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1 Introduction

In the 1970’s Fischer Black and Myron Scholes published a model which would at-
tempt to tackle the issue of pricing a common financial asset. The introduction of this
model into finance gave rise to a new era of mathematical finance and changed the
way economists would work in the following decades. In this paper, I’ll describe the
background necessary to understand and derive the Black-Scholes equation (central
to the aforementioned model).

2 Financial Background

To get started, I’ll introduce some basic finance background so as to help make sense
of the significance of the Black-Scholes Equation (B.S.Eq):

a. Option: An option is a contract between a buyer and a seller. We’ll refer to the
two types: Call options and Put options. Such options are part of a broader
idea known as derivatives trading in which an asset has a price that is based
on a seperate underlying asset. The underlying asset is exactly what it sounds
like, in this case, the commodity for which an option is to be agreed upon by a
buyer and seller.

Upon buying a call option, the buyer gets the right to buy an agreed amount
of an underlying asset from the seller - at a specified time (the expiration date)
and for a specified price (the strike price). Thus, if the buyer decides to exercise
the call option (follow through), the seller is obligated to sell them the underlying
asset according to the terms.

Upon buying a put option, the buyer gets the right to sell a specified amount
of an underlying asset at a specified time and for a specified price. Thus, if the
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buyer decides to exercise the put option, the seller is obligated to buy the under-
lying asset according to the terms.

There are two main variants, the American and the European options. The Amer-
ican option allows the buyer to exercise the option at the strike price at any time
between the purchase and the expiration date while the European option allows
the buyer to exercise the option only on the expiration date.
For the purposes of the this paper, we’ll focus on European options.

b. Risk-Free Rate of Return (Risk-Free Interest Rate): The risk-free rate of return
is the rate of return of an investment over a given period of time with zero risk of
financial loss. As even the safest investments in real life have some sort of risk, the
interest rate on a three-month U.S. Treasury bill is often used as the risk free-rate
for U.S. investors.
So this rate serves as a sort of baseline for investors: As this rate could theoretically
be achieved with no risk, any other investment with some risk will have to have a
higher rate of return than this baseline to be worth considering.

c. Volatility (Stock volatility): Simply put, volatility refers to the amount of un-
certainty in the changes in an asset’s value. In finance, volatility is primarily seen
as a variable in option pricing formulas (like the one we’ll be examining) and it
varies with how it is measured. In general, it’s a measured as the variance bewteen
returns for a certain asset, and the higher the volatility, the riskier the asset.

With the existence of call options, naturally, the question of figuring out how much a
call option is actually worth arises. Before Black-Scholes, options prices were decided
roughly by human judgement. Obviously, certain refined strategies existed (most of
which are still certainly used today), but it was an inexact science and many thought
that it would continue like this with some even doubting that . As stated in the
introduction, in the 1970s, economists Fischer Black and Myron Scholes published
a derivatives model which would tackle just this problem - with certain limits and
simplifications, of course. The introduction of their model and the thought behind it
basically heralded a new era in finance, as derivatives trading exploded and mathe-
maticians became the new hot thing in finance.

3 Basic Probability Theory

Next, we’ll need some basic concepts in probability theory so as to provide more
background for the derivation and meaning behind the B.S.Eq. We’ll use P (X) to
denote the probability of some event X occuring. P (X ∪ Y ) denotes the probability
that X and Y occur, and P (X | Y ) denotes the probability of X occuring given that
Y already occured. The relationship between joint and conditional probability is like
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so:
P (X ∪ Y ) = P (X | Y )P (Y )

and from this we get Bayes’ Theorem, a very flexible result:

P (X | Y ) =
P (Y | X)P (X)

P (Y )

Furthermore, this gives us a way to define independence. Two events X and Y are
independent if

P (X ∪ Y ) = P (X)P (Y )

Notice that, using our original definition of joint probability, this means that P (X | Y )
is equal to P (X) (and similarly P (Y | X) = P (Y )). Now, onto more definitions:

a. Random Variable: A random variable is a variable whose possible values are out-
comes of a random phenomenon.

More formally, a random variable is defined as a function that maps the outcomes
of unpredictable processes to numerical quantities. To study random variables, we
can characterize them with probability distributions.

A simple example: Let X represent the result of a coin flip with equal proba-
bility heads and tails. Note that this is a discrete random variable (it can only be
either 0 or 1). An example of a continuous random variable is the temperature of
a city or something comparable.

Furthermore, two random variables are independent of each other if the occurence
of one does not affect the probability distribution of the other.

b. Probability Mass/Density Function (PDF): A probability mass function is a func-
tion which corresponds to a certain random variable. This function gives the
probability that an outcome will be within a certain interval of the random vari-
able’s possible outcomes. Thus, this function can be used to study the properties
of the random variable and to do more math. For a continuous random variable,
this is often simply a function defined on a certain range. For a discrete random
variable, X, it is often a simple piecewise function like, for example,

fX(x) = P (X = k) =

{
1
4

k = 0
3
4

k = 1

mapping values in the random variable’s codomain to probabilities.
Note that, for discrete random variables, we use Probability Mass Function and
for continuous we use Probability Density Function.
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c. Cumulative Distribution Function (CDF): This is simply the probability that a
given random variable will take on a value less than or equal to a given value.
Notice that this is effectively the integral of the Probability Mass Function from
−∞ to a certain a. This function in particular has many uses and allows easy
computation of probabilities as it is common to want to know probability within
an interval with continuously distributed random variables. It is calculated by:

FX(a) = P (X ≤ a) =

∫ a

−∞
PX(t) dt

where the integrand is simply the corresponding random variable’s probability
mass/density function.

d. Expected Value or Mean: This is simply the mean value of a random variable or,
in other words, the variable’s expected value. Given a random variable X with
probability density function PX(x), its expected value can be calculated like so:

E[X] =

∫ ∞
−∞

xPX(x) dx

where the integrand is a value x multiplied by its probability in the probability
mass function.

An important property of expected value is its linearity. Given two independent
random variables X and Y :

E[αX + βY ] = αE[X] + βE[Y ]

e. Variance/Standard Deviation: The variance of a random variable corresponds to
the variable’s spread relative to its expected value. Given a random variable X
with expected value µ, variance is calculated like so:

Var(X) = σ2 = E[(X − µ)2]

There are a few very simple but important properties of Variance which we will
use. Firstly,

Var(αX) = α2Var(X)

and, assuming X and Y are two independent variables,

Var(X + Y ) = Var(X) + Var(Y )

Standard deviation, is often used in conjunction with variance, σ, and it is simply
the square root of variance, denoted simply by σ.
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f. Probability Distribution: A probability distribution is a specific and well observed
type of probability. More specifically, its a well-studied ‘distribution’ in that it
has a known probability mass function as well as other common properties. If a
random variable X is characterized by a certain distribution Y , we can express this
as X ∼ Y . Let us list a few common ones and their properties. Note, that each
distribution has certain parameters that it takes in its definition (often specifying
a relevant probability or a frequency):

i) Bernoulli Distribution: This distribution takes just one parameter, p, and is
one of the most fundamental. It simply models the probability of an event
occuring with probability p. It can be thought to model a simple coin flip
with probability of heads equal to p.
The expected value of a random variable X ∼ Bernoulli(p) is µ = p and the
variance is σ2 = p(1− p).

ii) Binomial Distribution: This distribution is simply a repeated coin flip, count-
ing the number of heads. It takes two parameters p, probability of heads on
a single flip, and n, number of coin flips.

iii) Geometric Distribution: This distribution is similar to the binomial distribu-
tion but, instead, counts how many flips are expected until a heads is flipped
(i.e. tails, tails, . . . , tails, heads).

iv) Poisson Distribution: This distribution is different in that it takes a frequency
(i.e. 5 occurrences per minute), and tells you the expected number of these
events to happen in a specific time interval. It takes only a frequency, λ.

v) Uniform Distribution: This is the simplest continuous distribution. It takes a
lower bound and an upper bound and gives every value in between an equal
probability.

vi) Normal Distribution: This is one of the most useful distributions and ties
into the Central Limit Theorem. It takes two parameters, mean value µ
and standard deviation σ. As we will be using this distribution (and its
Log) variant, we will go into its Probability Density Function and Cumulative
Distribution Function. Given a normally distributed variable X with with
parameters µ and σ (also expressible as X ∼ N (µ, σ)), its PDF is given by:

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

As the Normal Distributions CDF is impossible to precisely calculate, a CDF
standardized version of the distribution is used. Given a ‘standard normal
distribution’ with µ = 0 and σ = 1, the CDF is defined to be φ(x). Values
for φ(x) have been estimated and, by standardizing a normally distributed
variable, φ can be used as a makeshift CDF. Standardizing a normally dis-
tributed random variable simply means to subtract µ and dividing by standard
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deviation σ to bring it in-line with the standard normal distribution:

FX(a) = P (X ≤ a) = P

(
X − µ
σ

≤ a− µ
σ

)
= φ

(
a− µ
σ

)
The expected value of a normally distributed variable is simply equal to the
mean value it takes as a parameter, µ, and similarly the variance is simply σ2.

vii) Log-Normal Distribution: The Log-Normal Distribution is simply the
probability distribution of a random variable whose logarithm is normally dis-
tributed. So, if X is log-normally distributed, log(X) is normally distributed.
As such, it similarly takes parameters µ and σ2 (defining the corresponding
ordinary normal distribution). The PDF is similar to that of the ordinary
Normal distribution and is given by:

fX(x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2

The mean of a log-normal distribution is equal to

eµ+
σ2

2

it’s simple enough to move between the two distributions with substitutions
and, so, they share most of their properties.

viii) Of course, there are other distributions but these are some of the most fun-
damental and pertinent ones.

Notice that each of these distributions can be easily applied to characterize a
real-life scenario. Beyond this, you can often model unpredictable variables with
a distribution which might not even seem immediately applicable, as we will be
doing in the derivation of the Black-Scholes Equation.

g. Central Limit Theorem Given independent and identically distributed random vari-
ables X1, X2, . . . , Xn, with E[Xi] = µ < ∞ and Var(Xi) = σ2 < ∞. Then, as
n→∞,

1

n

n∑
i=1

Xi → N
(
µ,
σ2

n

)
In simple terms, this means that the normalized sum of many independent and
identically distributed variables tends towards a normal distribution, even, if the
original random variables are not normally distributed themselves.

This lets us approximate randomly distributed samples with the normal distri-
bution and makes it easier to analyze the samples.
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4 The Black-Scholes Equation

Now, let us examine the equation itself:

∂V

∂t
+

1

2
σ2s2

∂2V

∂s2
+ rs

∂V

∂s
− rV = 0

where s is the stock price, V is the price of the call option as a function of s and time
t, r is the risk-free rate of return, and σ is the volatility of the stock.
Next, we will derive the B.S. Equation using the basic principles we’ve introduced.

5 Derivation

To start1, let us consider the price of a European call option. If we know that the
price of the underlying asset will be S at time T and we chose a strike price E, then
we can define the option price to be P = max(0, S − E). If the market price is
greater than our strike price then their difference will be the profit we could make
by exercising the option at strike price E and then selling the assets back at market
price S.

Of course, we don’t actually know what the price of the underlying asset will be
at time T . The next logical step, then, is to find a probability density function q(S)
corresponding to the price of the asset at T . This would let us calculate its expected
value, V (S) =

∫∞
−∞ P (S)q(S) dS, and use this to find P . An important consideration

to make, though, is that this would give us how much the option will be worth at
time T but we want its worth right now. Assuming the interest rate to simply be the
risk-free interest rate, r, we know that over the time T − t the price increased by a
factor of er(T−t). So, to adjust for this, we have to multiply the calculated expected
value by e−r(T−t) giving us:

V (s, t) = e−r(T−t)
∫ ∞
−∞

P (S)q(S) dS (1)

Where s is the orinal price of the underlying asset.
Note that, if we want to work with a put option instead of a call option, we can
simply redefine P (S) = max(0, E − S) and the rest of (1) remains the same.

Next, we want to construct a good probability density function q(S) for the un-
derlying asset price S at T given a starting price of s at t. We can understand the
changes as a coin flip occuring every dt years. Meaning, every dt years we flip a coin
and, if the coin is heads the price of the asset increases by a factor of r and if the

1Derivation from Granville Sewell’s “Derivation of the Black–Scholes Equation from Basic Prin-
ciples” in the College Mathematics Journal Volume 49 2018, Issue 3
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coin is tails the asset price decreases by a factor of r. Put differently, the logarithm
of the price increases/decreases by log(r)2.

Between t and T we’ll have thrown N = (T − t)/dt coins. Thus, we have N Bernoulli
distributed samples, each denoted by Xi, with probability of increase p = 1

2
and vari-

ance σ2 = p(1− p) = 1
4
.

By the central limit theorem, the we can approximate the number of incremental
increases in price with a Normal distribution like so. By linearity of Expectation and
properties of Variance we can move the N over into the right side to produce:

1

N

N∑
k=1

Xi → N
(

1

2
,

1

4N

)
N∑
k=1

Xi → N
(
N

2
,
N

4

)
Thus we get a normal distribution with mean µ = N/2 and standard deviation
σ =
√
N/2 to represent the number of increases in price (N = (T − t)/dt).

Then, due to our earlier use use of the logarithm, the price S will have a log-normal
distribution q(S) (centered at S) such that the probability of our price being within a
range ds of S at time T is given by the probability density function of the log-normal
distribution:

q(S) dS =
1√

2πσ2
e

−(log S−α)2

2σ2

Letting z = logS − α, we can express this as a normal distribution in the logarithm
of price like so:

q(S) dS = p(t, z) dz =
1√

2πσ2
e

−z2
2σ2

Where σ and α will be defined below (both dependent on t, z). Naturally, the most
likely outcome is that half of the incremental changes will be increases and half de-
creases, leaving the final price unchanged from the original price. Intuitively, we
might want to set α = log(s) so that our distribution has a peak at the most likely
outcome but, as the peak of a log-normal distribution is lower than its mean, it makes
more sense to set the mean equal to the original price s. Furthermore, taking inflation
into account we must scale up our expected final amount by a factor of er(T−t) (See
equation (1)). This gives us a mean µ = ser(T−t).

2Note that using Bernoulli distributed incremental changes is just one way to express the change
in price with time. There are certainly other approaches
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Thus, we want α such that E[q(S)] = ser(T−t). Referring to the mean of a log-normal
distrubuted variable, we get:

E[q(S)] = eα+
σ2

2

Setting

eα+
σ2

2 = ser(T−t)

We get α = log(s) + r(T − t)− σ2

2
.

Now, to choose a standard deviation σ for our normal distribution of z = ln(S)− α.
We found earlier that the standard deviation for the number of increases in the price
is
√
N/2 and each increase in log(S)− α is

(#increases−#decreases)dx = 2(#increases−N)dx

Thus, a reasonable choice for the standard deviation is σ =
√
N
2
· 2dx =

√
Ndx. So

variance is equal to σ2 = N dx2 = (T − t)dx2
dt

.

Let σ1 = dx√
dt

= σ/
√
T − t. We call this the price’s volatility. Notice that, as dt

decreases (time between price variations) and dx increases (variation size), the price’s
variance increases so volatility is a measure of the rate of price fluctuation (just as
we saw in our initial definitions). So we have

α = log(s) + log(r(T − t))− σ2

2
and

σ =

√
N

2
· 2dx =

√
Ndx, σ2 = (T − t)dx

2

dt
= (T − t)σ2

1

Thus, our normally distributed z = log(S)− α is

p(t, z) =
1√

2π(T − t)σ2
1

Exp

[
−z2

2σ2
1(T − t)

]
(2)

and
z = log(S)− α = log(S)− log(s) + (σ2

1/2− r)(T − t)

6 Intermediary stage

Now, finally we can return to the formula for the European option price we saw earlier
in equation (1), as dz = dS

S
:

V (s, t) = e−r(T−t)
∫ ∞
−∞

P (S)p(t, z) dz = e−r(T−t)
∫ ∞
0

P (S)

S
p(t, z) dS (3)

where p(t, z) is as defined above and P (S) is the option price. Notice that, without
even having completely derived the Black-Scholes equation itself, we’ve gotten to the
point that we can find the value of the option, V , simply by calculating this integral.
We will go on, though, to complete the derivation as it yields further information.

9 – Nikita F.



7 Finishing the derivation

Note that, as we defined z above, ∂
∂t
z = r − σ2

1/2 and ∂
∂s
z = −1/s. Thus, we can

differentiate V as in (3) using the above partial derivatives of z and differentiation
under the integral:

∂

∂t
V (s, t) = Vt = rV + e−r(T−t)

∫ ∞
0

P (S)

S

[
pt + (r − σ2

1/2)pz

]
dS (4)

and

sVs = −e−r(T−t)
∫ ∞
0

P (S)

S
pz dS (5)

Differentiating again with respect to s:

s(Vs)s = e−r(T−t)
∫ ∞
0

P (S)

S
pzz DS (6)

Combining (4) and (6) produces

Vt +
1

2
σ2
1s(sVs)s = rV + e−r(T−t)

∫ ∞
0

P (S)

S

[
pt +

1

2
σ2
1pzz + (r − σ2

1/2)pz

]
dS

Now, let us show that p(t, z) satisfies the equation pt + 1
2
σ2
1pzz = 0 (this equation is

known as the backward diffusion equation):

pt =
∂

∂t

(
1√

2π(T − t)σ2
1

Exp

[
−z

2σ2
1(T − t)

])
=

1

2
√

2π(T − t)
√
σ2
1(T − t)

e
−z2

2σ21(T−t)

− z2

2
√

2πσ2
1(t− t)2

√
σ2
1(T − t))

e
−z2

2σ21(T−t)

and

1

2
σ2
1pzz =

z2

2
√

2πσ2
1(T − t)2

√
σ2
1(T − t)

e
−z2

2σ21(T−t)

− 1

2
√

2π(T − t)
√
σ2
1(T − t)

e
−z2

2σ21(T−t)

Thus, summing the two yields zero:

pt +
1

2
σ2
1pzz = 0
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This simplies the integral in our equation to:

Vt +
1

2
σ2
1s(sVs)s = rV + (r − σ2

1/2)e−r(T−t)
∫ ∞
0

P (S)

S
pz dS

Substituting in (5):

Vt +
1

2
σ2
1s(sVs)s = rV − (r − σ2

1/2)sVs

And, as (sVs)s = sVss + Vs:

Vt +
1

2
σ2
1s

2Vss +
1

2
σ2
1s

2
1sVs = rV − rsVs +

1

2
σ2
1sVs

Vt +
1

2
σ2
1s

2Vss + rsVs − rV = 0

With s as the stock price, V the price of the call option as a function of s and t,
r the risk-free rate of return, and σ1 the volatility of the asset as we defined above.
Comparing this to what we had in section 4, this is exactly the Black-Scholes equation
we wanted. Note that, as we know how much an option is worth at some time T and
want the value at a previous time t, this equation is solved ‘backwards in time’ in
that we start with a final condition on the option’s worth.

Although this is a relatively simple result, it was part of a larger movement at the
time. Moreover, there are many other ways of approaching derivatives trading such
as tree-like structures and other probability based techniques. Really, the B.S. model
is fairly unique in having a clean differential equation.
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