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Abstract
Machine learning is increasingly becoming an integral part of today’s society. While

it is commonly thought of as an offshoot of computer science, it is also deeply rooted in
fundamental concepts of mathematics and statistical theory; however, many introductory
treatments of the subject neglect explanations of those topics that beget additional
complexity. This paper attempts to provide such an examination at greater depth,
through the lens of examination of Support Vector Machines, a specific type of machine
learning model.

1 Introduction
Support Vector Machines (SVMs) were originally conceived of by Vladimir Vapnik and
Alexey Chervonenkis in 1963 as a method of predicting what class data observations are
classified into through the use of a separating hyperplane. The model was further refined,
and in 1995 Vapnik and Corinna Cortes published a paper on the “modern” soft-margin,
possibly nonlinear SVM [3]. Since then, further advances have been made in the literature;
one of note is the concept of Bayesian Support Vector Machines, which allow for the use
of tuning hyperparameters to optimize performance [8]. In this paper, I will discuss the
fundamentals needed to understand how Support Vector Machines, and explain some of the
underlying mathematical intuitions. I will first describe basic convex optimization, including
the Karush-Kuhn-Tucker Conditions and the structure of general optimization problems.
I will also describe statistical learning theory, and canonical problems and concepts that
frequently come up when examining questions of statistical learning. After that point, I will
have amassed enough theory to begin my description of the SVM model. I will first discuss
the linear separating hyperplane problem, and then introduce the kernel trick and various
transformations that the feature space can undergo. Finally, I will mention applications of
SVMs to regression, and conclude with other potential lines of inquiry I could have pursued.

2 Definitions and Background
In order to understand statistical learning models, it is necessary to know some basics of
statistical theory and optimization. I will describe some of those details here.
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2.1 Convex Optimization
On a basic level, optimization aims to find values of a function that correspond to either
maxima or minima. We define an optimization problem as a problem in the following form:

minimize f0(x)
subject to fi(x) ≤ bi, . . . ,m.

(1)

We call f0 the objective function and fi the constraint functions, where bi are the bounds.
For this paper, we will be particularly concerned with convex optimization. The goal of
convex optimization is to maximize and minimize convex functions over convex sets.

Definition 2.1. A set S is a convex set if for any x1, x2 ∈ S and t ∈ [0, 1] implies that
tx1 + (1− t)x2 ∈ S; that is, every line segment connecting points in S is fully contained in S.

Definition 2.2. A function f is convex on a convex set S if for all x1, x2 ∈ S and t ∈ [0, 1],
we have f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

Intuitively, if a function is convex, the line segment between any two points on the graph
of the function must sit above the part of the graph in between those points. When these
restrictions are placed upon our functions and domains, we are able to make more headway
on our problems than would typically be the case. We will encounter quadratic programming
problems in this paper, which are optimization problems in the form

minimize 1
2xTQx + cTx

subject to Ax ≤ b.
(2)

where x and c are n-dimensional vectors, Q is a symmetric n × n matrix, A is a m × n
matrix, and b is a m-dimensional vector. The matrix notation amounts to a re-expression
of systems of equations; fundamentally, we’re trying to find x that minimizes a quadratic
equation subject to a series of linear, or affine, constraints.

Now suppose we have an optimization problem as described in the start of the chapter,
with added constraints hi(x) = 0, i = 1, 2, . . . , p.

Definition 2.3. The Lagrangian of the problem is given by

L(x, λ, ν) = f0(x) +
n∑
i=1

λifi(x) +
p∑
i=1

νihi(x),

where the λi and νi terms are the Lagrange multipliers of the respective constraint functions.
The vectors λ and ν are called the dual vectors.

We can define the Lagrange dual function by the infimum of the Lagrangian; that is, we
have if f0 is defined over some domain D, we define

g(λ, ν) = inf
x∈D

L(x, λ, ν).

We allow g to take on the value −∞ if our dual function is unbounded below. The dual
function proves to be extremely useful when attempting to provide lower bounds on the
optimal value we wish to find. Suppose λ � 0 (we define x � a to mean each element of x
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is greater than or equal to a) and x is a point in the domain of f0 that satisfies all of the
constraints. We thus have fi(x) ≤ 0, and hi(x) = 0. Thus we have

f0(x) +
n∑
i=1

λifi(x) +
p∑
i=1

νihi(x) ≤ f0(x).

Since this holds for all x in the domain, taking the infimum we get that g(λ, ν) ≤ f0(x) for
all x.

We have found some lower bound for f0(x) (that may be −∞). In the case where
f0(x) > −∞, we thus know that there exists some greatest lower bound. From this, we find
another optimization problem, which we call the Lagrange dual problem:

maximize g(λ, ν)
subject to λ � 0.

(3)

Henceforth, we will refer to this optimization problem as the dual problem, and the original
optimization problem defined in (1) with the added equality constraint functions as the
primal problem. Suppose we found that d∗ is the maximum value of the dual function, and
p∗ is the minimum value of the primal function. We have that d∗ ≤ p∗ from our earlier
claims about the lower bound the Lagrangian applies. We define p∗ − d∗ to be the dual
gap. If the dual gap is zero, we say that the optimization problem exhibits strong duality,
otherwise it exhibits weak duality.

2.1.1 The Karush-Kuhn-Tucker Conditions

When examining an optimization problem, it often is useful to check to see if we see whether
it exhibits strong duality prior to going through the work and calculating the maxima using
the Lagrange dual function. There are many ways to do so, but checking if the problem
satisfies the Karush-Kuhn-Tucker (KKT) conditions proves to be among the easiest ways to
do so. The conditions were first published by William Karush in 1939 [6], and were later
independently discovered and published by Harold Kuhn and Albert Tucker in 1951 [7]; the
three of them now receive joint credit.

Suppose we have a convex optimization problem where the functions f0, f1, . . . , fn are
all differentiable, and the problem exhibits strong duality. Therefore, we have there exist
x∗, λ∗, ν∗ so that x∗ maximizes f0 and minimizes L(x∗, λ∗, ν∗) over x, and that those two
values coincide. Thus, we have that ∇X(x∗, λ∗, ν∗) = 0; writing out our expression for the
Lagrangian, we get

∇f0(x∗) +
n∑
i=1

λi∇fi(x∗) +
p∑
i=1

νi∇hi(x∗) = 0.

Now, suppose that the fi functions are both convex and differentiable, and that x∗, λ∗, and
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ν∗ satisfy the following constraints:

fi(x∗) ≤ 0, i = 1, . . . ,m
hi(x∗) = 0, i = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m
λ∗i fi(x∗) = 0, i = 1, . . . ,m

∇f0(x∗) +
n∑
i=1

λ∗i∇fi(x∗) +
p∑
i=1

ν∗i∇hi(x∗) = 0.

We then have that x∗ is a solution of the primal problem and (λ∗, ν∗) is a solution of the
dual problem. The first three constraints are ones we stated must be true of the primal
and dual problem for any properly formatted convex optimization problem, and the last
constraint follows from the minimality constraint on the Lagrangian. The fourth constraint
requires a little bit more work, but is still rather trivial. We know that the dual gap must be
zero. Thus, we have

n∑
i=1

λ∗i fi(x∗) +
p∑
i=1

ν∗i hi(x∗) = 0.

However, all of the equality constraint functions are zero. Thus, this reduces to
n∑
i=1

λ∗i fi(x∗) = 0

which acts as the final KKT condition. We will use these conditions to verify that solutions
we find are maximal, and make claims about what possible solutions may look like. For more
information on the KKT conditions and general convex optimization problems, Boyd and
Vandenberghe’s Convex Optimization [2] is a good resource.

2.2 Supervised Learning
The problem that we wish to examine in this paper is the problem of supervised learning.
The basic task of supervised learning is to use the values of input variables to predict the
values of output variables. An archetypal example of this method is to predict housing
prices based on various factors such as location, square footage, or number of bedrooms.
Furthermore, there are two different types of tasks which supervised learning can take on:
classification and regression. Classification problems aim to predict discrete classes the input
observations fall into, while regression problems predict 1ontinuous variables.

In terms of notation, we denote input variables by Xj , where the subscript indicates
which input variable we are examining. If we have multiple input vectors holding p values,
we can concatenate the vectors into the N × p input matrix X, where the jth column of j is
Xj . We call each row of X an observation, and the ith row is represented by xTi . Finally,
we will denote continuous output variables by the 1× p output vector Y . Occasionally my
notation will slightly change, but I will make sure to specify what observations or input
vectors I am talking about.
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2.3 Statistical Models as a Function
Let X ∈ Rp be an input vector, and let Y ∈ R be the output value. We can think of the
supervised learning question as finding a function, f , such that

Y = f(X) + ε (4)

provides a good approximation. Here ε represents an error term that varies with X, which
we aim to make small by our choice of f . We evaluate the “fit” of our approximation by
using a training set of observations. We can denote this training set by the set of tuples
(xi, yi), where xi is the ith set of input variables and yi is the corresponding value. Our
eventual goal would be to use this function to predict values given a set of just the input
variables, for which we want to find the corresponding outputs.

We require a heuristic to determine the goodness of the fit of f to our training set.
Supposing xi is a vector, meaning we have a single input variable, we can define the residual
sum of squares

RSS(f) =
N∑
i=1

(yi − f(xi))2
. (5)

to be the sum of squares of the Euclidean distance `2 between the actual and predicted
values. This is one of the canonical loss functions that we use in machine learning. We can
also define the mean squared error by

MSE(f) = 1
N

N∑
i=1

(yi − f(xi))2
, (6)

which is the residual sum of squares divided by degrees of freedom. Finally, we can define
the root mean squared error by

MSE(f) =

√√√√ 1
N

N∑
i=1

(yi − f(xi))2
. (7)

The advantage of RMSE as a metric is that its units are more interpretable; because we are
taking the square root of the sum of squares, it ultimately has the same units as the original
yi, while the other two metrics have the units squared.

2.4 Bias and Variance
Suppose we have a statistical model described by Y = f(X) + ε. We want to find some
function f̂ that approximates f as well as possible. Let X be the input variables for our
training set, and y be the corresponding output variables. Let’s define the expected prediction
error of f̂ at x0 to be

EPE(x0) = E[(y− f̂(x0))
2
|X = x0]. (8)

This is the expected squared error of the function, given that the input variable is equal to
x0. We can decompose this to

σ2 +
[
f(x0)− 1

k

k∑
`=1

f(x(`))
]2

+ σ2

k
. (9)
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Observe that there are three terms in this expression. We call σ2 the irreducible error.
This is the result of the ε term in the model; as is implied by the name, no matter what we
do we cannot eliminate this term from the error.

We call the sum of the other two terms the mean squared error, as it is expected value
of the square of the error of our approximation over our training set. The second term, or
squared bias is a rough measure of the rigidity and applicability of our model. If the bias is
high, that means that the model will be simpler. If it is too high, the model may underfit
test results and may not provide a good estimation. If the bias is too low, the model will
overfit. The model will fit the test data extremely well, but may not generalize to other
similarly generated training data.

Finally, the last term is the variance. As the complexity of the model increases, bias
typically increases and variance decreases. We call this relationship the bias-variance tradeoff,
which is something that needs to be kept in mind when selecting models. In practice, we want
to find a model that provides a good balance between training set and test set performance.
For further information on this subject, Hastie, Tibrishani, and Friedman’s The Elements of
Statistical Learning [4] provides a good treatise on the matter.

2.5 Case Study: Linear Regression
Linear regression assumes that the predictor function f is linear in nature; that is, we can
write f as a linear combination of the input vectors. Let β ∈ Rp+1 be a vector with p+ 1
real values, and let XT = (X1, X2, . . . , Xp) be the vector of input variables. We can write
our function f as

f(X) = β0 +
p∑
j=1

Xjβj . (10)

Linear regression aims to pick β such that the residual sum of squares, as defined in
section 2.1, is minimized. Observe that if we append 1 to the start of X (e.g. X0 = 0), we
now have

f(X) =
p∑
j=0

Xjβj (11)

Now, suppose that we have the N × p + 1 matrix X, which holds N observations of
the p+ 1 input vectors in X, and the N -vector y that holds the values of the observations
in the training data. We have that Xβ results in a N -vector ŷ, where the ith element
ŷi =

p∑
j=0

Xijβj . Thus, ŷ holds the predicted values of f on each observation.

The solution of the least squares problem can be found using linear algebra and examining
the projection of the output vector onto the feature space, and ultimately proves to be

β̂ = (XTX)−1XTy.

2.5.1 Benefits and Downsides of Linear Regression

As described above, linear regression proves to be a simple way to construct a predictor
based on our test data. As implied by the name, linear regression constructs a linear fit.
Below are examples of the type of prediction that linear regression would result in.
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I generated the two datasets by constructing linear relationships between the input
variables and the output variable, the first of which by y = 1

3x and the second by z = 1
3x+ 1

4y.
The x-values were generated from a random uniform univariate distribution between 1 and
10. Additionally, I added on a randomly distributed error term to the output variable, so
that the distribution wasn’t immediately linear. As can be seen, the approximation works
very well for input data that falls in a linear distribution. However, when our data is in
a nonlinear distribution, this clearly would not work as well. As a result, the scope and
applicability of this method is rather limited. Framing this within our earlier discussion
of bias and variance, linear regression has lower bias and higher variance for a nonlinearly
distributed dataset. It is thus necessary to develop more complex models that allow for
greater range.

3 Support Vector Classifiers
This now brings me to the main purpose of my paper: discussing the mathematics behind
Support Vector Machines, which I will refer to as SVMs. SVMs were initially conceived
as a classification algorithm, which aims to separate data into different classes by using a
separating hyperplane.
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Definition 3.1. A hyperplane in an n-dimensional ambient space is a subspace of dimension
n− 1 of that ambient space.

For the purpose of this paper we will only consider affine subspaces of vector spaces. We
define an affine subspace of a vector field V to be subspaces of the form A = {a+w : w ∈ V }.
Intuitively, we can think of this as a vector space with a possible translation away from the
origin; while vector spaces require the zero vector to be in them, there is no such constraint
on general affine subspaces. This means that if we were to take R2 as our vector space, the
affine subspaces of R2 are all possible lines in the plane. Likewise, the affine subspaces of R3

are all planes in R2. We can provide an alternative definition of a hyperplane as the set

{x : xTβ + β0 = 0}

where ‖β‖ = 1 and x, β, β0 ∈ Rn.

As a consequence of the affine nature of our hyperplanes, we can say that our hyperplanes
separate the ambient space into two parts. The geometric intuition remains clear when
examining lines splitting R2 and planes splitting R3. Consequentially, we can define a
classification function from this hyperplane

G(x) = sign[xTβ + β0]

which classifies observations by whether they are above or below the hyperplane, where the
sign function returns 1 for non-negative numbers and -1 for negative numbers. Let (xi, yi)
be the set of ordered pairs of observations and their corresponding outputs. We define the
loss function

D(β, β0) = −
∑
i∈M

yi(xTi β + β0),

where M is the set of all indices of misclassified points. Observe that if yi = 1 and it is
misclassified, this means that xTi β + β0 < 0. We get the opposite result for yi = −1. Thus,
multiplying this quantity by yi and summing over all i gives us a negative value, so our loss
function is non-negative. Additionally, its terms are all proportional to their distance from
the hyperplane. It is intuitively clear how this loss function allows us to find a hyperplane
that provides a “better” fit. There are now two main cases for our data that we must
examine.

3.1 Maximum Margin Classifier
The first case we can examine is when the two classes are perfectly separated; that is, we
can construct a hyperplane such that all observations from one class are on one side, and all
observations in the other class are on the other. One such perfectly separable dataset is like
so:
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Observe, however that this hyperplane is not unique; in fact, there are infinitely many
hyperplanes that perfectly separate the classes. It is thus necessary to determine which one
of of these we should choose for our classification function. We define the margin to be the
largest number M such that every element is at least M distance away from the hyperplane.
The maximum margin hyperplane for the previous dataset, as well as a representation of the
margin, is shown below:

We want the margin to be larger, as intuitively it allows for greater test accuracy. We would
be confidently able to predict values that are on either side of the margins. It proves to be
better to have larger margins, as it intuitively increases the decision boundary to some degree;
however, the true benefits of the large-margin characteristic are apparent when examining
transformations of the hyperplane.

We can express the problem of finding the maximum margin hyperplane in terms of an
optimization problem as follows:
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max
β,β0,‖β‖=1

M

subject to yi(xTi β + β0) ≥M, i = 1, · · · , N.

Observe that we still have a constraint on the norm of β. Because ‖β‖ = 1, we can
rewrite our second constraint to yi(xTi β + β0) ≥ M‖β‖. Suppose that we have β and β0
that satisfy this inequality. Scaling both vectors by the same positive scalar retains that
inequality. Thus, let’s choose β so that ‖β‖ = 1

M . We now have the optimization problem:

min
β,β0

1
2‖β‖

2

subject to yi(xTi β + β0) ≥ 1, i = 1, · · · , N.

Using optimization techniques, it proves to be possible and relatively simple to solve this
problem. I will not prove the solution for the perfectly separable case, but will do so for the
non-separable case that follows.

3.2 Classifying Overlapping Classes
Let’s now consider the cases where no such perfectly separating hyperplane exists. It is
clear that our initial method requires some modification to work properly. To do this, we
allow for points to be on the wrong side of the margin, but add a penalty for each wrongly
classified observation. We call these penalizing factors slack variables, and denote them by
ξ = (ξ1, ξ2, . . . , ξN ). We define these slack variables in terms of an optimization constraint
like our previous case:

min
β,β0

1
2‖β‖

2

subject to yi(xTi β + β0) ≥ 1− ξi, i = 1, · · · , N

where ξi ≥ 0 and
∑
ξi is less than some constant. Recall that ξi is a measure of the amount

that the variable falls on the wrong side of the margin. Bounding the sum of these ξi by
some constant will thus create a bound on the number of misclassifications. I will not provide
a proof for the maximizing hyperplane in this case, as it requires additional complex convex
optimization machinery. Ultimately, the answer proves to follow a similar structure where the
hyperplane is expressed as a combination of support vectors that depend on the misclassified
points.

3.2.1 Deriving the Optimal Hyperplane

In the previous section, we defined the optimization problem for the general linear Support
Vector Classifier. We are able to rewrite it like so:
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min
β,β0

1
2‖β‖

2 + C

N∑
i=1

ξi

subject to ξi ≥ 0, yi(xTi β + β0) ≥ 1− ξi.

In our previous section, we stated that
∑
ξi was bounded by some constant. We replace it

by C in this definition. This is a quadratic convex optimization problem, so we know how to
solve it. Using the method of Lagrange Multipliers with multipliers αi and µi, we get the
primal function

LP = 1
2‖β‖

2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(xTi β + β0)− (1− ξi)]−
N∑
i=1

µiξi. (12)

We want to find the values of β, β0 and xii. We differentiate with respect to each of these,
to get minimizing values

β =
N∑
i=1

αiyixi, (13)

0 =
N∑
i=1

αiyi, (14)

αi = C − µi,∀i, (15)
We can substitute these minimum values into (12) to get our Lagrangian

LD =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i x

T
j .

Maximizing this subject to 0 ≤ αi ≤ C and
∑
aiyi = 0 gives us a solution. Furthermore, we

can write out our additional KTT conditions for the problem:

αi[yi(xTi β + β0)− (1− ξi)] = 0,
µiξi = 0,

yi(xTi β + β0)− (1− ξi) ≥ 0.
(16)

From this and (14), we get that αi is zero when yi 6= 0, and is only nonzero when all of the

constraints are met. Recall that we found that β =
N∑
i=1

αiyixi. Thus, β is the sum of vectors

that are only nonzero when yi 6= 0. We call these vectors support vectors, hence the name of
the method.

3.3 Support Vector Machines
Up to this point, we have defined Support Vector Classifiers using linear decision boundaries
in our feature space. As discussed in previous sections, however, we know this is frequently
an inadequate strategy, as we rarely have data that actually follows that trend. As such,
it seems that SVCs would not prove to be a very successful classification model. However,
the strength of the method comes in its transformability. Consider the following graph of
observations, which is the canonical example for this purpose:
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As can be seen, there is no linear decision boundary that separates this or comes close to
separating it. However, let’s transform the points into R3, where the z-values of the xi points
are equal to ‖xi‖. Applying the transformation φ(x, y) = (x, y, x2 + y2), We end up with a
diagram that looks roughly like this:

We can now construct a plane on the z-axis that perfectly separates the two classes. Now,
transforming this back to the xy-plane, we get
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which is a circular decision boundary. As can be seen, incorporating these transformations
into our classifications allow for greater flexibility in our models, and ultimately better
results.

3.3.1 Kernel Functions

Suppose we have a transformation function h(x), that transforms our feature space. We can
define the kernel function

K(x, x′) = 〈h(x), h(x′)〉

which computes inner products in the transformed space. This transformation is commonly
referred to as the “kernel trick”. Recall that we defined our standard SVC decision function
by

Ĝ(x) = sign[xT β̂ + β̂0]

where β̂ is in the form

β̂ =
N∑
i=1

α̂iyixi.

The Support Vector Machine defined by the transformation h(x) is given by the decision
function

sign[f(x)]
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where

f(x) =
N∑
i=1

aiyiK(x, xi) + β0.

Basically, we still sum over combinations of the inputs; however, we transform those inputs
with respect to the unknown input x that we wish to classify. There are three main kernel
functions that are used in modern SVM literature:

dth-Degree polynomial: K(x, x′) = (1 + 〈x, x′〉)d,
Radial basis: K(x, x′) = (−λ‖x− x′‖2),

Neural network/sigmoid: K(x, x′) = tanh(κ1〈x, x′〉+ κ2).

To further visualize how our kernels transform the feature space, let’s consider a 2nd-Degree
polynomial kernel with kernel function K(x, x′) = (1 + 〈x, x′〉)2. Suppose that x and x′ are
both vectors in R2, where x = (x1, x2) and x′ = (x1

′, x2
′). Using the standard inner product

for Euclidean spaces, we get

K(x, x′) = (1 + 〈x, x′〉)2

= (1 + x1x1
′ + x2x2

′)2

= 1 + x2
1(x1

′)2 + x2
2(x2

′)2 + 2x1x1
′ + 2x2x2

′ + 2x1x1
′x2x2

′

We can further rewrite this expression as a dot product like so:

K(x, x′) = (1, x2
1, x

2
2,
√

2x1,
√

2x2,
√

2x1x2) · (1, (x1
′)2
, (x2

′)2
,
√

2x′1,
√

2x′2,
√

2x′1x′2).

Observe, however, that this is in the form 〈h(x), h(x′)〉 where

h(x) = (1, x2
1, x

2
2,
√

2x1,
√

2x2,
√

2x1x2).

Thus, we can see that using a kernel allows us to transform our data from taking inner
products in R2 to R6 without explicitly interacting with data in the transformed feature
space. However, we cannot simply use any function as our kernel function. Let’s define the
kernel matrix K by Kij = K(xi, xj), where xi and xj are the ith and jth input vectors. We
now have a theorem that states

Theorem 3.1 (Mercer’s Theorem). A kernel matrix must be positive semidefinite. Further-
more, for any positive semidefinite matrix, there exists φ such that K(x, y) = 〈φ(x), φ(y)〉.

Thus, we require that any valid kernel function must have a positive semidefinite kernel
matrix. Recall that a positive semidefinite matrix is a square n × n matrix M so that
zTMz ≥ 0 for any nonzero column vector z with n elements. We now have a way to verify
whether a given kernel function φ will provide a transformation that can be used for the
kernel trick.

Below are examples of different kernels applied to a specific dataset:

14



As can be seen, the different kernel functions allow for different-shaped decision boundaries.
In this case, the Radial Basis Kernel proves to be the best fit; the linear and polynomial
boundaries are too rigid for our purposes. Consequentially, the RBF kernel is typically a
good fit for a kernel function if we know there is no clear linear or polynomial separation
within the classes.

We are able to define an optimization problem for the kernel problem. Let K be the
matrix of the kernel function evaluated at two input vectors; that is, if we have input vectors
xj , Kij = K(xi, xj). We can thus state that our optimization problem has the goal of
minimizing

N∑
i=1

(1− yif(xi)) + λ

2α
TKα. (17)

This is harder to solve, and beyond the scope of this paper; refer to [1] for a further exploration
and explanation of the kernel trick.

4 Support Vector Regression
We can further generalize the Support Vector Machine model to work for questions of
regression. Suppose we have a set of input and output pairs {(x1, y1), (x2, y2), . . . , (xN , yN )}.
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We can define a simple linear regression function analogous to the linear SVC by

ŷ = xTβ + β0.

Instead of determining whether the prediction falls above or below the separating hyperplane,
the values of the hyperplane themselves act as the predictor. We still aim to pick the
hyperplane to maximize the margin, as we did when attempting to handle the issue of
classification.

As we did for classifiers, we can also consider a soft margin separator. The goal of the soft
margin for our initial SVM was to allow for misclassifications and penalize them accordingly,
through the use of slack variables. For some observation (x, y), we add the constraint

|y − (xTβ + β0)| < M + ξ

where M is the margin and ξ is our slack variable. Again, we bound
i∑

k=1
ξi above by some

constant C.

The structure of the optimization problem we need to solve is also extremely similar to
that of the linear Support Vector Classifier. We end up wanting to minimize the function

H(β, β0) =
N∑
i=1

V (yi − f(xi)) + λ

2 ‖β‖
2
, (18)

where we define

Vε(r) =
{

0 if |r| < ε,

|r| − ε, otherwise.
(19)

Vε acts as an error function that ignores errors that are smaller than ε. We are able to solve
this in a similar manner to our original problem, and get that the optimal value for β can be
expressed as the sum of support vectors. Like the classification problem, we are able to use
kernels to transform the feature pace. In this case, the transformation comes by changing
the error function and minimizing

H(β, β0) =
N∑
i=1

V (yi − f(xi)) + λ

2 ‖β‖
2
, (20)

where V is some general error measure. We ultimately find that the optimal f for this is of
the form

f̂(x) =
N∑
i=1

âiK(x, xi),

which indicates how the kernel function manifests itself.

5 Conclusions
As I discussed, Support Vector Machines provide a flexible way to both classify and regress
various datasets. While I briefly alluded to the practical applications of SVMs and how they
would be used for real-life purposes, I did not describe any additional details or further lines of
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inquiry in depth. While SVMs were originally designed and used as a two-class classification
problem, it is possible to modify them to classify inputs between several other classes. In
Chi-Wei Hsu and Chih-Jen Lin’s A Comparison of Methods for Multi-class Support Vector
Machines [5], they discuss various ways which SVMs can be used for multiclass classification
problems. Their research found that two methods, the leave-one-out method and DAGSVM
method, gave best results. The leave-one-out method constructs n SVMs if there are n classes.
Each SVM has the same data, but is reclassified to be binary on whether the observation is
in that given class or not. The DAGSVM method takes a different approach, constructing
a DAG (directed acyclic graph) with SVMs as nodes, and follows a path corresponding to
each result that eventually ends up with a final class being selected.

SVMs are also used for a variety of problems in the real world, such as face detection,
handwriting recognition, and protein folding. Although there may be newer models that may
provide higher performance on many problems, such as random forests and gradient boosting
machines, SVMs still remain relevant in the upper echelon of machine learning models. Even
if it eventually becomes outdated, the ubiquity of the kernel trick and fundamental concept
of the model will still allow it to remain as a capable example of the power that machine
learning has.

17



References
[1] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A training algorithm for

optimal margin classifiers”. In: Proceedings of the fifth annual workshop on Computational
learning theory - COLT 92 (1992).

[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[3] Corinna Cortes and Vladimir Vapnik. “Support-vector Networks”. In: Machine Learning
(1995), pp. 273–297.

[4] Trevor J. Hastie, Robert John Tibshirani, and Jerome H. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer, 2009.

[5] Chi-Wei Hsu and Chih-Jen Lin. “A Comparison of Methods for Multi-class Support
Vector Machines”. In: IEEE Transactions on Neural Networks (2002), pp. 415–425.

[6] William Karush. “Minima of Functions of Several Variables with Inequalities as Side
Constraints”. PhD thesis. Chicago, Illinois: University of Chicago, 1939.

[7] Harold W. Kuhn and Albert W. Tucker. “Nonlinear Programming”. In: Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and Probability (1951),
pp. 481–492.

[8] Peter Sollich. “Bayesian Methods for Support Vector Machines: Evidence and Predictive
Class Probabilities”. In: Machine Learning (2002), pp. 21–52.

18


	Introduction
	Definitions and Background
	Convex Optimization
	The Karush-Kuhn-Tucker Conditions

	Supervised Learning
	Statistical Models as a Function
	Bias and Variance
	Case Study: Linear Regression
	Benefits and Downsides of Linear Regression


	Support Vector Classifiers
	Maximum Margin Classifier
	Classifying Overlapping Classes
	Deriving the Optimal Hyperplane

	Support Vector Machines
	Kernel Functions


	Support Vector Regression
	Conclusions

