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1. Introduction

In 1738, Abraham de Moivre published his book The Doctrine of Chances where he provided techniques
for solving gambling problems using a version of the Central Limit theorem for Bernoulli trials with p = 1/2.
Roughly a century later, Pierre Simon Laplace published an extension of this proof, although not a rigorous
one, for p 6= 1/2 in his work Theorie Analytique des Probabilities. A more general statement of the Central
Limit Theorem appeared only in 1922 when Lindeberg suggested that the sequence of random variables
need not be identically distributed given certain condition known as the Lindeberg condition. Feller has
explained that the Lindeberg condition “requires the individual variances be due mainly to masses in an
interval whose length is small in comparison to the overall variance”.

In his paper [3], Goldstein offers an equivalent, seemingly simpler condition through Stein’s zero bias
transformation introduced in [4]. As a result of equivalency, this condition can be used to prove the
Lindeberg-Feller Central Limit theorem and its partial converse (independently due to Feller and Lévy).

This paper will outline the properties of zero bias transformation, and describe its role in the proof of
the Lindeberg-Feller Central Limit Theorem and its Feller-Lévy converse. In light of completeness, we shall
also offer an application of the Central Limit theorem using the small zero bias condition to the number

Date: June 3, 2018.

1



2 JAINUL VAGHASIA

of cycles in a random permutation pooled from all permutations of the set {1, 2, . . . , n}, and show that it
is asymptotically Normal in n.

2. Notations

This paper uses the following notations:

• We write X ∼ P to mean that X has distribution P .
• Yn →d Y means convergence in distribution. Yn →p Y is convergence in probability.
• E means expected value and Var means variance, while P is the probability.
• 1 denotes the indicator function
• X∗ denotes the Random Variable with X-zero biased distribution

3. Background in Probability Theory

We begin by highlighting some elementary facts and definitions that will be used later in this paper.
Let Ω be a sample space with a probability distribution (also called a probability measure) P. A random

variable is a map X : Ω→ R. We write

P(X ∈ A) = P({ω ∈ Ω : X(ω) ∈ A}).

3.1. Expectation and Variance.

Definition 3.1. (Expected value) The expected value of g(X) is

E(g(X)) =

∫
g(x) dP(x) =

{∫ −∞
∞ g(x)p(x) dx if X is continuous,∑
j g(xj)p(xj) if X is discrete.

It has following properties:

(1) Linearity: E(
∑k

j=1 cjgj(X)) =
∑k

j=1 cjE(gj(X)).

(2) If X1, . . . , Xn are independent then

E
( n∏
i=1

Xi

)
=
∏
i

E(Xi).

Definition 3.2. (Variance) Variance is

σ2 = Var (X) = E((X − µ)2).

It has following properties:

(1) Var (X) = E(X2)− µ2.
(2) If X1, . . . , Xn are independent then

Var

( k∑
j=1

ajXj

)
=

k∑
j=1

a2jVar (Xj).
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3.2. Convergence.

Definition 3.3. (Convergence in Distribution) A sequence of random variables Yn is said to converge in
distribution to Y if

lim
n→∞

P(Yn ≤ x) = P(Y ≤ x) for all continuity points x of P(Y ≤ x).

Definition 3.4. (Convergence in Probability) A sequence of random variables Yn converges in probability
to Y if

lim
n→∞

P(|Yn − Y | ≥ ε) = 0 for all ε > 0.

We will also need the following equivalence theorems between convergence of expectation and convergence
in distribution.

Theorem 3.5. Yn →d Y implies

lim
n→∞

E(h(Yn)) = E(h(Y )) for all h ∈ Cb,

where Cb is the collection of all bounded, continuous functions.

Since the set of all functions with compact support which integrate to zero and are infinitely differentiable
C∞c,0 ⊂ Cb, Theorem 3.5 holds for C∞c,0. Following converse holds for C∞c,0 as well.

Theorem 3.6. If

lim
n→∞

E(h(Yn)) = E(h(Y ))

for all h ∈ C∞c,0, then Yn →d Y .

The proofs of Theorems 3.5 and 3.6 are too involved to be worth the digression, and therefore shall not
be presented here.

4. Zero Bias Transformation

Definition 4.1. Let X be a random variable with mean zero and finite, nonzero variance σ2. We say that
X∗ has the X − zero biased distribution if for all differentiable f for which these expectations exist,

σ2E(f ′(X∗)) = E(Xf(X)).

In [3], the proof of existence of the zero biased distribution for any such X is omitted for simplicity.
We provide a brief Ideas of the argument here. For any given continuous function with compact support
g, let G =

∫ x
0 g. Then Tg = σ−2E(XG(X)) exists since the variance E(X2) < ∞. Note that T is linear

as inherited by the linearity of expectation. Now take g ≥ 0, so G is increasing, and therefore X and
G(X) are positively correlated. Hence, Tg = E(XG(X)) ≥ E(X)E(G(X)) = 0. This shows that T is
positive. The existence of a unique probability measure ν with Tg =

∫ x
0 g dν would then be obtained by

Riesz-Markov-Kakutani representation theorem (see eg. [2]; [5] provides a category theoretic proof).
Next, we show that zero bias transformation enjoys the following continuity property. This will be

instrumental later in proving the Feller-Lévy converse.
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Theorem 4.2. Let Y and Yn, n = 1, 2, . . . be mean zero random variables with finite, nonzero variances
σ2 = Var (Yn), respectively. If

Yn →d Y and lim
n→∞

σ2n = σ2,

then
Y ∗n →d Y

∗.

Proof. We shall use the alternate definition of convergence in distribution provided by Theorems 3.5 and
3.6. Let f ∈ C∞c,0 and F (y) =

∫ y
−∞ f(t) dt. Since Y and Yn have mean zero and finite variances, their zero

bias distributions exists. In particular,

σ2nE(f(Y ∗n )) = E[YnF (Yn)] for all n.

By Theorem 3.5, since yF (y) is in Cb, we obtain

σ2 lim
n→∞

E(f(Y ∗n )) = lim
n→∞

E[YnF (Yn)] = E[Y F (Y )] = σ2E(f(Y ∗)).

Hence, E(f(Y ∗n ))→ E(f(Y ∗)) for all f ∈ C∞c,0, so Y ∗n →d Y
∗ by Theorem 3.6. �

The main utility of the zero bias transforms is that Normal distribution is the unique fixed point of the
transformation. This is stated formally below:

Theorem 4.3. Let X be a zero-meaned random variable with nonzero, finite variance σ2. Then X has
distribution N (0, σ2) if and only if

σ2E(f ′(X)) = E(Xf(X))

for all absolutely continuous functions f for which these expectations exist.

Proof. Recall the probability density function for the standard normal distribution:

ϕ(x) =
1√
2π
e−x

2/2.

We evaluate E(f ′(X)) using integration by parts:

E(f ′(X)) =
1√
2π

∫ ∞
−∞

f ′(x)e−x
2/2 dx

=
1√
2π

[
f(x)e−x

2/2

∣∣∣∣∞
−∞

+

∫ ∞
−∞

xf(x)e−x
2/2 dx

]
=

1√
2π

∫ ∞
−∞

xf(x)e−x
2/2 dx

= E(Xf(X)),

as claimed. Since the solution to the differential equation is unique upto adding a constant, we have the
result precisely for the family of normal distribution. �

This property can be exploited to reason that a distribution that gets mapped to one nearby is close
to being a fixed point of the transformation. Hence, normal approximation can be applied whenever the
distribution of a random variable is close to that of its zero bias transformation. With this in hand, consider
the distribution of a sum Wn of comparably sized independent random variables. We show that this can be
zero biased by randomly selecting a single summand chosen with probability proportional to its variance,



THE LINDEBERG-FELLER CENTRAL LIMIT THEOREM VIA ZERO BIAS TRANSFORMATION 5

and replacing it with comparable size random variable. This would imply that Wn and W ∗n are close,
and therefore approximately Normal. This is the gist of the proof of the Lindeberg-Feller Central Limit
Theorem under the condition that Goldstein calls ‘small zero bias condition’. We shall now formalize this
argument.

5. Setting up the conditions

This section serves to list the conditions that go together in some combination into creating the statement
of the Lindeberg-Feller Central Limit Theorem.

Condition 5.1. For every n = 1, 2, . . ., the random variables making up the collection Xn = {Xi,n : 1 ≤
i ≤ n} are independent with mean zero and finite variances σ2i,n = Var (Xi,n), standardized so that

Wn =

n∑
i=1

Xi,n has variance Var (Wn) =

n∑
i=1

σ2i,n = 1.

This is a non-negotiable condition because it is necessary with both the Lindeberg condition and the
small zero bias condition.

Condition 5.2. (Lindeberg Condition)

∀ε > 0 lim
n→∞

Ln,ε = 0 where Ln,ε =

n∑
i=1

E[X2
i,n1(|Xi,n| ≥ ε)].

As described in the introduction, this condition forces the random variables Xi,n to have individual
variances small compared to their sum.

Condition 5.3. (Small zero bias condition) Given Xn satisfying condition 5.1, let X∗n = {X∗i,n : 1 ≤ i ≤ n}
be a collection of random variables so that X∗i,n has the Xi,n zero biased distribution and is independent of
Xn. Further let In be a random index, independent of Xn and X∗n, with distribution

(5.4) P(In = i) = σ2i,n,

and define

(5.5) XIn,n =
n∑
i=1

1(In = i)Xi,n and X∗In,n =
n∑
i=1

1(In = i)X∗i,n.

The condition requires that

X∗In,n →p 0.

Theorem 5.6. Condition 5.2 and Condition 5.3 are equivalent.

Proof. Since the random index In is independent of Xn and X∗n, we use (5.4) and (5.5) to obtain

(5.7) E(f(XIn,n)) =
n∑
i=1

σ2i,nE(f(Xi,n)) and E(f(X∗In,n)) =
n∑
i=1

σ2i,nE(f(X∗i,n))
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Showing that 5.2 implies 5.3 relies on the function

f(x) = |x− ε|1(|x| ≥ ε) =


x+ ε if x ≤ −ε
0 if − ε < x < ε

x− ε if x ≥ ε

Notice that

f ′(x) = 1(|x| ≥ ε) a.e.

Then, using E(1(x)) = P(x) for the first equality and zero bias relation for the second equality, we obtain

(5.8) σ2i,nP(|X∗i,n| ≥ ε) = σ2i,nE(f ′(X∗i,n)) = E
[
(X2

i,n − ε|Xi,n|)1(|Xi,n| ≥ ε)
]

Bounding this quantity from above,

σ2i,nP(|X∗i,n| ≥ ε) ≤ E
[
(X2

i,n + ε|Xi,n|)1(|Xi,n| ≥ ε)
]

≤ 2E
[
X2
i,n1(|Xi,n| ≥ ε)

]
.

Applying (5.7) on the indicator function 1(|x| ≥ ε) and using E(1(x)) = P(x), we obtain

P(|X∗In,n| ≥ ε) =
n∑
i=1

σ2i,nP(|X∗i,n| ≥ ε)

Using the bound derived above,

P(|X∗In,n| ≥ ε) ≤ 2Ln,ε.

Hence, small bias condition is satisfied given Lindeberg condition.
For the reverse implication, observe that

x21(|x| ≥ ε) ≤ 2

(
x2 − ε

2
|x|
)

1

(
|x| ≥ ε

2

)
.

Then

Ln,ε =

n∑
i=1

E(X2
i,n1(|Xi,n| ≥ ε)) ≤ 2

n∑
i=1

(
X2
i,n −

ε

2
|Xi,n|

)
1

(
|Xi,n| ≥

ε

2

)

= 2

n∑
i=1

σ2i,nP
(
|X∗i,n| ≥

ε

2

)
= 2P

(
|X∗i,n| ≥

ε

2

)
,

where we used (5.8) and (5.5) for second and third equalities, respectively. This finishes the equivalence
argument. �

Now that we know that the two conditions are equivalent, it is worthwhile to see how small bias condition
can be used to prove the Central Limit theorems.
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6. The Lindeberg-Feller Central Limit Theorem

Lemma 6.1. Let Xn, n = 1, 2, . . . satisfy Condition 5.1 and mn = max1≤i≤n σ
2
i,n. Then

XIn,n →p 0 whenever lim
n→∞

mn = 0.

Proof. Using (5.7) with f(x) = x, we obtain E(XIn,n) = 0, and hence Var (XIn,n) = E(X2
In,n

). Again with

f(x) = x2,

Var (XIn,n) =
n∑
i=1

σ4i,n.

Since σ4i,n ≤ σ2i,n max1≤j≤n σ
2
j,n = σ2i,nmn, we have for all ε > 0

P(|XIn,n ≥ ε) ≤
Var (XIn,n)

ε2
≤ 1

ε2
mn

n∑
i=1

σ2i,n =
1

ε
mn,

where we used the Chebyshev’s inequality. �

Lemma 6.2. If Xn, n = 1, 2, . . . satisfies Condition 5.1 and the small bias condition 5.3, then

XIn,n →p 0.

Proof. For all n, 1 ≤ i ≤ n, and ε > 0,

σ2i,n = E(X2
i,n1(|Xi,n| < ε)) + E(X2

i,n1(|Xi,n| ≥ ε)) ≤ ε2 + Ln,ε.

It follows that

mn ≤ ε2 + Ln,ε, and therefore lim sup
n→∞

mn ≤ ε2,

where we used Ln,ε → 0 by Theorem 5.6. The claim now follows by Lemma 6.1. �

Theorem 6.3. If Xn,= 1, 2, . . . satisfies Condition 5.3, then Wn →d Z, a standard normal random
variable

Proof. (Ideas) Let h ∈ C∞c,0. Stein has shown that there exists a twice differentiable solution f with bounded
derivatives to the ‘Stein equation’:

f ′(w)− wf(w) = h(w)− E(h(Z))

Then using zero bias relation,

E[h(Wn)− E(h(Z))] = E[f ′(Wn)− f ′(W ∗n)]

where W ∗n = Wn+X∗In,n−XIn,n. Since f ′, f ′′ are bounded, we have η(δ) = sup|x−y|≤δ |f ′(x)−f ′(y)| → 0 as

δ → 0. By the small bias condition, W ∗n −Wn → 0. Hence, η(|W ∗n −Wn|)→ 0. By the triangle inequality,
E[h(Wn) − E(h(Z))] ≤ E(η(|W ∗n −Wn|)). This shall give us limn→∞ E(h(Wn)) = E(h(Z)). The result
would then follow by Theorem 3.6. �
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7. The Feller-Lévy Partial Converse

Lemma 7.1. (Slutsky’s Lemma) Let Un and Vn, n = 1, 2, . . . be two sequences of random variables. Then

Un →d U and Vn →p 0 implies Un + Vn →d U.

The proof of Slutsky’s Lemma is an exercise in applying definitions and is left to the reader. When
independence holds, we have the following converse.

Lemma 7.2. Let Un and Vn, n = 1, 2, . . . be two sequences of random variables such that Un and Vn are
independent for every n. Then

Un →d U and Un + Vn →d U implies Vn →p 0.

Proof. (Ideas)
Assume the special case that Un =d U for all n. Then assume for contradiction that Vn does not tend

to zero in probability. Without loss of generality, there exists an infinite subsequence K such that for all
n ∈ K,

P(Vn ≥ ε) ≥ p.
Use density of U to obtain continuous s(x) = P(x ≤ U ≤ x+ 1). Hence, s(x) can be showed to attain its
maximum value in a bounded region. Then using the independence of U and Vn, we have

P(y ≤ U + Vn ≤ y + 1|Vn) = s(y − Vn) for all n.

On one hand,

P(y ≤ U + Vn ≤ y + 1|Vn ≥ ε) ≤ sup
x≤y−ε

s(x) for all n ∈ K,

but on the other hand by conditioning on Vn ≥ ε and its complement, and the fact that U is absolutely
continuous, we obtain a contradiction

lim inf
n→∞

P(y ≤ U + Vn ≤ y + 1) < lim
n→∞

P(y ≤ U + Vn ≤ y + 1).

Generalizing the situation requires more sophisticated constructs for which we refer to the Appendix of
[3]. �

Theorem 7.3. If Xn,= 1, 2, . . . satisfies Condition 5.1 and

lim
n→∞

mn = 0, mn = max
1≤i≤n

σ2i,n,

then the small zero bias condition is necessary for Wn →d Z.

Proof. Since Wn →d Z and Var (Wn)→ Var (Z) with limit identically one, Theorem 4.2 implies W ∗n → Z.
Note that the limit is technically Z∗ but Z∗ = Z for the fixed point of zero bias transformation.

Since mn → 0, Lemma 6.1 yields that XIn,n →p 0. It follows from Slutsky’s Lemma 7.1 that

Wn +X∗In,n = W ∗n +XIn,n →d Z.

Hence,

Wn →d Z and Wn +X∗In,n →d Z.

Since Wn is a function of Xn, which is independent of In and X∗n and therefore X∗In,n, Lemma 7.2 yields
that X∗In,n →p 0. �
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8. Cycles in a Random Permutation: Application of Lindeberg-Feller CLT

Random permutations play an important role in many areas of probability and statistics. Here we
provide one application that uses the cycles in random permutations. Consider a party with n people, and
everyone writes their name down on a piece of paper and puts it into a bag. The bag is mixed up, and
each person draws one piece of paper. If you draw the name of someone else, you are considered to be in
his “group”. We want to show that the distribution of total number of “groups” is asymptotically Normal.
This construct is an extension of that of the classical hat-check problem where each “group” is only allowed
at most two people, and the motive is to find the distribution of the number of singleton “groups”.

Let us formalize this problem now. Define the symmetric group Sn to be the set of all permutations π
on the set {1, 2, . . . , n}. We can represent the permutation using the cycle notation. For example, π ∈ S7
may be represented as

π = (1, 4, 6)(2, 3, 7)(5)

with the meaning that π maps 1 to 4, 4 to 6, 6 to 1, and so forth. Notice that π has two cycles of length
3 and one of length 1, for a total of three cycles. Hence, in the problem described above, each cycle would
represent a single “group” of people. We will denote Cr,n(π) to be the number of cycles of length r in
permutation π ∈ Sn. Define Kn(π) to be the total number of cycles in permutation π ∈ Sn.

To begin, we show that C1,n converges in distribution to a random variable having the Poisson distri-
bution with mean 1. This should solve the simplest of the hat-check problems.

Proposition 8.1. For k = 0, 1, . . . , n,

P(C1,n = k)→d
e−1

k!
as n→∞

Proof. (Ideas)
Using an inclusion-exclusion argument, we can show an elementary equality that

P(C1,n = k) =
1

k!

n−k∑
l=0

(−1)l

l!
.

Then the proposition holds true as we pass to limit n→∞. �

Now, we handle the extension of the problem. That is, we show that Kn(π) is asymptotically Normal.
We will employ Feller coupling [1], which constructs a random permutation π uniformly from Sn with help
of n independent Bernoulli variables X1:n with distributions

(8.2) P(Xi = 0) = 1− 1

i
and P(Xi = 1) =

1

i
, i = 1, . . . , n.

Begin the first cycle at step 1 with the element 1. At step i, i = 1, . . . , n, if Xn−i+1 = 1 close the current
cycle and begin a new one starting with the smallest number not yet in any cycle, and otherwise choose
an element uniformly from those yet unused. In this way, at step i, we complete a cycle with probability
1/(n− i+ 1).

As the total number Kn(π) of cycles of π is precisely the number of times an element closes the loop
upon completing its cycle,

Kn(π) =
n∑
i=1

Xi.
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Figure: An example of Feller Coupling for π = (1, 4, 6)(2, 3, 7)(5) with X1 = X2 = X5 = 1.
An important consequence of this definition is that random variables Xi, i = 1, . . . , n, even though

independent, are not identically distributed. As a result, the classical Central Limit does not apply to their
sum. However, we show that the small zero bias conditions hold. This gives us the required asymptotic
Normality of Kπ(n).

First, we standardize Kn(π) in order to satisfy Condition (5.1). Since Bernoulli variables with defining
probability p have expected value p and variance p(1− p), we use the linearity of expectation and that of
variance for independent variables to obtain that

(8.3) E(Kn(π)) =
n∑
i=1

E(Xi) =
n∑
i=1

1

i
= hn and Var (Kn(π)) = σ2n =

n∑
i=1

(
1

i
− 1

i2

)
.

Then the standardized variable is defined as

(8.4) Wn =
Kn(π)− hn

σn
=

n∑
i=1

Xi,n where Xi,n =
Xi − i−1

σn
.

It is trivial to verify that Wn satisfies Condition (5.1).
Now we verify the small zero bias condition. Notice that

(8.5) lim
n→∞

hn
log n

= 1, and hence lim
n→∞

σ2n
log n

= 1.

As a consequence of (8.2) and (8.4), we have Wn =
∑n

i=2Xi,n as X1 = 1 identically makes X1,n = 0 for all
n.
X∗i should be uniformly distributed: Let B be a Bernoulli random variable with success probability p

and let X be the centered Bernoulli variable B − p, having variance p(1− p). Then

E(Xf(X)) = E((B − p)f(B − p))
= p(1− p)f(1− p)− (1− p)pf(−p)
= σ2[f(1− p)− f(−p)]

= σ2
∫ 1−p

−p
f ′(u) du

= σ2E(f ′(U)),
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for U having uniform density over [−p, 1− p]. Thus, by

(αX)∗ =d αX
∗ for all α 6= 0,

and (8.4), we have

X∗i,n =d
Ui
σn
, where Ui has distribution U

[
− 1

i
, 1− 1

i

]
, i = 2, . . . , n.

It follows that |Ui| ≤ 1 for all i = 2, . . . , n, and therefore for uniformly random index In

|X∗In,n| ≤
1

σn
→ 0

by (8.5). Hence, small bias condition is satisfied and the Lindeberg-Feller Central Limit Theorem gives us
the result we want.
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