)≥ g for a divisor implies H0(D) 6= {−∞}. Once translated in the
language of the chip firing game (op.cit.), this fact is equivalent to the existence
of a winning strategy if one assumes that the total sum of dollars attributed to the
vertices of the graph is ≥ g where g is the genus. We refer to [56, 92] for variants of
the above Riemann-Roch theorem, and to [48, 10, 94] for early occurrences of these
ideas in a different context (including sandpile models and parking functions!).

4.3 The arithmetic and scaling sites

4.3.1 The arithmetic site and Frobenius correspondences

The arithmetic site [37, 38] is an object of algebraic geometry involving two elabo-
rate mathematical concepts: the notion of topos and of (structures of) characteristic
1 in algebra. A nice fact (cf. [60]) in characteristic 1 is that, provided the semir-
ing R is multiplicatively cancellative (i.e. equivalently if it injects in its semifield of
fractions) the map x 7→ xn = Frn(x) is, for any integer n∈N×, an injective endomor-
phism Frn of R. One thus obtains a canonical action of the semigroup N× on any
such R and it is thus natural to work in the topos N̂× of sets endowed with an action
of N×.

Definition 2. The arithmetic site A = (N̂×,Zmax) is the topos N̂× endowed with
the structure sheaf O := Zmax viewed as a semiring in the topos using the action of
N× by the Frobenius endomorphisms.

The topological space underlying the arithmetic site is the Grothendieck topos of
sets endowed with an action of the multiplicative monoı̈d N× of non-zero positive
integers. As we have seen above the semifield Rmax

+ of tropical real numbers admits

10 as seen when using Rmax as the target of a valuation
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a one parameter group of Frobenius automorphisms Frλ , λ ∈R×+, given by Frλ (x) =
xλ ∀x∈Rmax

+ . Using a straightforward extension in the context of semi-ringed topos
of the classical notion of algebraic geometry of a point over a ring, one then gets the
following result which gives the bridge between the noncommutative geometry and
topos points of view:

Theorem 1. [37, 38] The set of points of the arithmetic site A over Rmax
+ is canon-

ically isomorphic with XQ = Q×\AQ/Ẑ×. The action of the Frobenius automor-
phisms Frλ of Rmax

+ on these points corresponds to the action of the idele class
group on XQ =Q×\AQ/Ẑ×.

The square of the arithmetic site is the topos N̂×2 endowed with the structure sheaf
defined globally by the multiplicatively cancellative semiring associated to the ten-
sor square Zmin⊗BZmin over the smallest Boolean semifield of characteristic one. In
this way one obtains the semiring whose elements are Newton polygons and whose
operations are given by the convex hull of the union and the sum. The points of the
square of the arithmetic site over Rmax

+ coincide with the product of the points of the
arithmetic site over Rmax

+ . Then, we describe the Frobenius correspondences Ψ(λ )
as congruences on the square parametrized by positive real numbers λ ∈ R×+.

The remarkable fact at this point is that while the arithmetic site is constructed
as a combinatorial object of countable nature it possesses nonetheless a one
parameter semigroup of “correspondences” which can be viewed as congru-
ences in the square of the site.

In the context of semirings, the congruences i.e. the equivalence relations com-
patible with addition and product, play the role of the ideals in ring theory. The
Frobenius correspondences Ψ(λ ), for a rational value of λ , are deduced from the
diagonal of the square, which is described by the product structure of the semiring,
by composition with the Frobenius endomorphisms. We interpret these correspon-
dences geometrically, in terms of the congruence relation on Newton polygons cor-
responding to their belonging to the same half planes with rational slope λ . These
congruences continue to make sense also for irrational values of λ and are described
using the best rational approximations of λ , while different values of the parameter
give rise to distinct congruences. The composition of the Frobenius correspondences
is given for λ ,λ ′ ∈ R×+ such that λλ ′ /∈Q by the rule [37, 38]

Ψ(λ )◦Ψ(λ ′) =Ψ(λλ
′) (31)

The same equality still holds if λ and λ ′ are rational numbers. When λ ,λ ′ are
irrational and λλ ′ ∈Q one has

Ψ(λ )◦Ψ(λ ′) = Idε ◦Ψ(λλ
′) (32)

where Idε is the tangential deformation of the identity correspondence.
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4.3.2 The scaling site and Riemann-Roch theorems

The Scaling Site ˆA , [40], is the algebraic geometric space obtained from the arith-
metic site A of [37, 38] by extension of scalars from the Boolean semifield B to
the tropical semifield Rmax

+ . The points of ˆA are the same as the points A (Rmax
+ )

of the arithmetic site over Rmax
+ . But ˆA inherits from its structural sheaf a natural

structure of tropical curve, in a generalized sense, allowing one to define the sheaf
of rational functions and to investigate an adequate version of the Riemann-Roch
theorem in characteristic 1. In [40], we tested this structure by restricting it to the
periodic orbits of the scaling flow, i.e. the points over the image of SpecZ under
the canonical morphism of toposes Θ : SpecZ→A (cf. [38], §5.1). We found that
for each prime p the corresponding circle of length log p is endowed with a quasi-
tropical structure which turns this orbit into the analogue Cp =R∗+/pZ of a classical
elliptic curve C∗/qZ. In particular rational functions, divisors, etc all make sense. A
new feature is that the degree of a divisor can now be any real number. The Jacobian
of Cp (i.e. the quotient J(Cp) of the group of divisors of degree 0 by principal divi-
sors) is a cyclic group of order p− 1. For each divisor D there is a corresponding
Riemann-Roch problem with solution space H0(D) and the continuous dimension
DimR(H0(D)) of this Rmax-module is defined as the limit

DimR(H0(D)) := lim
n→∞

p−ndimtop(H0(D)pn
) (33)

where H0(D)pn
is a natural filtration and dimtop(E ) is the topological dimension of

an Rmax-module E . One has the following Riemann-Roch formula [40],

Theorem 2. (i) Let D ∈ Div(Cp) be a divisor with deg(D) ≥ 0. Then the limit in
(33) converges and one has DimR(H0(D)) = deg(D).
(ii) The following Riemann-Roch formula holds

DimR(H0(D))−DimR(H0(−D)) = deg(D) , ∀D ∈ Div(Cp)

The appearance of arbitrary positive real numbers as continuous dimensions in the
Riemann-Roch formula is due to the density in R of the subgroup Hp ⊂ Q of frac-
tions with denominators a power of p. This outcome is the analogue in characteristic
1 of what happens for modules over matroid C∗-algebras and the type II normalized
dimensions as in [49].

At this point, what is missing is an intersection theory and a Riemann-Roch
theorem on the square of the arithmetic site. One expects that the right hand
side of the Riemann-Roch formula will be of the form 1

2 D.D = s( f , f ) when
the divisor D is of the form

D( f ) =
∫

Ψ(λ ) f (λ )d∗λ
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Here f (λ ) is a real valued function with compact support of the variable λ ∈R∗+
and s( f , f ) is as in (17). More precisely D.D should be obtained as the intersection
number of D◦ D̃ (defined using composition of correspondences) with the diagonal
∆ and hence as a suitably defined distributional trace as for the counting function
N(u) of §4.1 so that 1

2 D( f ).D( f ) = s( f , f ) with the notations of (17). So far the
Riemann-Roch formula in tropical geometry is limited to curves and there is no
Serre duality or good cohomological version of H j for j 6= 0, but in the above context
one can hope that a Riemann-Roch inequality of the type (12), i.e. of the form

DimR(H0(D))+DimR(H0(−D))≥ 1
2

D.D

would suffice to apply the strategy of Section 2.3 to prove the key inequality (17).

Table 1 Here are a few entries in the analogy:

C curve over Fq Arithmetic Site A = (N̂×,Zmax) over B

Structure sheaf OC Structure sheaf Zmax

C̄ =C⊗Fq F̄q Scaling Site ˆA = ([0,∞)oN×,O) over Rmax
+

C(F̄q) = C̄(F̄q) A (Rmax
+ ) = ˆA (Rmax

+ )

Galois action on C(F̄q) Galois action on A (Rmax
+ )

Structure sheaf OC̄ Structure sheaf O = Zmax⊗̂BRmax
+

of C̄ =C⊗Fq F̄q piecewise affine convex functions, integral slopes

Sheaf K of rational functions C̄ Sheaf K of piecewise affine functions
on C̄ =C⊗Fq F̄q with integral slopes

Cartier divisors = sections of K /O∗ Sections of K /O∗

X = C̄×C̄ ˆA × ˆA

D = ∑akΨ
k D =

∫
Ψ(λ ) f (λ )d∗λ

Frobenius correspondence Ψ Correspondences Ψ(λ )
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5 Absolute Algebra and the sphere spectrum

Even if the Riemann-Roch strategy of Section 4 happened to be successful, one
should not view the arithmetic and scaling sites for more than what they are, namely
a semiclassical shadow of a still mysterious structure dealing with compactifications
of SpecZ. An essential role in the unveiling of this structure should be played, for
the reasons briefly explained below, by the discovery made by algebraic topologists
in the 80’s (see [50]) that in their world of “spectra” (in their sense) the sphere spec-
trum is a generalized ring S which is more fundamental than the ring Z of integers,
while the latter becomes an S-algebra. Over the years the technical complications
of dealing with spaces “up to homotopy” have greatly been simplified, in particular
for the smash product of spectra. For the purpose of arithmetic applications, Segal’s
Γ -rings provide a very simple algebraic framework which succeeds to unify several
attempts pursued in recent times in order to define the meaning of “absolute alge-
bra”. In particular it contains the following three possible categories that had been
considered previously to handle this unification: namely the category M of monoı̈ds
as in [42, 43, 31, 33], the category H of hyperrings of [32, 34, 35] and finally the
category S of semirings as in [26, 37, 38, 40]. Thanks to the work of L. Hesselholt
and I. Madsen briefly explained below in §5.2 one now has at disposal a candidate
cohomology theory in the arithmetic context: topological cyclic homology.

5.1 Segal’s Γ -rings

Let Γ op be the small, full subcategory of the category of finite pointed sets whose
objects are the the pointed finite sets11 k+ := {0, . . . ,k}, for k ≥ 0. The object 0+
is both initial and final so that Γ op is a pointed category. The notion of a discrete
Γ -space, i.e. of a Γ -set is as follows:

Definition 3. A Γ -set F is a functor F : Γ op −→Sets∗ between pointed categories
from Γ op to the category of pointed sets.

The morphisms HomΓ op(M,N) between two Γ -sets are natural transformations of
functors. The category ΓSets∗ of Γ -sets is a symmetric closed monoidal category
(cf. [50], Chapter II). The monoidal structure is given by the smash product (denoted
X ∧Y ) of Γ -sets which is a Day product. The closed structure property is shown in
[86] (cf. also [50] Theorem 2.1.2.4). The specialization of Definition 2.1.4.1. of [50]
to the case of Γ -sets yields the following

Definition 4. A Γ -ring A is a Γ -set A : Γ op −→Sets∗ endowed with an associa-
tive multiplication µ : A ∧A →A and a unit 1 : S→A , where S : Γ op −→Sets∗
is the inclusion functor.

11 where 0 is the base point.



An essay on the Riemann Hypothesis 25

Thus Γ -rings12 make sense and the sphere spectrum corresponds to the simplest
possible Γ -ring: S. One can then easily identify the category ΓSets∗ of Γ -sets with
the category Mod(S) of S-modules. In [51], N. Durov developed a geometry over
F1 intended for Arakelov theory applications by using monads as generalizations of
classical rings. While in the context of [51] the tensor product Z⊗F1 Z produces an
uninteresting output isomorphic to Z, we showed in [39] that the same tensor square,
re-understood in the theory of S-algebras, provides a highly non-trivial object. The
Arakelov compactification of SpecZ is endowed naturally with a structure sheaf
of S-algebras and each Arakelov divisor provides a natural sheaf of modules over
the structure sheaf. This new structure of SpecZ over S endorses a one parameter
group of weakly invertible sheaves whose tensor product rules are the same as the
composition rules (31), (32) of the Frobenius correspondences over the arithmetic
site [37, 38]. The category Mod(S) of S-modules is not an abelian category and
thus the tools of homological algebra need to be replaced along the line of the Dold-
Kan correspondence, which for an abelian category A gives the correspondence
between chain complexes in≥ 0 degrees and simplicial objects i.e. objects of A ∆ op

.

At this point one has the following simple but very important observation
that Γ -spaces should be viewed as simplicial objects in ΓSets∗ ≡Mod(S),
so that homotopy theory should be considered as the homological algebra
corresponding to the “absolute algebra” taking place over S.

Table 2 Short dictionary homology–homotopy

X ∈Ch≥0(A ) M ∈Mod(S)∆ op

Hq(X) πq(M)

Hq( f ) : Hq(X)' Hq(Y ) πq( f ) : πq(M)' πq(N)

quasi-isomorphism weak equivalence

fn : Xn
⊂→ Yn cofibration

+ projective cokernel (stable)

fn : Xn→ Yn stable
surjective if n > 0 fibration

12 equivalently S-algebras
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We refer to Table 2 for a short dictionary. The category of Γ -spaces is the central
tool of [50], while the relations between algebraic K-theory and topological cyclic
homology is the main topic.

5.2 Topological cyclic homology

As shown in [39] the various attempts done in recent times to develop “absolute al-
gebra” are all unified by means of the well established concept of S-algebra, i.e. of
Γ -rings. Moreover (cf. [50]) this latter notion is at the root of the theory of topologi-
cal cyclic homology which can be understood as cyclic homology over the absolute
base S, provided one uses the appropriate Quillen model category. In particular,
topological cyclic homology is now available to understand the new structure of
SpecZ using its structure sheaf and modules. The use of cyclic homology in the
arithmetic context is backed up by the following two results:

• At the archimedean places, and after the initial work of Deninger [46, 47] to
recast the archimedean local factors of arithmetic varieties [100] as regularized
determinants, we showed in [36] that cyclic homology in fact gives the correct
infinite dimensional (co)homological theory for arithmetic varieties. The key op-
erator Θ in this context is the generator of the λ -operations Λ(k) [85, 110, 111]
in cyclic theory. More precisely, the action uΘ of the multiplicative group R×+
generated by Θ on cyclic homology, is uniquely determined by its restriction to
the dense subgroup Q×+ ⊂ R×+ where it is given by the formula

kΘ |HCn = Λ(k)k−n , ∀n≥ 0, k ∈ N× ⊂ R×+ (34)

Let X be a smooth, projective variety of dimension d over an algebraic number
field K and let ν |∞ be an archimedean place of K. Then, the action of the operator
Θ on the archimedean cyclic homology HCar (cf. [36]) of Xν satisfies

∏
0≤w≤2d

Lν(Hw(X),s)(−1)w
=

det∞( 1
2π
(s−Θ)|HCar

od(Xν ))

det∞( 1
2π
(s−Θ)|HCar

ev(Xν ))
(35)

The left-hand side of (35) is the product of Serre’s archimedean local factors of
the complex L-function of X (cf.[100]). On the right-hand side, det∞ denotes the
regularized determinant and one sets

HCar
ev(Xν) =

⊕
n=2k≥0

HCar
n (Xν), HCar

od(Xν) =
⊕

n=2k+1≥1

HCar
n (Xν)

• L. Hesselholt and I. Madsen have shown (cf. e.g. [72, 70, 71]) that the de Rham-
Witt complex, an essential ingredient of crystalline cohomology (cf. [8, 74]),
arises naturally when one studies the topological cyclic homology of smooth al-
gebras over a perfect field of finite characteristic. One of the remarkable features
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in their work is that the arithmetic ingredients such as the Frobenius and restric-
tion maps are naturally present in the framework of topological cyclic homology.
Moreover L. Hesselholt has shown [73] how topological periodic cyclic homol-
ogy with its inverse Frobenius operator may be used to give a cohomological
interpretation of the Hasse-Weil zeta function of a scheme smooth and proper
over a finite field in the form (cf. [73]):

ζ (X ,s) =
det∞( 1

2π
(s−Θ)|T Pod(X))

det∞( 1
2π
(s−Θ)|T Pev(X))

(36)

The similarity between (35) and (36) (applied to a place of good reduction)
suggests the existence of a global formula for the L-functions of arithmetic
varieties, involving cyclic homology of S-algebras, and of a Lefschetz formula
in which the local factors appear from the periodic orbits of the action of R∗+.

One of the stumbling blocks in order to reach a satisfactory cohomology theory is
the problem of coefficients. Indeed, the natural coefficients at a prime p for crys-
talline cohomology are an extension of Qp and it is traditional to relate them with
complex numbers by an embedding of fields. Similarly, (36) uses an embedding of
the Witt ring W (Fq)→ C. To an analyst it is clear that since such embeddings can-
not be measurable13 they will never be effectively constructed. This begs for a better
construction, along the lines of Quillen’s computation of the algebraic K-theory of
finite fields, which instead would only involve the ingredient of the Brauer lifting,
i.e. a group injection of the multiplicative group of F̄p as roots of unity in C.

5.3 Final remarks

The Riemann hypothesis has been extended far beyond its original formulation to
the question of localization of the zeros of L-functions. There are a number of con-
structions of L-functions coming from three different sources, Galois representa-
tions, automorphic forms and arithmetic varieties. André Weil liked to compare
(cf. [12] §12 and also [117] vol. 1, p. 244–255 and vol. 2, p. 408–412), the puz-
zle of these three different writings to the task of deciphering hieroglyphics with
the help of the Rosetta Stone. In some sense the L-functions play a role in mod-
ern mathematics similar to the role of polynomials in ancient mathematics, while
the explicit formulas play the role of the expression of the symmetric functions of
the roots in terms of the coefficients of the polynomial. If one follows this line of
thought, the RH should be seen only as a first step since in the case of polynomials
there is no way one should feel to have understood the zeros once one proves that
they are, say, real numbers. In fact Galois formulated precisely the problem as that

13 A measurable group homomorphism from Z×p to C× cannot be injective
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of finding all numerical relations between the roots of an equation, with the trivial
ones being given by the symmetric functions, while the others, when determined,
will reveal a complete understanding of the zeros as obtained, in the case of polyno-
mials, by Galois theory. In a fragment, page 103, of the complete works of Galois
[55] concerning the memoir of February 1830, he delivers the essence of his theory:

Remarquons que tout ce qu’une équation numérique peut avoir de particulier, doit provenir
de certaines relations entre les racines. Ces relations seront rationnelles c’est-à-dire qu’elles
ne contiendront d’irrationnelles que les coefficients de l’équation et les quantités adjointes.
De plus ces relations ne devront pas être invariables par toute substitution opérée sur les
racines, sans quoi on n’aurait rien de plus que dans les équations littérales. Ce qu’il importe
donc de connaı̂tre, c’est par quelles substitutions peuvent être invariables des relations entre
les racines, ou ce qui revient au même, des fonctions des racines dont la valeur numérique
est déterminable rationnellement.14

Acknowledgements I am grateful to J. B. Bost for the reference [105], to J. B. Bost, P. Cartier, C.
Consani, D. Goss, H. Moscovici, M. Th. Rassias, C. Skau and W. van Suijlekom for their detailed
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for allowing me to mention his forthcoming paper [73].
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