
Modular Functions and Picard’s Little Theorem

Daniel Milanovich

Picard’s Theorems are two very important results in complex analysis, representing enormous strengthenings
of Liouville’s theorem and the Casorati-Weierstrass Theorem, respectively. The respective statements of the
theorems are as follows:

Theorem 0.1. An an entire function takes on every value, with possibly one exception.

Theorem 0.2. A function takes on every value infinitely often in any neighborhood of an essential singu-
larity, with possibly one value that is never taken on.

Both of these theorems are proven in Gamelin’s textbook, but here we will give a different proof of them,
using a special kind of function known as a modular function. Along the way we will investigate modular
functions themselves, and present some interesting properties of them. All material is based on Apostol [1],
unless otherwise noted.
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1 Lattices

Construction of a modular function will rely closely on the concept of a lattice of points in C:

Definition 1.1. A lattice is a set of points in C of the form

Ω(ω1, ω2) = {mω1 + nω2 : m,n ∈ Z, ω1/ω2 6∈ R}.

Note that ω1 and ω2 are fixed. The Greek letter Ω is often used to represent a lattice.

the condition ω1/ω2 6∈ R is required to prevent degenerate cases. Indeed, set ω1 = riθ1e and ω2 = r2e
iθ2 .

Then ω1/ω2 = (r1/r2)ei(θ1−θ2). But this ratio is real, so θ1 = θ2, and the whole lattice just lies on a single
line (in fact, if ω1/ω2 is irrational, then the lattice generated would be the whole line. A proof of this is left
as an exercise to the reader).

Given a lattice, we want a sense of the smallest ω1 and ω2 that generate the lattice. This can be formalized
in the following definition:
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Definition 1.2. A pair of complex numbers (ω1, ω2) is a Fundamental Pair of the lattice Ω if every point
in omega can be represented as mω1 + nω2, for some integers m and n.

The name “fundamental” is justified by the following theorem:

Theorem 1.1. If Ω is a lattice, then the (closed) triangle T with vertices 0, ω1, and ω2 contains no points
of Ω other than the vertices if and only if (ω1, ω2) is a fundamental pair of Ω.

Proof. One direction is trivial. Let (ω1, ω2) be a fundamental pair of Ω, and consider the (closed) parallelo-
gram P with vertices 0, ω1, ω2, and ω1 +ω2. Every point z in this parallelogram is of the form z = aω1 +bω2

for 0 ≤ a, b,≤ 1. But z ∈ Ω if and only if a, b ∈ Z, so P ∩ Ω = {0, ω1, ω2, ω1 + ω2}, and in particular, there
are no points of Ω in the interior of P .

The other way is a bit trickier. Let ω ∈ Ω. Because we only consider a lattice when ω1/ω2 is not real,
ω1 and ω2 are linearly independent when considered as vectors. Thus ω = aω1 + bω2 for some a, b ∈ R. It is
obvious that

a = bac+ r1, b = bbc+ r2

for 0 ≤ r1, r2 < 1. This means

ω − bacω1 − bbcω2 = r1ω1 + r2ω2 = p

for some p ∈ Ω (the left hand side of this is clearly in Ω, so p is in Ω). If r1 and r2 are not both 0, then p
lies inside of P as defined above. But this means that either p or q = ω1 + ω2 − p (also in Ω) will lie on T ,
giving a contradiction. Thus r1, r2 = 0, and a, b ∈ Z, so that (ω1, ω2) is a fundamental pair of Ω.

It is easy to see that a pair (ω1, ω2) does not uniquely generate a lattice ((−ω1,−ω2) clearly generates the
same lattice as well). However, one generating pair can be produced from another, by the following theorem:

Theorem 1.2. The two pairs lattices Ω(ω1, ω2) and Ω(ω′1, ω
′
2) are equivalent if an only if there exist integers

a, b, c, d such that ad− bc = 1, and

ω′2 = aω2 + bω1

ω′2 = cω2 + dω1.

The proof of this fact is left as an exercise to the reader.

2 Groups

In order to understand what modular functions are actually doing, and why we might care about them, we
have to discuss the Modular Group. To do this, we begin with a relatively informal discussion of groups in
general. The study of groups is rich and varied, and we cannot hope to cover everything of interest here.
We will discuss only the basics, and give an overview of the orbit of a group action. The material in the first
two sections is based on my own knowledge.

2.1 Basics

Definition 2.1. A group is a set G (finite or infinite), equipped with a binary operation G × G → G,
denoted by a dot · or by juxtaposition, which satisfies the following axioms:

1. (Closure) If g, h ∈ G, then g · h ∈ G.

2. (Identity) There is some e ∈ G such that for all g ∈ G, e · g = g · e = g.

3. (Inverses) For all g ∈ G, there is some h in g such that g · h = h · g = e. This h is generally denoted
by g−1.
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4. (Associativity) For all g, h, k ∈ G, g(hk) = (gh)k.

An important note is that a group is not, in general, commutative – that is, gh 6= hg for any two elements
in an arbitrary group. If any two elements in a given group do commute, then the group is called commutative
or abelian.

This is a nice list of axioms, but we would like to have a few basic properties under our belt before we
go further. We summarize those properties here, and provide proofs for some of them.

Theorem 2.1. The identity of a group is unique.

Proof. Assume that there are two identities e1 and e2. Then for some g, e1g = g = e2g. Right-multiplying
by g−1, we get e1 = e2.

Theorem 2.2. The inverse of an element is unique.

Proof. Say we have two inverses h1 and h2, such that h1g = h2g = e. Then right-multiplying by an inverse
of g (it does not matter which) and applying associativity, we get h1 = h2.

Theorem 2.3. For all g, (g−1)−1 = g.

Proof. It is clear that (g−1)−1 · g−1 = e = gg−1. But by the previous theorem, the inverse of g−1 is unique,
so (g−1)−1 = g.

Theorem 2.4. For any g and h, (gh)−1 = h−1g−1.

Proof. We have (gh)(gh)−1 = e = ghh−1g−1. The inverse of gh is unique, so we must have (gh)−1 =
h−1g−1.

Theorem 2.5. Every bracketing of g1 · · · gn is equivalent (this generalizes the axiom of associativity).

Proof. We precede by induction. The axiom of associativity itself gives us the base case, so for the inductive
step we assume that the property holds for product of n elements. Then we have

g1(g2 · · · gn+1) = (g1g2)(g3 · · · gn+1) = · · · = (g1 · · · gn)gn+1.

All subdivisions of the bracketed elements are equivalent by our inductive hypothesis, so every bracketing of
n+ 1 elements is equivalent.

There is a slight issue with this last proof, which is that we do not actually know if we have hit all
the possible bracketings. To do this we would need to give some (necessarily inductive) definition of a
bracketing, which we would then use straightforwardly in the proof. Giving such a definition trivial, and left
as an exercise to the reader.

Another nice fact to have are cancellation laws, which we enshrine as a theorem:

Theorem 2.6. If gh = gk, then h = k. Likewise, if hg = kg, then h = k.

Proof. We simply left- or right- multiply by g−1, as appropriate.

With some basic properties in place, we move on to what is probably the most important aspect of groups
for our purposes: the idea of a group action.
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2.2 Group Actions and Orbits

One of the main motivation for groups is to capture information about other objects: we can, for instance,
describe the rotational and reflectional symmetries of an equilateral triangle using a group. This idea of
storing information about other objects is captured by the concept of a group action:

Definition 2.2. A group action of G on and set A is a function σ : G× A → A, denoted by a dot · or by
juxtaposition, satisfying the following axioms:

1. For all a ∈ A, e · a = a.

2. For all g, h ∈ G and a ∈ A, (gh) · a = g · (h · a), where gh is the group operation.

The following is also important for our discussion of the Modular Group below:

Definition 2.3. If G is a group acting on a set A, and a ∈ A, then the orbit of a under the group action is
defined to be Ga = {ga : g ∈ G}. That is, it is the set of every element of A that can be obtained by some
element of G acting on a.

It turns out that the set of orbits of a group action are disjoint, and form a partition of A:

Theorem 2.7. For all a, b1, b2 ∈ A, if a ∈ Gb1 and a ∈ Gb2, then Gb1 = Gb2.

Proof. Let

a = gb1 (1)

a = hb2 (2)

c = kb1 (3)

for some c ∈ A and g, h, k ∈ G, so that c ∈ Gb1. Then b1 = k−1c, and we can plug this into (1) to get
a = gk−1c. Plugging this into (2) gives hb2 = gk−1c ⇒ c = kg−1hb2, so c is in the orbit of b2. But c was
arbitrary, so every element of the orbit of b1 is also in the orbit of b2, completing the proof.

2.3 The Modular Group

We are now in a position to understand a particular group that will be of use to us: the Modular Group:

Definition 2.4. The Modular Group, denoted by Γ, is the set of a linear fraction transformations of the form
(az+ b)/(cz+ d), with a, b, c, d ∈ Z and ad− bc = 1. The group operation is normal functional composition,
so that for α, β ∈ Γ, αβ = α ◦ β.

Technically, we need to verify that this definition satisfies the group axioms given above. This task is
fairly tedious and unenlightening, however, and is left as an exercise to the reader.

With this definition in hand, what we really want to do with Γ is have it act on points in the upper half
plane H = {z : Im(z) > 0}. The action will be defined in the obvious way:

Definition 2.5. The action of µ(z) ∈ Γ on a point τ ∈ H is given by µ(τ).

The following is important step when defining any group action:

Theorem 2.8. The group action given above is well defined. In particular, given µ ∈ Γ and τ ∈ H, µ(τ) is
also in H.

Proof. Let µ(z) = (az + b)/(cz + d), and τ = x+ iy. Then

Im(µ(τ)) = Im

(
aτ + b

cτ + d

)
= Re(aτ + b) Im

(
1

cτ + d

)
+ Re

(
1

cτ + d

)
Im(aτ + b)

= (ax+ b)

(
−cy
|cτ + d|2

)
+ (ay)

(
cx+ d

|cτ + d|2

)
=

(ad− bc)y
|cτ + d|2

=
y

|cτ + d|2
> 0,

giving the desired result.
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We would also like to consider the orbits of Γ. In particular, we would like to define a region of H
that contains one point from every orbit. However, there is no reason for this region to be topologically
well-behaved, so we set forth the definition of a fundamental region of Γ:

Definition 2.6. A region R in H is called a fundamental region of Γ given the following properties:

1. If a, b ∈ R such that a 6= b, and S is a orbit of the action of Γ on H, then we do not have both a ∈ S
and b ∈ S, and

2. If τ ∈ H, then there is a point τ ′ in the orbit of τ such that τ ′ ∈ R.

The important thing to note is that applying the group action to all of the points in the closure of one
fundamental region will give us a new one. The following theorem, which is outside the scope of this paper,
gives a particularly useful fundamental region to work with, which we will call RΓ:

Theorem 2.9. The region RΓ = {z : − 1
2 < Re(z) < 1

2 , |z| < 1} is a fundamental region of Γ.

3 Modular Functions

We are now in a position to define a modular function. A modular function f is a function that satisfies the
following conditions:

Definition 3.1. A modular function is a meromorphic function on the upper half plane H which satisfies
the following properties:

1. f(µ(z)) = f(z) for all µ in the modular group Γ.

2. f has a Fourier expansion of the form

f(z) =

∞∑
n=−m

e2πinz.

We would now like to construct an actual example of a modular function. This will be Klein’s Modular
Function J(τ).

3.1 Klein’s Modular Function

We begin by defining the Eisenstein Series of order n, denoted Gn, as

Gn(ω1, ω2) =
∑
j,k∈Z

(j,k) 6=(0,0)

1

(jω1 + kω2)n

for ω2/ω1 not real. Of course we must prove convergence:

Theorem 3.1. The Eisenstein Series Gn converges absolutely if and only if n > 2.

Proof. Let Qk = {z : z = mω1 + nω2, m, n ∈ Z, −k ≤ m,n ≤ k}, and Bk = Qk \Qk−1. We have

|Qk| = (2k + 1)2,

so

|Bk| = (2k + 1)2 − (2k − 1)2 = 8k.

Each Qk lies in a closed filled parallelogram Pk, and each Bk in ∂Pk. We define R to be the maximum
distance from 0 to ∂P1 and r to be the minimum. The Pk are (integer) dilates of each other, which means
that the maximum distance from 0 to ∂Pk is just kR, and likewise the minimum is kr. Now for all points
ω ∈ Bk, we will have
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kr ≤ |ω| ≤ kR,

1

(kR)n
≤ 1

|ω|n
≤ 1

(kr)n

so that the partial sums Sk =
∑
Qk
|ω|−n are bounded by

k∑
j=1

8j

(jR)n
≤ Sk ≤

k∑
j=1

8j

(jr)n

8

Rn

k∑
1

1

jn−1
≤ Sk ≤

8

rn

k∑
1

1

jn−1
.

If n > 2, so Sk is bounded above by a convergent series, and thus converges. If n ≤ 2, then Sk is bounded
below by a divergent series, and diverges. Thus Gn converges if and only if n > 2, as desired.

We will now use Eisenstein Series to define the following special functions:

g2 = 60G4, g3 = 140G6, ∆ = g3
2 − 27g2

3 .

The last of these is called the discriminant. We now remind ourselves of the following definition:

Definition 3.2. A function f(z) is homogeneous of degree k if for all a and z, f(az) = akf(z).

We can use the definitions of g2, g3 and ∆ to determine that

g2(cω1, cω2) = 60
∑ 1

(cjω1 + ckω2)4
= 60c−4g2(ω1, ω2)

g3(cω1, cω2) = 140
∑ 1

(cjω1 + ckω2)6
= 60c−6g3(ω1, ω2)

∆(cω1, cω2) = g3
2(cω1, cω2)− 27g2

3(cω1, cω2) = c−12g3
2(ω1, ω2)− 27c−12g2

3(ω1, ω2) = c−12∆(ω1ω2).

Thus g2, g3, and ∆ are homogeneous of degrees −4, −6, and −12, respectively. What this means in particular
is that

∆(ω1, ω2) = ω−12
1 ∆(1, ω2/ω1),

so by re-scaling we can regard ∆ as a function of a single variable τ = ω2/ω1. We do likewise for g2 and g3,
so that we now have three functions of the single complex variable τ . We can also choose ω1 and ω2 such
that ω2/ω1 has positive imaginary part, so it is sufficient to study what these functions do on H.

We are now in a position to define the Klein J function. For ω1 and ω2, this is given by

J(ω1, ω2) =
g3

2(ω1, ω2)

∆(ω1, ω2)
.

But since g3
2 and ∆ are homogeneous of the same order, J is also homogeneous of that order, and we can

regard it too as a function of τ . We now need to show that J is a modular function, beginning with

Theorem 3.2. g2(τ), g3(τ), ∆(τ), and (in particular) J(τ) are analytic on H.
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Proof. This theorem consists of two parts: showing that ∆(τ) 6= 0 on H, and showing that g2(τ) and g3(τ)
are analytic. The first part is beyond the scope of this paper. For the second part, we will prove a more
general result: that Gn(τ) is analytic for all n > 2. Gn is homogeneous of order n, so it is fine for us to write
it as a function of τ ∈ H; the equation for Gn is then

Gn(τ) =
∑
j,k∈Z

(j,k)6=(0,0)

1

(j + kτ)n
.

We will prove that this converges absolutely and uniformly on any strip of the form S = {τ = x+ iy : |x| ≤
A, y ≥ δ > 0}. To do this, consider

(q + x)2 + y2

1 + q2
> N (4)

where N > 0 and q ∈ Q. We want an N such that this holds for all q. If |q| ≤ A+ δ then we have

(q + x)2 + y2

1 + q2
≥ δ2

1 + q2
≥ δ2

1 + (A+ δ)2
.

This last expression doesn’t depend on q, so we can take N = δ2/(1 + (A+ δ)2). Conversely, if |q| > A, then∣∣∣∣xq
∣∣∣∣ < |x|

A+ δ
≤ A

A+ δ
< 1

∣∣∣∣1 +
x

q

∣∣∣∣ ≥ 1 ≥ 1−
∣∣∣∣xq
∣∣∣∣ > 1− A

A+ δ
=

δ

A+ δ
.

Multiplying both sides by q gives

|q + x| ≥ qδ

A+ δ

(q + x)2 + y2

1 + q2
> (q + x)2 · 1

1 + q2
>

δ2

(A+ δ2)
· q2

1 + q2
.

It is the case that q2/(1 + q2) is increasing as a function of q2:

q2

1 + q2
=

1

1 + 1
q2

,

as q2 gets big, 1 + (1/q2) gets small(er), so q2/(1 + q2) gets larg(er). This tells us that

q2

1 + q2
≥ (A+ δ)2

1 + (A+ δ)2
,

so

(q + x)2 + y2

1 + q2
>

δ2

(A+ δ)2

(A+ δ)2

1 + (A+ δ)2
=

δ2

1 + (A+ δ)2
,

which is exactly the value of N that we got in the previous case. Thus we have found and N such that (4)
holds for all q.

From here, we need to turn this into something about Eisenstein series. Thankfully, this is not too
difficult: substituting q = j/k for some j and k in the sum for Gn(τ) and multiplying by k2, we can
rearrange (4) as

(q + x)2 + y2 > K(1 + q2)

(j + kx)2 + (ky)2 > N(j2 + k2). (5)
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Note that our proof above tacitly assumed that k 6= 0, but the expression here trivially holds if k = 0, for
any 0 < N < 1, so we can modify N to be something like

N = min

{
1

2
,

δ2

1 + (A+ δ)2

}
(the specific value 1/2 is not important, just as long as it is strictly between 0 and 1). Now (5) is equivalent
to

|j + kτ |2 > N |j + ki|2

1

|j + kτ |2
≤ 1/N

|j + ki|2
,

which implies

1

|j + kτ |n
≤ M

|j + ki|n

for any n > 2 and some M > 0. But ∑
j,k∈Z

(j,k)6=(0,0)

M

|j + kτ |n

converges absolutely by Theorem 3.1, so by the M-test, the series for Gn(τ) converges absolutely, completing
the proof.

Now we verify property 2:

Theorem 3.3. If (az + b)/(cz + d) ∈ Γ, then

J

(
az + b

cz + d

)
= J(z).

Proof. If ω1 and ω2 are elements of a lattice Ω, then by Theorem 1.2 we can generate the same sublattice
of Ω by ω′1 = cω2 + dω1, and ω′2 = aω2 + bω1. This means that g2(ω′1, ω

′
2) = g2(ω1, ω2), and likewise for g3,

∆, and, of course, J . Note that we are treating these as functions of the two variables ω1 and ω2 here; we
would like them in terms of τ = ω2/ω1. It is only natural to define

τ ′ =
ω′2
ω′1

=
aω2 + bω1

cω2 + dω1
=
aτ + b

cτ + d
.

But this means that g2(τ ′) = g3(τ), and thus for g3, ∆, and J , completing the proof.

And finally, the Fourier expansion of J(τ):

Theorem 3.4. The Fourier expansion of J(τ) is of the form

J(τ) =

∞∑
−∞

ane
2πinτ .

Proof. Let z = e2πiτ . If τ = a+ ib is in H, then

0 < |z| = |e2πiτ | = |e2πia||e−2πb| = e−2πb < 1

because b > 0, so x is in the punctured unit disk D = {0 < |x| < 1}. Now let f(z) = J(τ), so that f is
defined on the punctured unit disk. Now for each z, there are infinitely many τ such that z = e2πiτ . But if
we have z = e2πiτ = e2πiτ ′

for some τ and τ ′, then τ−τ ′ is an integer. Further, τ+1 ∈ Γ, so J(τ+1) = J(τ).
f is therefore well defined. And it is analytic – by the chain rule, we have
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f ′(z) =
d

dz
J(τ) = J ′(τ)

dτ

dz
=

J ′(τ)

2πie2πiτ
.

Thus f has a Laurent expansion around 0

f(z) =

∞∑
−∞

anz
n.

Substituting back z = e2πiτ gives us the desired result.

After the previous three theorems, we finally have an example of a modular function. There is also a fact
about the certain values of J(τ) which will be important for Picard’s Little Theorem:

Theorem 3.5. Let ρ be the point − 1
2 + i

√
3, so that ρ is a “corner” of the fundamental region RΓ. Then

J(ρ) = 0 with multiplicity 3 and J(i) = 0 with multiplicity 2. In addition, J(τ) takes every value exactly
once in the closure of RΓ.

Proof. Noting that ρ3 = 1 and ρ2 + ρ+ 1 = 0, we have

1

60
g2(ρ) =

∑
m,n

1

(m+ nρ)4
=
∑
m,n

1

(mρ2 + nρ)4
=

1

ρ4

∑
m,n

1

(mρ2 + n)4
=

1

ρ

∑
m,n

1

n−m−mρ
= · · ·

and setting N = n−m and M = −m,

· · · = 1

ρ

∑
m,n

1

(N +Mρ)4
=

1

60ρ
g2(ρ),

so g2(ρ) = 0. Running through largely the same calculations would give us g3(i) = 0 as well. Plugging
these values into the definition of J gives us the desired result. The multiplicities are a result of the following
theorem (Theorem 3.6). The other statement follows by Theorems 3.6 and 3.7.

3.2 Properties

One remarkable property of modular functions, which we will not prove, is the following:

Theorem 3.6. If f is a non-constant modular function, then f has an equal number of zeros and poles in
the in closure of RΓ.

In fact, we can extend this theorem by applying it to f − c for any complex number c: this tells us that f
takes on every complex value (including infinity) the same number of times in the closure of RΓ. And if f
misses a value, then it must be constant.

Another elegant fact is the following:

Theorem 3.7. Every rational function of J(τ) is a modular function, and vice versa. That is, every modular
function can be written as a rational function of J(τ). (For those familiar with them, this shows that the set
of modular functions forms a field, isomorphic to the field of rational functions.)

Proof. The first direction is clear – all the properties of modular functions are satisfied for a rational function
of J , as a result of the modularity of J itself. For the other direction, let f be a modular function with zeros
at z1, · · · , zn and poles at p1, · · · , pn in the closure of RΓ, possibly with repetition (so that there may be
multiplicities). We then define

Qk(τ) =

{
J(τ)−J(zk)
J(τ)−J(pk) zk, pk 6=∞
1 otherwise

g(τ) =

n∏
k=0

Qk(τ).

It is clear that g has the same zeros and poles as f in the closure of RΓ, with the same multiplicities. But
this means f/g has no zeros and no poles anywhere. It thus equals some constant c, such that f = cg, which
is rational, as desired.
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4 Picard’s Little Theorem

We are almost in a position to use J(τ) to prove Picard’s Little Theorem - that a entire non-constant analytic
function takes on every possible value except possibly one (as in for example the exponential function). Before
we do this, though, we will define simple connected domains and give a statement of the Monodromy Theorem
[2]:

Definition 4.1. A domain D in C is simply connected if it has no “holes” in it. That is, for any closed path
P in D, there is a continuous function mapping P to a single point.

Theorem 4.1. The Monodromy Theorem. If f is analytic in a disk contained in a simply connected
domain D, and f can be analytically continued along every polygonal arc in D, then f can be analytically
continued to a single-valued analytic function on all of D.

And now, the finale:

Theorem 4.2. Picard’s Little Theorem. If f is an entire function, and for any two a and b in C with
a 6= b, f never takes on the values a and b, then f is constant on all of C.

Proof. We begin by defining

g(z) =
f(z)− a
b− a

,

such that g is entire and g never takes the values on the values 0 or 1. Now by Theorem 3.5, J(τ) takes
every possible value once in the closure of RΓ, so J−1(w) is a well defined function on C under a restriction
to the codomain RΓ. By the same theorem, J ′(τ) equals 0 only at τ = ρ or τ = i, so J−1(w) is analytic
everywhere except at w = 0 or w = 1. Now we define

h(z) = J−1(g(z)),

such that h(z) is analytic on every open subset of C, as g(z) does not equal 1 or 0. Thus, by the Monodromy
Theorem, we have a unique analytic continuation of h to the entire complex plane, so that h is entire. Now
we define

φ(z) = exp(h(z));

so that this too is analytic. However, Im(h(z)) > 1, since the codomain of J−1 is a subset of H, so

|φ(z)| = e− Imh(z) < 1.

But this means that φ is a bounded entire function, and is therefore constant by Liouville’s Theorem. But
this means that h is constant, such that g is constant, such that f is constant, completing the proof.
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