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1. Introduction

Consider polynomial equations with integer coe�cients where we look for rational solutions. Dio-

phantus initiated the study of these equations around AD 200 which is why we refer to them as

Diophantine equations. Mathematicians have been interested in them for hundreds of years, and as

a consequence, the study has given rise to di�erent mathematical subjects, results, and methods.

Hilbert's 10th problem asked if there existed an algorithm for determining whether any Diophantine

equation had a solution with integer values. In 1970, Yuri Matiyasevich, along with a few other

mathematicians, proved that no such algorithm existed. However, studying speci�c types of Dio-

phantine equations and describing their solution sets is still an interesting and di�cult problem.

The paper "Invitation to Integral and Rational points on Curves and Surfaces" by P. Das and A.

Turchet explores solution sets by examining geometric and arithmetic properties of curves. We will

see that solving Diophantine equations often reduces to studying rational points on their respective

curve representation. A point (x, y) is a rational point if the coordinates x, y are rational numbers.

Additionally, if x, y satisfy f(x, y) = 0 for some f , we call x, y rational solutions to f . We will

explore algebraic and geometric properties of curves. In particular, we will look at curves based on

'genus', an invariant, which we will de�ne later. Then, we will consider speci�c examples for curves

of di�erent genus, namely the Pell Equation and Elliptic curves, to see how genus can correlate to

the number of solutions an equation may have. Finally, we will cite important results, including

Faltings' Theorem, the Uniformity Conjecture, and a few others as well as discuss their signi�cance.
1
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2. Algebraic Curves

We consider the solutions to Diophantine equations as curves to understand the relationship be-

tween genus and the number of rational points. First, we de�ne some some technical terms from

algebraic geometry that will be essential to our discussion.

Assuming the reader has a basic understanding of abstract algebra, we will move on to de�ning

algebraic curves and their geometric properties. A plane a�ne algebraic curve C de�ned over a

�eld K is the set of points (x, y) ∈ K2 that satisfy f(x, y) = 0 where f ∈ K[x, y]. For simplicity,

we will focus on a�ne plane curves over Q.

To every a�ne algebraic curve we can associate a projective curve in the projective plane P2.

The reason for working in projective space is so that there we can �nd as many solutions as possible

to polynomial equations.

De�nition 2.1. The projective plane is set of equivalence classes of triples [a : b : c], with a, b, c

not all 0, such that two triples [a : b : c] and [a′ : b′ : c′] are considered to be the same point if there

is a nonzero t such that a = ta′, b = tb′, and c = tc′, a, b, c are said to be homogeneous coordinates

for the point [a, b, c].

For instance, the point (x, y) ∈ A2, can be associated to [x, y, 1] ∈ P2. Now suppose you have

[a, b, c] ∈ P2, then we associate (a/c, b/c) ∈ A2. The points where c = 0, are points not in A2, but

are in P2. These points in P2 are known as `points at in�nity'. Thus, P2 is the set of all a�ne

points adjoining the points at in�nity, so we can see that A⊂P2. In order to de�ne curves in P2, we

need polynomials in three variables because points in P2 are represented by homogeneous triples.

However, we saw that each point in P2 can be represented by several di�erent homogeneous triples.

Hence we look only at polynomials with the property that if f(a, b, c) = 0, then f(ta, tb, tc) = 0 for

all t. These are calledhomogeneous polynomials, and we use them to de�ne curves in P2.

De�nition 2.2. A polynomial f(X,Y, Z) is called a homogeneous polynomial of degree d if it sat-

is�es the identity

f(tX, tY, tZ) = tdf(X,Y, Z).

Now we have the tools to de�ne projective curves.

De�nition 2.3. A projective curve C de�ned over K is the set of points [x : y : z] ∈ P2 that satisfy

f(x, y, z) = 0

where f ∈ K[x, y, z] is a non-constant homogeneous polynomial.

Note that a curve is irreducible if its de�ning polynomial cannot be factored into two non-constant

polynomials. The degree of an irreducible curve is the degree of a de�ning polynomial for the curve.

For example, a line given by ax+by+c = 0 is irreducible where ax+by+c is the de�ning polynomial,

and is a curve of degree 1. The reason for considering irreducible curves can be explained by a simple

example. The equations f(x) = x = 0 and f(x) = x2 = 0 de�ne the same curve since they have the



RATIONAL POINTS ON CURVES 3

same solution, x = 0. Notice that x2 is not irreducible since it can be factored into x · x. Hence we
consider irreducible curves. In the following sections we will look at sets of solutions to both a�ne

and projective curves. Prior to that, we must de�ne genus as it is the invariant by which we hope

to classify curves. Genus depends on the degree of a curve as well as the multiplicities of singular

points. If C is a curve and P = (a, b) ∈ C then P is called a simple point of C if either partial

derivatives Cx(P ) 6= 0 or Cy(P ) 6= 0. In this case, the tangent line at P is well de�ned. A point

that is not simple is called a multiple or singular point. A curve with only simple points is called a

non-singular. We let mP (C) be the multiplicity of a singular point which represents the number of

times P appears as a root of C : f(x, y) = 0. Furthermore, a singular point P on the curve is called

an ordinary multiple point if it has mP (C) distinct tangents at P . For a more thorough discussion

on local properties of plane curves, refer to [7].

Proposition 2.4. Let C be a curve with at most ordinary multiple points. Then the genus of C is

given by

g =
(d− 1)(d− 2)

2
−
∑
Psing

mP (C)(mP (C)− 1)

2

where d is the degree of C.

The degree-genus formula above is a way to compute the genus and we will use it as our de�nition

of genus for this paper. In general, when given a curve, as long as the curve is not `too' singular, the

genus increases as the degree of the curve increases. If a curve is non-singular, the genus is solely

given by the degree of the curve. In the next few sections will discuss the role of genus and other

algebraic properties of curves that give us insight into their solution sets.

3. Genus 0

By our de�nition of genus, smooth curves of genus 0 are given by polynomial equations of degree

1 or 2, namely lines and conics. The general equation of a line is g(x, y) = ax+by+c = 0. Similarly,

the general conic equation is given by

g(x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0(3.1)

Since we are interested in Diophantine equations, we will consider lines and conics with rational

coe�cients. Furthermore, lines and conics are simple objects that most people are familiar with,

so understanding their set of rational points is essential to understand those of curves with higher

genus.

De�nition 3.1. We call (x, y) ∈ C : g(x, y) = 0 rational if (x, y) ∈ Q2.

Equations of degree 1 with rational coe�cients, or lines with rational coe�cients, have in�nite

solutions. Next we want to see if the same holds for curves of genus 0, but of degree 2. One example

of extensively studied smooth curves with genus 0 and degree 2 are those given by Pell equations.

It is interesting to note that Pell equations represent hyperbolas in the plane. An application of

Pell equations is in Diophantine approximation since they can be used to approximate quadratic

irrationals.
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Pell equations are of the form

x2 − dy2 = 1(3.2)

where d ∈ N and where d is not a perfect square. If d were a perfect square, i.e. d = n2, the equation

has only the trivial solutions (−1, 0) and (1, 0); when (x, y) ∈ Z2, we have (x + ny)(xny) = 1, so

x = ±ny have both to divide 1 and thus must be equal to ±1. Note that the trivial solutions

are always solutions to the Pell equation, but we want to hopefully �nd all possible solutions.

Additionally, if (x, y) is a solution, then so is (−x,−y), so we can focus on positive solutions. We

can do this by using the continued fraction expansion of
√
d.

De�nition 3.2. A continued fraction is an expression of the form

a0 +
1

a1 +
1

a2+...

and it is a theorem that irrational numbers can be written as in�nite continued fractions. Typi-

cally, we express the in�nite continued fraction as [a1, . . . , an, . . .].

De�nition 3.3. The nth convergent of an irrational number α = [a1, . . . , an, . . .] is de�ned as the

rational number pn
qn

that satis�es:

pn
qn

= [a1, a2, . . . , an]

The reader may refer to chapters 12 and 13 in [8] for more details about continued fractions and

the Pell equation. The next example will show how the continued fraction expansion of
√
d allows

us to �nd solutions to the Pell equation.

Example 3.4. Suppose you have the following Pell equation with d = 2:

x2 − 2y2 = 1(3.3)

Then, the continued fraction expansion of
√
2 is

√
2 = 1 +

1

1 +
√
2

= 1 +
1

1 + (1 + 1
1+
√
2
)

= 1 +
1

2 + 1
1+
√
2

. . .

The �rst convergent is 3
2 . Notice that setting x = 3 and y = 2 in (3.2) gives a solution. Furthermore,

(−3, 2), (3,−2), and (−3,−2) are also solutions. Figure 1 is the curve of (3.2) with the trivial

solutions as well as the solutions we found by continued fractions. The convergent that gives the

smallest x is known as the fundamental solution. In this example, (3, 2) is the fundamental solution,

since one can prove that further convergents yield a larger numerator. So why are we interested in the

fundamental solution? The signi�cance of the fundamental solution to a Pell equation is established

by the following theorem:
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Theorem 3.5. Let (x1, y1) be the fundamental solution of the Pell equation x2 − dy2 = 1 where d

is a positive integer that is not a perfect square. Then all positive solutions (xk, yk) are given by

xk +
√
dyk = (x1 +

√
dy1)

k

Since we can take k to be any power, the Pell equation has in�nitely many integer solutions.

Hence we have some evidence that non-singular genus 0 curves have might in�nitely many rational

solutions.

Figure 1. Plane curve of Pell equation with d = 2

However, consider the equation x2 + y2 − 3 = 0 representing the circle of radius
√
3. The curve

is non-singular and of degree 2 so has genus 0.

Example 3.6. Claim: x2 + y2 − 3 = 0 has no rational solutions. Suppose for contradiction that

the equation has a rational solution. Then there exist a, b, c ∈ Z, with c 6= 0, such that x = a
c and

y = b
c . Hence a

2 + b2 = 3c2 and a, b, c have no common factor greater than 1. Note that a2 + b2 is

divisible by 3 since 3q2 is. It follows that a and b are divisible by 3 since if one or both of a and b

is not divisible by 3, then

a2 + b2 ≡ 1(mod 3) or a2 + b2 ≡ 2(mod 3)

It then follows that c is divisible by 3, contradicting our assumption that a, b, c have no common

divisor greater than 1.

These examples provide some evidence that non-singular curves of genus 0 have either in�nite

or no rational points. In general, the following theorem states that the existence of one rational

point on a conic implies that there are in�nitely many rational points. The proof is fairly simple to

understand as it takes an intuitive geometric approach. First we provide a useful theorem and then

a simple example to motivate the geometric process of �nding rational points on a conic where we

know there exists one rational point.

Theorem 3.7 (Bézout's theorem). LetC1 and C2 be non-singular projective curves with only transver-

sal intersections. Then,

#(C1 ∩ C2) = (deg C1)(deg C2)
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Example 3.8. Consider the equation x2 + y2 = 1, the equation for the unit circle shown in Figure

2. Expressing this in the general form, we have g(x, y) = x2+y2−1 = 0. Then, we know there exists

a rational point (35 ,
4
5) which we will denote by P. Then we can pick a line with rational slope going

through P which will intersect at another point Q by Bézout's theorem. Q will also be rational since

our line equation has rational coe�cients and we are plugging in a rational point. For instance, if

we take the line y = 1
3x+ 3

5 through P, we have another intersection at Q = (−24
25 ,

7
25).

Figure 2. Unit circle with known rational point P and rational line intersecting at

that point.

In the above example, we took one rational line, but we can take in�nitely many rational lines

through P and obtain in�nitely many rational points on the conic. Now we are ready to consider

the general case. For convention, we let C(Q) denote the set of rational points on a curve C.

Proposition 3.9. Given a smooth projective curve C de�ned over Q of genus 0, one of the following

holds:

(1) If C(Q) 6= ∅, then C(Q) is in�nite

(2) C(Q is empty

Proof. In the case when C(Q) = ∅ there is nothing to prove, so we prove (1). Suppose there exists

a rational point (x, y) on C : g(x, y) = 0. Now take the line L parameterized by x = x + tu and

y = y + t where u ∈ Q. L will intersect the conic at another point by Bezout Theorem. We claim

that the second point of intersection is also a rational point.

g(x+ tu, y + t) = a(x+ tu)2 + b(x+ tu)(y + t)+

+c(y + t)2 + d(x+ tu) + e(y + t) + f

Since the �rst point (x, y) corresponds to t = 0 in L and g(x, y) = 0, we can see that the constant

term f vanishes. We continue to simplify and get

g(x, y) = t2(au2 + bu+ c) + t(du+ e+ 2ax+ bx+ byu+ 2cy)

Therefore, after rearranging, the second intersection point corresponds to

t2 =
du+ e+ 2aux+ bx+ byu+ 2cy

au2 + bu+ c
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Since u ∈ Q can be chosen arbitrarily, we get in�nitely many valued for t2 and hence in�nitely many

rational points on the curve given by (x+ t2u, y + t2). Thus, as long as we �nd one rational point,

we can �nd in�nitely many rational points on a conic, proving the result. �

Note that the above proposition only applies to smooth conics. However, one can prove that

singular conics are unions of overlapping lines. Thus, the proposition can be extended to singular

conics.

4. Genus 1

The genus equation we provided in section 2 tells us that smooth cubics are genus 1. A smooth

projective curve of genus 1 over Q with a rational point is called an elliptic curve over Q. Our main

focus will be elliptic curves since they have been thoroughly studied in di�erent areas of mathematics

and their group structure makes them more approachable than other curves. First we will provide

some de�nitions and then prove the Mordell-Weil theorem. Up to change of coordinates, any elliptic

curve can be rewritten in Weierstrass normal from which is

E(x, y) : y2 = x3 + ax2 + bx+ c

Eaquations in Weierstrass normal form are symmetric about the x-axis. As well as a�ne solutions,

we would like to include solutions in P2. Thus we can extend E(x, y) to a function E(x, y, z) by

homogenizing. This means that we want E(x, y, z) to be a homogeneouos polynomial and E(x, y)

to correspond to E(x, y, 1). The method of homogenization is explained in [6]. With this in mind,

we denote the set of rational points on an elliptic curve by E(Q) and de�ned to be

E(Q) = {(x, y, z) ∈ P2 : E(x, y, z) = x3y2z + axz2 + bz3 = 0}(4.1)

Note that the only point in E(Q) with z = 0 is the point (0, 1, 0) which represents the point at

in�nity, O.

When we discussed conics earlier, we saw that if a rational point is already known, we can �nd

more by a geometric method. Similarly, in elliptic curves, given two rational points, P and Q,
we can take the line between these points, PQ, and obtain a third intersection P ∗ Q by Bézout's

theorem. PQ will have rational coe�cients so P ∗ Q is also rational. Finally, we can re�ect this

P ∗ Q about the x-axis to obtain another rational point which we call P + Q. We claim that the

binary operation + makes the set E(Q) into an abelian group. This operation will be refered to as

`adding points' on elliptic curves. Figure 3 provides a visual interpretation of adding points.

4.1. Group of E(Q). By the discussion on adding points above, we can de�ne the following.

De�nition 4.1. Let E be a an elliptic curve and take the point at in�nity on E to be O. Then, for
for arbitrary rational points P,Q ∈ E, de�ne P +Q = O ∗ (P ∗ Q).

After establishing the binary operation of adding points on elliptic curves, we claim that the set

of rational points forms an abelian group. The reader will notice that proving commutativity as well

existence of an identity and inverses is rather simple. However, proving the associativity property

for rational points on elliptic curves is tidious. Due to this, we will assume associativity is satis�ed

and prove the other properties.
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Figure 3. Adding points on elliptic curves

Theorem 4.2. In the conditions of the de�nition above, (E(Q),+) is an abelian group.

The following propositions, along with the associativity property (not proven in this paper), will

prove the above theorem. For a proof and explanation of the associativity property refer to [6].

Proposition 4.3. The operation + on E(Q) is commutative.

Proof. Commutativity of + is implied by the commutativity of ∗ which is obvious. �

Proposition 4.4. The point at in�nity, O, is the identity on E(Q).

Proof. Suppose Q = O and P ∈ E. Then P +O = O ∗ (P ∗O). The line PO intersects E at P,O,
and P ∗O. This line is the same as the line O(O∗P) since it intersects E at the same points. Hence

O(O ∗ P) = P which implies O is the identity on (E(Q),+) �

Proposition 4.5. E(Q) has inverse elements.

Proof. Let P ∈ E(Q), S = O + O, and P ′ = P ∗ S. Then, P ∗ P ′ = S and P + P ′ = O ∗ S = O.
Hence P ′ is an inverse for P �

4.2. Mordell-Weil Theorem. Now that we have formally de�ned ellitic curves and their group

law, we can prove the Mordell-Weil Theorem which states that the group E(Q) is �nitely generated.

This theorem requires that E(Q)/2Q is �nite, which is the statement of the Weak Mordell-Weil the-

orem. Here, we use 2E(Q) to denote the subgroup of E(Q) consisting of points which are twice

other points. In addition, we also need the existence of a height function with speci�c properties.

Height functions and the Weak Mordell-Weil theorem will not be discussed in this paper, but more

details can be found in [6]. Thus we will prove the Mordell-Weil theorem by assuming certain facts

and applying some basic group theory.

First, we de�ne the height of a rational point.

De�nition 4.6. Let P = (x, y) be a rational point on E and let x = a
b . Then the height of P is

given in terms of the x coordinate:

H(P ) = H(x) = H

(
a

b

)
= max{|a|, |b|}
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for convenience we will de�ne 'small h' to be

h(P ) = logH(P )

Assuming the Weak Mordell-Weil theorem as well as three other properties of a height function,

we are ready to prove the Mordell-Weil Theorem.

Theorem 4.7. (Mordell-Weil) Let E(Q) represent the abelian group of rational points on E. Sup-

pose that there exists a function

h : E(Q)→ [0,∞)

with the following properties:

(1) For every real number M , the set {P ∈ E(Q) : h(P ) ≤M} is �nite.
(2) For every P0 ∈ E(Q), there is a constant k0 so that

h(P + P0) ≤ 2h(P ) + k0 for all P ∈ E(Q)

(3) There is a constant k so that

h(2P ) ≥ 4h(P )− k for all P ∈ E(Q)

(4) The subgroup E(Q)/2E(Q) is �nite.

Then E(Q) is �nitely generated.

Proof. We know that there are �nitely many cosets of 2E(Q) so let Q1, Q2, . . . , Qn be representatives

for the cosets. Let i1 denote indexing of cosets. Then for any P ∈ E(Q),

P −Qi1 ∈ 2E(Q)

since P has to be in a coset. Hence, we can rewrite

P −Qi1 = 2P1

For some P1 ∈ E(Q). We apply the same method to P1 and so on to obtain

P1 −Qi2 = 2P2

P2 −Qi3 = 2P3

. . .

Pm−1 −Qim = 2Pm

where each Qij are chosen coset representatives from our original list. Additionally, Pj ∈ E(Q).

With these equations, we can do some substitution rewrite P as

P = Qi1 + 2Qi2 + 4Qi3 + . . .+ 2m−1Qim + 2mPm(4.2)

This shows us that P ∈ E(Q) is generated by the cosets as well as Pm. Note that by (1) the set

of points with height less than some arbitrary bound M is �nite. Hence it su�ces to show we can

pick m large enough so that the height of Pm will be less than a �xed bound. Then the �nite set of

points with height less than the height of Pm and the Qis will generate E(Q).
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Pick Pj and apply (2) with −Qi = P0. Doing so we get

h(Pj−1 −Qi) = h(2Pj) ≤ h(Pj−1) + kj

By (3), we have

4h(Pj) ≤ 2h(2Pj−1) + k = h(Pj−1)−Qij + k ≤ 2h(Pj−1) + k′ + k

rearranging terms,

h(Pj) ≤
1

2
h(Pj−1) +

k′ + k

4
=

=
3

4
h(Pj−1)−

1

4
(h(Pj−1)− (k′ + k))

So in the case when h(Pj) ≥ k′ + k, we have

h(Pj) ≤
3

4
h(Pj−1)

The heights will approach 0 as j →∞ so we can �nd m so that h(Pm) ≤ k′+k. Thus every element

in E(Q) can be written as

P = a1Q1 + a2Q2 + . . .+ anQn + 2mR

for ai ∈ Z and R ∈ E(Q) that satis�es h(R) ≤ k′+ k. Hence the �nite set of points with height less

than k′ + k along with the Qis will generate the group of rational points on E. �

In particular, the theorem implies that we can always �nd a �nite extension of Q for which any

given elliptic curve has in�nitely many rational points. The proof requires more than the elementary

group theory we have used to prove the theorem above, so for more details, refer to [6].

5. Genus ≥ 2

Describing the set of rational points of genus 1 curves, particularly elliptic curves, was more

di�cult than describing the set of rational points for genus 0 curves. These di�culties were due to

the way lines intersect with cubics and the required group theory to prove that the set of rational

points on an elliptic curve is a �nite set. Describing the set of rational points for genus 2 curves is

even more complicated. The Mordell Conjecture, one of the most famous problems in arithmetic

geometry, hypothesized that curves of genus 2 or higher had a �nite number of solutions. Gerd

Faltings, a German mathematician, proved the result in 1983. The theorem states the following

Theorem 5.1. Faltings' Theorem (1983) Let C be a smooth curve de�ned over Q of genus ≥ 2.

Then, the number of rational points on C is �nite.

In other words, Faltings' theorem tells us that all curves which have genus 2 have a �nite number

rational points. Faltings' theorem can be applied to curves over �nite extensions of Q, which is much

stronger. Additionally, the theorem provides an e�ective upper bound for the number of rational

points on a given curve, but it depends on many di�erent properties. The proof of the theorem is

highly nontrivial and beyond the scope of this paper, but the reader may refer to [3] for the proof.
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6. Uniformity of Rational Points

Faltings' theorem gives a result based on solely the genus of curves. Since the theorem was

proven, mathematicians have wondered if the genus can tell us anything else about the number

of rational points that a curve may have. Lucia Caporaso, Joe Harris and Barry Mazur raised a

relevant question in their paper "Uniformity of Rational Points". The conjecture in their paper

states the following

Conjecture 6.1. Uniformity Conjecture Let g ≥ 2 be an integer. There exists a number B(g),

depending only on g, such that for any smooth curve C with �xed genus g de�ned over Q, the number

of rational points on C is less than B(g).

Although this result is a conjecture, it suggests that genus essentially categorizes curves by the

upper bound to number of solutions they may have. Another reason for its importance is that there

exists a large amount of evidence supporting the conjecture. One example is the following theorem:

Theorem 6.2. Katz, Rabino�, Zureick-Brown (2016) Let C be any smooth curve of genus g

and let r = rank(JC). Suppose that 0 ≤ r ≤ g − 3. Then,

#C(Q) ≤ 84g2 − 98g + 28

Understanding the concepts required for this theorem, such as rank(JC), requires some knowledge

of algebraic geometry. However, for our purposes, note that since r is non negative this theorem

applies to curves of genus 3 or higher. Hence the theorem provides an upper bound on the number

of rational points that is solely dependent on the genus, thus supporting the Uniformity Conjecture.

7. Conclusion

By Faltings' theorem, we know that for genus 0 the solution set is either in�nite or empty. We

proved this by drawing lines with rational slope through a known rational point and then seeing

that the line intersected the curve at another rational point. Then for genus 1 curves, like Elliptic

curves, there are an in�nite number of solutions up to a �nite extension of Q. To show this we

came up with a geometric procedure to �nd more points from known ones. Then by the Mordell-

Weil theorem we saw that the set of rational points on an elliptic curve is a �nitely generated set.

From these results, we have some evidence that genus, and hence the degree of of a curve, gives

us some idea what the set of rational points on a given curve might be. The next step towards

uniformity was brought up by Caporaso, Harris, and Mazur who hoped to provide upper bounds

on the set of rational points on curves solely dependent on genus [4]. Furthermore, Katz, Rabino�,

Zureick-Brown were also able to provide an upper bound, dependent on genus, for curves of genus

3 or higher. However, much is still unknown for curves of genus 2.
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