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Abstract

This paper provides a brief, targeted introduction to simple
random walks and relevant mathematics in order to present the
reader with Pólya’s Random Walk Theorem, discuss a direct
counting based proof of it along with Novak’s less direct proof,
and lightly discuss the theorem.

Introduction

We start with some definitions to allow for clear discussion of the
material, assuming a knowledge of material from Math 334-336. We
will be discussing random walks that occur in Zd for different d. We
define a simple random walk by a process where we place a marker at
a starting position (which we will define as the origin), then there are
discrete increments in time, and for each time increment the marker
moves one spatial increment in any direction on the Zd lattice, where
the marker has an equal probability in moving in any direction and the
walk itself is the path taken. We will be especially interested in the cases
where d ≤ 2 and d > 2. We note that for we a simple random walk in
Zd each direction of motions has a probability of being the direction
of motion of the marker for the next time increment of 1

2d and a given
walk of n steps has a probability of occurring of 1

(2d)n , in particular for

d = 2 this means each direction step has a probability of occurring of 1
4

and a given walk of n steps has a probability of occurring of 1
4n = 1

22n .
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We must also consider loops, which will be defined as walks that
starts and ends at the origin. We will call the walk of length zero, where
no movement occurs, the trivial loop. We immediately note that a loop
must have an even number of steps. We will call nontrivial loops that
not the concatenation of two nontrivial loops indecomposable. We will
say that if a random walk returns to the origin with probability one (at
some point in time) it is recurrent, if it does not we will call it transient.

We will be considering multiple proofs of Pólya’s Random Walk
Theorem, some of which require some peripheral machinery that we
will now introduce. The Borel transform is defined (acting on a function
f (z)) by [3]

β[ f (z)] =
∫ ∞

0 f (tz)e−tdt

We also introduce the modified Bessel function of the first kind, a
solution F(z) to the differential equation [3]

(z2 d2

dz2 + z d
dz − (z2 + α2))F(z) = 0

We must also note Stirling’s Approximation [1]

n! ≈
√

2πne−nnn

We must also introduce the idea of a generating function. Generating
functions we consider here will be, for an infinite sequence [an] =
(a0, a1, a2, ...) the power series [2]

G(x) = a0 + a1x + a2x2 + ... = ∑∞
k=0 akxk

Finally, we will use Abel’s power series theorem so we state it here: [3]
For some generating function G(z) with radius of convergence 1 and
real coefficients for each term. If G(1) converges then

lim
z→1−

G(Z) = G(1)

We now state Pólya’s Random Walk Theorem: the simple random
walk in Zd is recurrent for d ≤ 2 and transient for d > 2 [3]. With
our definitions in hand this theorem is very briefly and cleanly stated
though it is certainly a very interesting, and not very intuitive, result.
We will now present and discuss three different proofs. It should be
noted that the proofs that will be presented and discussed all rely on
some approximation or approximations and the author has seen no
method of proof that does not rely on some kind of approximation.

The Direct Counting Proof

This proof is quite straightforward and uses quite an elementary ap-
proach, though it relies on Stirling’s approximation. It should be noted
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that the the core of this proof was noted from Kozdron’s lecture notes,
from part 3, and leaves generalization for d > 3 cases to the reader [1].

Assuming all random walks here start at the origin we define u to
be the probability that a random walk returns to the origin. We then
see that the probability that the marker returns to the origin exactly m
times is, in general

( m
m−1)u

m−1(1− u)m−(m−1) = um−1(1− u)

So with the expression um−1(1− u) in hand we then look at E which
will be the expected number of times the marker is at the origin. We
then see that we can express E, for an infinite random walk, as

E =
∞

∑
m=1

m(um−1(1− u))

= (1− u)
∞

∑
m=1

mum−1

= (1− u)
∞

∑
m=1

d
du

um

Then we note that limit exchanging is acceptable in this case (of the
differentiation and the summation) as we are just looking at a power
series

∞

∑
n=1

xn

where we certainly have uniform convergence (assuming u < 1) so we
obtain

= (1− u)
d

du

∞

∑
m=1

um

= (1− u)
d

du
1

1− u

=
1

1− u

3



So we see that if E is finite then the walk is transient (u < 1) and if
E = ∞ then the walk is recurrent.

We then define un to be the probability that a given walk is at the
origin on the nth step, defining the value 1 for the trivial loop. We also
introduce xn, which takes the value zero if the marker is at the origin
on the nth step and zero otherwise. Then

T =
∞

∑
n=0

xn

is the total number of times the marker is at the origin so E is equal to
the expectation value of T which is equal to

∞

∑
n=0

1(un)

so

E =
∞

∑
n=0

un

But we showed previously that if E is finite then the walk is transient
and if E = ∞ then the walk is recurrent so we see that we have estab-
lished that if

∞

∑
n=0

un

converges then the walk is transient and if the sum diverges then the
walk is recurrent.

Z1 Case

Now that we have built up the necessary tools we will consider cases.
We start by considering a simple random walk on Z1. Since, as men-
tioned previously, a walk must have an even number of steps to be
a loop we only look at u2n, n ∈ Z+. Using the probability of a given
walk of n steps occurring from the introduction for d = 1 we see that,
denoting W as the number of possible paths of length 2n that end at
the origin, u2n = (1

2)
2nW, so

u2n = (1
2)

2n(2n
n )

u2n = (2n)!
n!(2n−n)!

1
22n

So, using Stirling’s Approximation we obtain

u2n ≈
√

2π2ne−2n(2n)2n

(
√

2πne−nnn)222n = 1√
πn
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So we see

∞

∑
n=0

u2n ≈
∞

∑
n=0

1√
nπ

And the series on the right certainly diverges so we see that a simple
random walk in Z1 is recurrent since E diverges, the first part of the
theorem.

Z2 Case

Again, we first note that to form a loop a walk must have equal steps
"forwards" and "backwards" in each direction and each path of 2n steps
has a probability of occurring of 1

42n . We then consider that the number
of paths with equal steps left and right (say L steps in each "horizontal"
direction) and equal steps up and down (then n− L) is

( 2n
L,L,n−L,n−L) will represent the total number of loops of length 2n,

= (2n)!
L!L!(n−L)!(n−L)!

So we get that

u2n = (
1
4
)2n

n

∑
L=0

(2n)!
L!L!(n− L)!(n− L)!

= (
1
4
)2n

n

∑
L=0

(2n)!n!n!
L!L!(n− L)!(n− L)!n!n!

= (
1
4
)2n
(

2n
n

) n

∑
k=0

(
n
L

)2

= (
1
4
)2n
(

2n
n

)(
2n
n

)
So we get

u2n = ( 1
22n (

2n
n ))

2

So we have that it is just the square of the result from Z1 so we see that
in this case

∞

∑
n=0

u2n ≈
∞

∑
n=0

1
πn

And the series on the right certainly diverges so we see that a simple
random walk in Z2 is recurrent since E diverges, the second part of the
theorem.
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Z3 Case

As before in order to have a walk return to the origin we must have
equal steps in the positive and negative directions for each direction
and each path of 2n steps has a probability of occurring of 1

62n . Then,
extending the idea from the previous subsection, the number of paths
(of total length 2n) with L steps "left" and "right", U steps "up" and
"down", and n− L−U steps "forward" and "backward" is

( 2n
L,L,U,U,n−U−L,n−U−L) which is equivalent (2n)!

L!L!U!U!(n−U−L)!(n−U−L)!

So we get

u2n = (
1
6
)2n ∑

L,U,L+U≤n

(2n)!
L!L!U!U!(n−U − L)!(n−U − L)!

= (
1
2
)2n
(

2n
n

)
∑

L,U,L+U≤n
(

n!
3nU!L!(n−U − L)!

)2

And we have that

n!
3nU!L!(n−U − L)!

= (
1
3
)n
(

n
L, U, n− L−U

)
≤ n!

3nbn
3 c!b

n
3 c!b

n
3 c!

The above inequality comes from the idea of treating the statement on
the left side of the inequality as a probability of placing n objects in 3
places and recognizing that this probability is then maximized when
U, L and n−U − L are all as close to n

3 as possible. Note that thinking
this way also gives us that

∑
U,L

n!
3nU!L!(n−U − L)!

= 1

, since we must always have the sum over all the probability values of
something sum to unity. We then see that

u2n ≤ (
1
2
)2n
(

2n
n

)
n!

3nbn
3 c!b

n
3 c!b

n
3 c!

= (
1
2
)2n
(

2n
n

)
n!

3nbn
3 c!3

Then, considering the powers of factorials and that n > 0 (so we can
obtain a larger upper bound on u2n by removing the fractions in the
above inequality) and using Stirling’s approximation we get the large
upper bound
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u2n ≤ M

n
3
2

Where M is some positive constant. We then see

∑
n

u2n ≤ M ∑
n

1
n 3

2

But the sum on the right of the inequality converges (we see this by
recognizing it as a p-series with p > 1) so we have that a simple random
walk in three dimensions is transient, as we claimed. The ideas used
here for 3 can be extended for n > 3 and in doing so we see that for
n ≥ 3 the simple random walk in n is transient, as claimed, and this
proof of Pólya’s Random Walk Theorem is complete.

Discussion of the Direct Counting Proof

This proof is valuable because it provides a very direct method of verifi-
cation. This method can also be a bit frustrating, however, as it utilizes
a decent amount of probability, that being its focus, potentially making
the proof less accessible for those of different backgrounds. This focus
on probabilistic mathematics in the method of proof also limits the
insight techniques, the approaches of the proof, to mostly mathemat-
ics more focused on probability. While one may expect this, we will
consider the next proof which takes a decently different approach.

Novak’s Proof

Finding a Limit which Determines Recurrence

It should be noted that this proof comes from Novak [3]. We start by
defining E to be the event that the walk returns to the origin and p to
be the probability of the event E occurring. We also define En to be the
event that the walk returns to the origin for the first time specifically
after n > 0 steps. Since we do not consider the trivial loop from the
start of the random walk as recurrence we will define E0 = 0. We
immediately see that E is the union of all of the Ens and so, defining pn
to be the probability of the event En occurring,

p = ∑
n≥0

pn

Now, in Zd, recalling that our random walks all start at the origin,
call ln the number of loops at the origin of length n and in the number
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of indecomposable loops at the origin of length n. Because the only
possibilities we have for "decomposable" loops (those that are not inde-
composable) are those where an indecomposable loop is followed by
(possibly) another loop we see that we have the relation, for all n ≥ 1,

ln =
n

∑
k=0

ikln−k

Recalling that the total number of length n walks is (2d)n we divide
both sides of the above equality by (2d)n and, defining qn to be the
probability that the random walk reaches the origin (not necessarily for
the first time) after n steps, obtain the relation

qn =
n

∑
k=0

pkqn−k

We now define the generating functions P(z) and Q(z)

P(z) =
∞

∑
n=0

pnzn

Q(z) =
∞

∑
n=0

qnzn

The relation between pn and qn then gives us, in the algebra of formal
power series [3]

P(z)Q(z) = Q(z)− 1

Then, since we have Q(z) not being zero for z ∈ [0, 1) we have [3]

P(z) = 1− 1
Q(z) , z ∈ [0, 1)

Then, because we have

P(1) =
∞

∑
n=0

pn = p

and P(z) has radius of convergence one, we get, by Abel’s power series
theorem,

p = limz→1− P(z) = 1− 1
limz→1− Q(z) , z ∈ [0, 1)

We then note that the limit in the denominator at right either goes to
positive infinity (in which case we have p = 1 so we have recurrence
of the random walk) or to some positive real number (in which case
we have p < 1 so we have transience of the random walk). Analysis
of this limit will then be our guide for whether we have recurrence or
transience of a simple random walk on a d dimensional lattice.
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Analyzing Q(z)

We of course now want to analyze the limit from the previous section
so we start by attempting to find a usable expression for Q(z). This can
become a problem of finding an expression for the generating function
L(z) defined by

L(z) =
∞

∑
n=0

lnzn

Since we then see that Q(z) = L( z
2d ).

We now, in an attempt to better understand L(z), we consider the
exponential loop generating function E(z) defined by [3]

E(z) =
∞

∑
n=0

ln
zn

n!

Now, considering the random walk on the Z2 lattice, we recall that
a loop of length n on this lattice is made up of k "horizontal" steps
and n− k "vertical" steps where the k "horizontal" steps form a loop
of length k on Z while the n− k "vertical" steps form a loop of length
n− k on Z. In light of this we see that the number of loops of length n
on the Z2 lattice with the above stated "horizontal" and "vertical" steps
is given by (

n
k

)
lkln−k

where lk and ln−k are the number of loops of lengths k and n− k respec-
tively (in a one dimensional lattice). This then gives us an expression
for the total number of loops of length n on the Z2 lattice (where the ln
at left is the number of loops of length n on the lattice of dimension 2
while the lk and ln−k at right are the number of loops of their respective
lengths on the lattice of dimension 1):

ln =
∞

∑
k=0

(
n
k

)
lkln−k

Using E1(z) to denote the exponential generating function from above
specifically when we look at loops on the lattice of dimension one while
using E2(z) to denote the exponential generating function from above
specifically when we look at loops on the lattice of dimension two we
then see that the above relation gives us [3]

E2(z) = E1(z)2

And, in general (from using the same logic) that, using Ed(z) to denote
the exponential generating function from above when we look at loops
on the lattice of dimension d

Ed(z) = E1(z)d
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Now, when d = 1, we see that any loop must have m steps in the
positive direction and m in the negative direction (for some m > 0) so
the number of loops of length n = 2m in one dimension is (2m

m ) so we
have that

E1(z) =
∞

∑
k=0

(
2k
k

)
z2k

(2k)!
=

∞

∑
k=0

z2k

k!k!

Now, with our expression for E1(z) in hand, if we stared at it for a while,
we may (or may not) notice that E1(z) is a modified Bessel function of
the first kind [3]. The modified Bessel function of the first kind, Iα(z)
has a series representation given by

Iα(z) =
∞

∑
k=0

( z
2)

2k+α

k!Γ(k + α + 1)

From this representation we see then that E1(z) = I0(2z) so we have,
referring to our above relation of exponential generating loop functions
in different dimensions

E(z) = I0(2z)d

We now wish to return with our gained tools and representations
to better understand L(z). We can do this using the Borel transforma-
tion β (which converts exponential generating functions into normal
generating functions), defined by [3]

β f (z) =
∫ ∞

0
f (tz)e−tdt

We can then obtain a representation for L(z) as desired:

L(z) = βE(z) = βI0(2z)d =
∫ ∞

0
I0(2tz)de−tdt

Then, recalling that Q(z) = L( z
2d ) we have obtained a new repre-

sentation of Q(z):

Q(z) =
∫ ∞

0
I0(

tz
d
)de−tdt

Determining Transience or Recurrence

As a brief reminder: we have transience when limz→1− Q(z) < ∞ and
recurrence when limz→1− Q(z) = ∞. We will now look at the integral
representation of Q(z) we obtained above to see when it converges
and when it does not (which tells us when we have recurrence versus
when we have transience). We need only look at the tail integral of the
integral representation of Q(z) to find when it converges or diverges,
which is (for K very large) ∫ ∞

K
I0(

tz
d
)de−tdt
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Looking at the integrand and defining f (θ) = z
d cos(θ) we have [3]

I0(
tz
d
) =

1
π

∫ π

0
et f (θ)dθ

Considering the Taylor approximation of f (θ), we have f (θ) ≈
f (0)− | f ′′(0)| θ2

2 so∫ π

0
et f (θ)dθ ≈ et f (0)

∫ π

0
e
−t| f ′′(0)|θ2

2

Extending the integral on the right above over the positive reals we
get half of a Gaussian integral which we can compute exactly as one
would expect, so we should have∫ π

0
et f (θ)dθ ≈ et f (0)

√
π

2t| f ′′(0)|
Where the accuracy of the above approximation increases as t → ∞
since the error of extending the integral from earlier to a half Gaussian
integral is decaying [3]. We then have that (for some constant C),
putting pieces together [3]

I0(
tz
d
)d ≈ Cetz−t(tz)

−d
2

And, using the monotone convergence theorem and considering that
the integral of the tail of the above approximation converges uniformly
(where it does converge) we have, for z ∈ [0, 1)

limz→1−

∫ ∞

K
etz−t(tz)

−d
2 dt =

∫ ∞

K
limz→1−etz−t(tz)

−d
2 dt =

∫ ∞

K
t
−d
2 dt

So we see that we have recurrence of the simple random walk when
the above integral diverges and transience when the above integral
converges. We then see, by the equivalent of the p test for integrals,
that the above integral diverges for d = 1, 2 and converges for d ≥ 3, so
Pólya’s Random Walk Theorem is proven.

Discussion of Novak’s Proof

This proof is valuable because it utilizes much less direct, potentially
less obvious, techniques than the first proof presented. This proof in
a sense translates a probabilistic problem into another mathematical
dialect, something which can prove very useful in more general settings.
Specifically the ideas of using generating functions and different trans-
forms may prove useful for other random walk problems. It should
be noted that there are certainly some techniques utilized that would
most likely not be useful for other problems, such as recognizing a
function as a modified Bessel function of the first kind to obtain an
integral representation.
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Conclusion

Pólya’s Random Walk Theorem is a particularly interesting, and some
may say beautiful, result but it also opens the door for much more
discussion of random walks. Since this result is such a basic one of
random walks any techniques for its proof certainly have great potential
for use in probing further into the study of random walks, which is,
again, what makes Novak’s proof so valuable as it demonstrates how,
and in some instances potentially what, different, less direct tools can be
used in pursuit of the subject. It should be noted that just how different
Novak’s proof is becomes especially evident when compared with the
direct counting proof discussed above.
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