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1 Introduction

In this paper, we build up the theory and machinery required to understand persistent
homology, and give an introductory overview to its tools and applications. At the
highest level, persistent homology is an extension of homology, which is itself an
extremely broad algebraic and topological field of study. Briefly, homology theory
aims to concretely classify and rigorously define the notion of holes, boundaries, and
volumes. These concepts are intuitively topological; for example, a sphere has a
missing volume whilst a ball does not, and a torus has another hole in the middle
that a sphere lacks. It turns out that these topological differences can be attacked
algebraically, by essentially breaking the spaces down into closed ‘cycles’ of various
dimensions, which may or may not be the boundaries of regions.

The novelty of persistent homology is in applying homology theory to ‘uncertain’
spaces. The precise meaning is this: with homology, we are given a space, and
then tasked with finding its holes. Persistent homology (and more generally the area
of topological data analysis) aims to recover a topological space (characterized by
its holes), given some set of incomplete information. The most usual case, which
persistent homology deals with, would be sets of point cloud data, which we can
consider to be finite subsets of arbitrary metric spaces. Obviously, we can give the
data the discrete metric, but this might as well be topologically trivial. Instead,
we want to image the data at various spatial resolutions; more precisely, we want
to fatten up the point cloud space by looking at the covering space generated by
taking larger and larger balls around each point. One can imagine, for example, a
set of points sampled from a torus. As we increase the size of the balls around the
points, the covering space gets fatter and fatter until we have something resembling
a ‘bumpy’ torus. This is topologically a torus nonetheless, and we have recovered
(in some loose sense, with some uncertainty) the original topological structure of the
data.

Unlike traditional methods of data analysis, which can also perform these kinds
of classification tasks, persistent homology as constructed is dimensionless. We need
not constrain ourselves to lower dimensional datasets, and can instead construct or
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directly deal with high-dimensional datasets. The resultant persistent topological
spaces will likely also be of high-dimension, but this is not a problem, as we welcome
any persistent structure.

A natural question of representation then arises. How do we characterize and
encode this persistent homological information? The answer lies in tracking the holes
over time, and looking at the homological differences between the images of the space
at different times (where time represents the fatness parameter). This information
can then be visually represented in a persistence diagram, which pairs the births and
deaths of the homological features over time. We give a brief definition of this at the
end of the paper.

2 Fundamentals

The theory of homology sits at the intersection of algebra and topology, so we first
give some preliminary definitions.

2.1 Group Theory

Definition 2.1. A group is a tuple (G, ·) where G is a set and · : G × G → G is a
function so that

(i) For all a, b ∈ G, a · b ∈ G.

(ii) For all a, b, c ∈ G, a · (b · c) = (a · b) · c.

(iii) There is an element e ∈ G so that a · e = e · a = a for all a ∈ G.

(iv) For all a ∈ G, there is an element a−1 ∈ G so that a · a−1 = a−1 · a = e.

A group whose operation is commutative (i.e., a · b = b · a for all a, b ∈ G) is called an
abelian group, and its operation is conventionally denoted +. We often refer to the
underlying set as the group, and specify the operation.

Definition 2.2. Let (G, ·) and (H, ◦) be abelian groups. Then the direct sum of
G and H is the abelian group formed from G × H with operation + defined by
(a, b) + (c, d) = (a · c, b ◦ d) for all (a, b), (c, d) ∈ G ×H. We write G ⊕H to denote
the direct sum.

Definition 2.3. Let (G, ·) be a group. A subset H ⊆ G that is also a group under ·
is a subgroup of G.

Groups are generalizations of common algebraic structures, e.g. Z over addition
and R \ {0} over multiplication (in fact these are abelian).
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Definition 2.4. Let (G, ·) be a group, and H be a subgroup. For each a ∈ G, the
left coset of H in G with respect to a is the set aH = {a · h : h ∈ H}. Similarly, the
right coset is defined to be Ha = {h · a : h ∈ H}. H is said to be normal if aH = Ha
for each a ∈ G.

Definition 2.5. Let (G, ·) be a group, and H be a normal subgroup of G. Then the
group G/H is the set {aH : a ∈ G} with operation (aH)× (bH) = (a · b)H. We call
this group the quotient group of G by H.

Remark. We require H to be normal in order to satisfy associativity over ×.

Definition 2.6. Let G and H be groups with operations · and ×. A function f :
G → H is a group homomorphism if f(a · b) = f(a) × f(b) for all a, b ∈ G. If f is a
bijection, then we call f an isomorphism, and say G is isomorphic to H. We denote
this relation by G ' H.

We can think of group homomorphisms as functions that preserve the group struc-
ture.

2.2 Topology

Definition 2.7. Let X be a set. A topology τ on X is a collection of subsets of X
such that

(i) X ∈ τ and ∅ ∈ τ ,

(ii)
⋃
U∈κ U ∈ τ for any κ ⊆ τ ,

(iii)
⋂n
i=1 Ui ∈ τ for any finite collection of Ui ∈ τ.

The elements of τ are called open sets. We call the ordered pair (X, τ), or simply X
if the choice of τ is clear or arbitrary, a topological space.

Definition 2.8. Let X and Y be topological spaces. A function f : X → Y is said
to be continuous if f−1(U) is open in X for each open U ∈ Y , where f−1(U) = {x ∈
X : f(x) ∈ U}.

These definitions allow us to reason more abstractly about the (usually) geometric
notions of ‘nearness’ (but not distance) and continuity; indeed, we don’t need a metric
space for these properties to make sense, although a metric induces a topology (cf. the
ε, δ definition of continuity in Euclidean space, which ultimately reduces to reasoning
about open ‘balls’).

Definition 2.9. Let M be a set, and let d : M ×M → R satisfy for all x, y, z ∈M :

(i) d(x, y) ≥ 0,
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(ii) d(x, y) = 0 if and only if x = y,

(iii) d(x, y) = d(y, x),

(iv) d(x, z) ≤ d(x, y) + d(y, z).

We say that d is a metric on M , and that the pair (M,d) is a metric space. Often we
simply refer to the underlying set M as the metric space, when the choice of metric
is clear.

A metric tells us the ‘distance’ between elements of a set, and satisfies intuitive
geometric properties. We are familiar with the Euclidean metric on Rn, which allows
us to define the standard topology more directly using open balls. This applies
generally, where we can define an open ε-ball about x on (M,d) as the set Bε(x) =
{y ∈ M : d(x, y) < ε}. We can then define the open sets to be those whose points
have open balls contained fully within the set.

Definition 2.10. LetX and Y be topological spaces. A continuous, bijective function
f : X → Y whose inverse f−1 : Y → X is also continuous is called a homeomorphism.
We say that the spaces X and Y are homeomorphic if there exists a homeomorphism
between them.

Homeomorphisms preserve topological properties of spaces, as they directly link
their open sets. By themselves, however, homeomorphisms do not immediately tell us
much about the structure of a topological space (just that two spaces behave the same
way topologically, which can be vague). If want to understand and characterize the
structure of a particular space more concretely, we need to develop some machinery.

3 Homology Theory

We now give an exposition of homology theory and its goals, via the straightforward
construction of simplicial homology.

3.1 Motivation

Consider the classic example of a ball and a torus. One should hopefully immediately
notice that these spaces are different in some concrete way — the ball is ‘complete’ in
some sense, whilst the torus has a ‘hole’ in the middle. A more familiar 2-dimensional
analogue would be a disk and an annulus in R2. At the level of elementary complex
analysis, the differences between these two spaces already become imperative in the
statement of various theorems. For example, many theorems require domains to be
simply connected, which simply stated is the property of being able to ‘continuously
shrink’ every closed loop in the domain to a point in the domain. The annulus (and
torus) fails in this regard, as no loop enclosing the inner circle can be shrunk to a point
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in the annulus. Homology theory aims to concretely classify these topological holes,
by passing topological spaces to algebraic structures that reveal more information.

3.2 The Chain Complex Structure

Homology theory is fundamentally the study of certain algebraic structures called
chain complexes. We first give some formal definitions.

Definition 3.1. Let (G,+) be an abelian group. The rank of G is the cardinality
of the largest linearly independent subset S ⊆ G. That is, the largest set S = {ak}
so that every finite integral linear combination

∑
k nkak = 0 only if each nk is 0. We

denote this by rank(G).

Definition 3.2. Let S = {b1, · · · , bn} be a finite set. The free abelian group generated
by S is the abelian group (G,+) where G is the set of formal sums of S:

G = {a1b1 + · · ·+ anbn : aj ∈ Z for 1 ≤ j ≤ n}.

Here aibi is defined as bi + bi + · · · + bi or −bi − bi · · · − bi (i.e, repeated application
of the group operation ai times on bi or b−1

i = −bi, depending on sign).

It may be tempting to assign significance to these formal sums, but one should
mainly take it as a way of quickly generating an abelian group, unless additional
information is attached to these sums.

Lemma 3.1. Let G be the free abelian group generated by {b1, · · · , bn}. Then G ' Zn,
where Zn = Z⊕ · · · ⊕ Z is the direct sum of n copies of Z under addition.

Proof. We define the isomorphism f : Zn → G by

f [(x1, · · · , xn) + (y1, · · · , yn)] = (x1b1 + · · ·+ xnbn) + (y1b1 + · · ·+ ynbn),

f−1[(x1b1 + · · ·+ xnbn) + (y1b1 + · · ·+ ynbn)] = (x1, · · · , xn) + (y1, · · · , yn).

This isomorphism will help us assign some basic numeric meaning to the groups
that arise in homology theory. We now come to the central definition.

Definition 3.3. A chain complex is a tuple (A∗, ∂∗), where A∗ = (· · · , A0, A1, A2, · · · )
is a sequence of abelian groups, and ∂∗ = (· · · , ∂0, ∂1, ∂2, · · · ) is a sequence of group
homomorphisms (here called the boundary operators) with each ∂n : An → An−1

satisfying ∂n ◦ ∂n+1 = 0n. Here 0n : An → 0 denotes the homomorphism to the trivial
group 0 with only the identity element. We sometimes refer to the underlying group
sequence A∗ as the chain complex, and supply the boundary operator.
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We can visualize this complex as a diagram:

· · · A2 A1 A0 · · ·∂3 ∂2 ∂1 ∂0

In isolation, chain complexes seem removed from topological constructions. However,
we can assign topological meaning to each group and homomorphism.

We give an informal example and discussion. Consider the graph-like topological
space X (perhaps as a subspace of R2) depicted in Figure 1. Suppose we want to

x0

x1

x2

x3

e0

e1

e2

e3

e4

A

Figure 1: The topological space X, consisting of points {x0, · · · , x3}, (di-
rected) edges {e0, · · · , e4}, and area A. In this example, the orientations
of the edges are induced by the vertex index order.

classify how many holes X has. Looking at the structure, it seems like X has a hole
enclosed by the edges e2, e3, e4 (compare this to area A enclosed by e0, e1, e3, which
is contained in X). We can form the chain complex

· · · 0 C2 C1 C0 0 · · ·∂4 ∂3 ∂2 ∂1 ∂0 ∂−1

where C2 is the free abelian group generated by {A}, C1 the one generated by
{e0, · · · , e4}, and C0 the one generated by {x0, · · · , x3}. As the name suggests, let’s
make the boundary operator ∂2 take A to its edge boundary, given by the formal sum
e1 + e3 − e0. We subtract e0 here to mean a reversal of orientation, making the sum
denote a cycle from x0 → x1 → x3. This agrees with our geometric intuition of a
boundary being a closed curve. Then for each edge e, we make the operator ∂1 take
e to v1− v0, where v0 is the starting point and v1 the ending point. The signs attach
a direction to each point (i.e. origin vs. destination), which don’t have orientations
themselves.

We can check that the boundary operators satisfy the required identities:

∂1∂2(A) = ∂1(e1 +e3−e0) = ∂1(e1)+∂1(e3)−∂1(e0) = x1−x0 +x3−x1−x3 +x0 = 0,
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v0 v1

− +

Figure 2: Point orientation on an edge.

∂0∂1(e) = ∂0(v1)− ∂0(v0) = 0.

If we consider the areas of X as “2-cells”, line segments as “1-cells”, and points as “0-
cells”, we can consider C2 as the group of “2-chains” (i.e., integral linear combinations
of 2-cells), and likewise for C1, C0. The boundary operators tell us that

(i) a cycle of n-cells has no boundary, and

(ii) the boundary of an n-cell is a cycle of (n− 1)-cells.

Then, to find n-dimensional holes in a space (by which we mean holes enclosed by
n-chains), we just need to find n-cycles that are not the boundaries of (n+ 1)-cells.

More precisely, the group of n-dimensional holes enclosed by n-chains is given by
the quotient group

Hn(X) = ker ∂n/ im ∂n+1 = Zn/Bn,

where Zn ⊆ Cn is the subgroup of n-cycles in Cn, and Bn ⊆ Cn is the subgroup of
n-cycles in Cn that are also the boundary of (n+1)-cells in Cn+1. For spaces composed
of finitely many cells, each Hn(X) ' Zk for some k. In either case, we have a general
measure for the n-dimensional holes of X. For X, a computation shows that

H1(X) ' Z2/Z ' Z,

which can be interpreted as there being a single 1-dimensional hole. This agrees with
our intuition.

General topological spaces require a general theory of homology in order to pro-
duce such chain complexes; this turns out to be somewhat involved, and is covered by
the theory of singular homology. Singular homology groups are usually much harder
to deal with computationally — the n-chains of a singular chain complex are not even
finitely generated. For our purposes, we consider a much simpler homology theory
that formalizes the computations we did above.

3.3 Simplicial Homology

Unlike singular homology, which is applicable to general topological spaces, we restrict
our discussion to spaces called simplicial complexes. Intuitively, one can think of a
simplicial complex as a space composed of points, lines, triangles, tetrahedrons, and
their higher dimensional counterparts. We first define these shapes concretely in
Euclidean space, but remark that they carry over to arbitrary metric spaces.
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Definition 3.4. Let S = {x0, · · · , xm} be a finite set of points in Rn. The convex
hull of S in Rn is the set

Conv(S) = {α0x0 + · · ·+ αmxm : α0 + · · ·+ αm = 1, αi ≥ 0 for each i} .

One can think of Conv(S) as the smallest convex set so that S ⊆ Conv(S).

Definition 3.5. Let S = {x0, · · · , xn} ⊆ Rk be a set of points such that the set
{x0 − x1, · · · , x0 − xn} is linearly independent. Then we call Conv(S) an n-simplex,
and we call the elements of S the vertices of the simplex.

Definition 3.6. Let S = {x0, · · · , xn} ⊆ Rk be the vertices of an n-simplex ∆, and
let F ⊆ S. Then the convex hull Conv(F ) is a face of ∆. More specifically, if |F | = m,
we say that Conv(F ) is an m-face of ∆. Notice that Conv(F ) is itself an m-simplex.
If dimension is omitted, we often say that the ith face of ∆ is the (n − 1)-simplex
∆[i] formed from S \ {xi}.

Simplices generalize the notion of triangles and tetrahedrons to arbitrary dimen-
sions.

Definition 3.7. Given an n-simplex S with vertices {x0, · · · , xn}, an orientation of
S is a permutation of the vertices τ : {0, · · · , n} → {0, · · · , n}. Two orientations
τ1, τ2 are the same if sgn(τ1) = sgn(τ2) (i.e., they have the same parity), so simplices
have two orientations. We denote an oriented simplex by [xτ(0), · · · , xτ(n)], but often
just [x0, · · · , xn] when the vertex order suffices.

Lemma 3.2. An orientation on an n-simplex ∆ = [x0, · · · , xn] induces an ordering
on its faces.

Proof. Simply orient the ith face by [x0, · · · , xi−1, xi+1, · · · , xn]. Proceeding recur-
sively induces an orientation on each m-face.

Remark. When the faces of an n-simplex ∆ = [x0, · · · , xn] are given the induced ori-
entation, we write ∆[i] = [x0, · · · , x̂i, · · · , xn], where the circumflex denotes deletion.

We can now define a well-behaved space constructed from simplices.

Definition 3.8. Let K be a finite set of oriented simplices in Rn. We say that K is
a simplicial complex if:

(i) for all σ ∈ K, each face of σ is a simplex in K,

(ii) for all σ1, σ2 ∈ K, the intersection σ1 ∩ σ2 is a face of both σ1 and σ2 (or the
empty set).

If k is the cardinality of the largest vertex set of all simplices in K, then we say K is
a simplicial k-complex. The underlying space of K is the union of all its simplices.
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Simplicial complexes admit a chain complex structure of finitely generated abelian
groups, along with natural boundary operators that agree with geometric intuition.
This makes the computation of their homology groups fairly straightforward.

Lemma 3.3. Let K be a simplicial complex, and let Cn be the free abelian group
generated by the n-simplices of K, with −σ indicating the opposite orientation of
a simplex σ. For n < 0, let Cn = 0. Additionally, define the boundary operator
∂n : Cn → Cn−1 for n ≥ 0 by

∂n(σ) =
n∑
i=0

(−1)iσ[i],

where σ ∈ Cn is a formal sum with only one term (i.e., an n-simplex). Then (C∗, ∂∗)
with C∗ = (· · · , Cn, Cn−1, · · · ) and ∂∗ = (· · · , ∂n, ∂n−1, · · · ) is a chain complex.

Proof. Since each Cn is abelian by construction, we simply check the boundary oper-
ators. Let σ = [x0, · · · , xn] ∈ Cn be as above; then

∂n−1 ◦ ∂n(σ) = ∂n−1

(
n∑
i=0

(−1)iσ[i]

)

=
n∑
i=0

(−1)i

(
n−1∑
j=0

(−1)jσ[i][j]

)
.

=
n∑
i=0

n−1∑
j=0

(−1)i+jσ[i][j].

When i ≤ j, the deletion of the ith vertex shifts the j index up by 1 in relation to
the vertices of σ. Thus, σ[i][j] = σ[j + 1][i] when i ≤ j. Splitting the sum on i ≤ j
and i > j, reindexing gives

n∑
i=0

n−1∑
j=0

(−1)i+jσ[i][j] =
n∑
i=0

n−1∑
j=i

(−1)i+jσ[i][j] +
n−1∑
j=0

j∑
i=0

(−1)i+j+1σ[j + 1][i]

=
n∑
i=0

n−1∑
j=i

(−1)i+jσ[i][j]−
n−1∑
j=0

j∑
i=0

(−1)i+jσ[j + 1][i]

= 0.

Furthermore, if Cn is generated by {σ1, · · · , σn}, then an arbitrary formal sum a1σ1 +
· · ·+ anσn satisfies

∂n−1 ◦ ∂n(a1σ1 + · · ·+ anσn) = ∂n−1(a1∂n(σ1) + · · ·+ an∂n(σn))

= a1∂n−1 ◦ ∂n(σ1) + · · ·+ an∂n−1 ◦ ∂n(σn)

= 0.
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The boundary operators on this chain complex quite literally take simplices to
their topological boundaries with orientation. We now give the following definitions
that formalize our intuitive discussion of homology in the previous section.

Definition 3.9. The elements of Cn are called simplicial n-chains, and each c ∈ Cn
satisfying ∂n(c) = 0 is called an n-cycle. This forms a subgroup Zn of Cn.

Definition 3.10. The elements of Cn+1 under ∂n+1 are called n-boundaries, and they
form a subgroup Bn of Cn.

Definition 3.11. The nth homology group of a simplicial complex K is the quotient
group Hn(K) = Zn/Bn.

Definition 3.12. The nth Betti number βn of K is the rank of the nth homology
group. That is, βn = rank(Hn(K)).

The Betti numbers tell us precisely the number of n-dimensional holes in K.1

Additionally, since each Cn is finitely generated, we have a guarantee that each Hn(K)
is isomorphic to some direct sum of Z. In particular, each homology generator (i.e.,
each distinct ‘hole’) corresponds to a copy of Z. One can easily check that rank(Zk) =
k, so the Betti numbers for simplicial complexes are finite.

Although simplicial complexes are rigid in their construction, it stands to reason
that homeomorphic spaces have the same homology groups. For example, the 2-sphere
S2 is homeomorphic to a simplicial complex composed of the faces of a 3-simplex.
Computing the associated homology groups shows that H1(S2) ' 0, and H2(S2) ' Z,
which agrees with the sphere ‘missing’ its 3-dimensional volume but not having any
holes in its surface.

At this point, we remark that the above construction of simplicial homology did
not use any explicit simplicial-geometric properties, apart from ensuring that sim-
plices did not intersect each other in sets that were not themselves simplices. If we
forget about this requirement for now, the only required property was that each face
of a simplex (which is also a simplex) be contained in the complex. This allows us to
make the following construction.

Definition 3.13. An abstract simplicial complex is a finite collection of (finite) or-
dered sets A, so that for all σ ∈ A, τ ⊆ σ implies τ ∈ A. The dimension of A is
max{dimσ : σ ∈ A}, where dimσ = |σ| − 1.

Any simplicial complex can be taken to an abstract simplicial complex by con-
sidering the vertex sets of each simplex, as opposed to the convex hull spanned by
them. Abstract simplicial complexes are useful theoretically, as they characterize the
simplicial structure without needing a geometric realization. More practically how-
ever, this abstract construction allows us to pass a finite set of point data (along with
some metric information) to a geometric simplicial complex, which suggests we can
directly deal with the homology of abstract complexes.

1An argument shows that β0 gives us the number of path-connected components of K.
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Lemma 3.4 (Geometric Realization). Let A be an abstract simplicial complex of
dimension k. Then A admits a geometric realization as a simplicial complex in R2k+1.

Proof. The proof of this lemma is simple, so we give a brief sketch. The idea is to send
the vertex set V (A) =

⋃
σ∈A σ injectively to a set of points f(V (A)) in R2k+1 that are

in general position, i.e. such that any 2k + 2 points (or less) form a valid geometric
simplex. Then for σ, τ ∈ A, we know that |σ∪τ | = |σ|+|τ |−|σ∩τ | ≤ 2k+2−|σ∩τ | ≤
2k + 2, so Conv f(σ ∪ τ) forms a simplex in R2k+1. Thus each x ∈ Conv f(σ ∪ τ) is
uniquely determined by some linear combination of the vertices, so x ∈ Conv f(σ∩τ) if
and only if x ∈ Conv f(σ) and x ∈ Conv f(τ). It follows that Conv f(σ) ∩Conv f(τ)
is either empty or Conv f(σ ∩ τ), so K = {Conv f(σ) ⊆ R2k+1 : σ ∈ A} forms a
simplicial complex.

4 Persistent Homology

The central tool of topological data analysis is that of persistent homology. The idea is
to consider topological features of a sampled point cloud space that emerge and decay
at different spacial resolutions, and to classify the features that persist the longest.
More concretely, given a set of point cloud data, we construct progressively ‘fatter’
simplicial complexes by increasing the connectedness of the points. The resulting
sequence of homology groups lets us see how the structure of the space changes over
‘time,’ and persistent homology gives us tools for comparing these progressions. For
a more general overview of persistent homology, we refer the reader to [3].

4.1 Filtrations and the C̆ech, Vietoris-Rips Complexes

In order to precisely define what it means to have a progression of simplicial com-
plexes, we define the notion of a filtration.

Definition 4.1. Let K be a simplicial complex. Then, a filtration of K is a sequence
of simplicial complexes (K0, · · · ,Kn) such that

∅ ⊆ K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ K.

We can think of each complex in the filtration as being built on top of its prede-
cessor, by adding simplices whilst preserving the simplicial complex structure. The
logical next step is to develop methods for constructing filtrations from point cloud
data (by which we mean a finite set of points in a metric space). For this, we introduce
the following complexes:

Definition 4.2. Let (M,d) be a metric space, and let {x1, · · · , xm} ∈M . The C̆ech
complex Cε (with parameter ε) is the abstract simplicial complex whose k-simplices
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are formed from suitably ordered2 (k + 1)-subsets [x1, · · · , xk+1], satisfying

k+1⋂
i=1

Bε(xi) 6= ∅, Bε(xi) = {x ∈M : d(x, xi) ≤ ε/2}.

The C̆ech complex Cε, by way of the nerve lemma, is a topologically representa-
tive simplicial complex of the covering space formed from the ε/2 balls around each
point. A more detailed exposition can be found in the proof of Corollary 4G.3 in
[6]. Essentially, the simplicial homology of Cε captures the holes of the fattened point
cloud space. A downside of the C̆ech complex is its computational complexity, as its
construction effectively requires examining the distances between all points in con-
junction for each simplex. This difficulty is alleviated by the following ‘coarser’ but
more easily computed complex.

Definition 4.3. Let (M,d) be a metric space, and let {x1, · · · , xm} ∈ M . The
Vietoris-Rips complex Rε (with parameter ε) is the abstract simplicial complex whose
k-simplices are formed from suitably ordered (k+ 1)-subsets [x1, · · · , xk+1], such that
the xi’s are pairwise within distance ε.

We will usually refer to the above construction as the Rips complex for brevity.
This complex is coarser in the sense that Cε ⊆ Rε; more specifically, the Rips complex
Rε is entirely determined by its 1-simplices (which coincide with those of Cε). This
means that the Rips complex associated with a set of point cloud data can be easily
(re)constructed from an adjacency matrix representing connected points in a graph.3

In this sense, it is the ‘largest’ simplicial complex that can be formed from the given
1-simplicial skeleton, whilst the C̆ech complex is more refined. This can be seen in
Figure 3, where the C̆ech complex preserves the hole in the upper right portion of the
covering but the Rips complex does not.

Despite this, these complexes are closely connected, and the Rips complex turns
out to be a decent approximation of the C̆ech complex. The following theorem pre-
cisely relates the accuracies of the C̆ech and Rips complexes.

Theorem 4.1. Let X be a point cloud in Rn, and let Cε and Rε be its associated C̆ech
and Rips complexes. Then we have

Rε′ ⊆ Cε ⊆ Rε when
ε

ε′
≥
√

2n

n+ 1
.

The proof of this theorem is given in [1]. Essentially, we now have a guarantee
that the Rips complexes associated to a set of point cloud data are sufficiently accu-
rate with enough ε-samples, as we can always squeeze C̆ech complexes between Rips

2Faces should have the induced ordering.
3A side effect of this is that the Rips complex is homologically invariant under embeddings of

the point cloud into different metric spaces, whereas the C̆ech complex depends on the specific
embedding (as we consider neighborhoods which depend on the specific space).
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ε

Cε

Rε

Figure 3: Example C̆ech and Rips complexes of a set of points in R2.

complexes (in Rn, so one may wish to first obtain a decent embedding of the data
into Euclidean space).

4.2 Persistence

Working with Rips complexes for simplicity, we can associate a natural filtration to
each complex in order of increasing ε, e.g.:

∅ ⊆ Rε0 ⊆ Rε1 ⊆ · · · ⊆ RεN−1
⊆ RεN , εi ≤ εj for i < j.

These filtrations come with natural inclusion maps Rεk−1
↪→ Rεk , which take the

simplices of Rεk−1
to their embeddings in the larger complex Rεk . These inclusion

maps further induce maps Hn(Rεi) → Hn(Rεj) on the homology groups, which take
the generators of Hn(Rεi) to their representations in Hn(Rεj) if applicable. This map
is not necessarily injective; generators can ’die’, in which case they are sent to 0. We
can thus concretely classify ‘persistence’, by dropping the dimension and considering
the full homology of each complex, which we encode in a persistence complex.

Definition 4.4. Let C = {Ci
∗}N1 be a sequence of chain complexes with inclusion maps

Cn
k ↪→ Cn+1

k , and induced group homomorphisms φi,j∗ : Hk(C
i
∗)→ Hk(C

j
∗). The (i, j)-

persistent homology of C is H i,j
∗ (C) = imφi,j∗ . Equivalently, H i,j

∗ (C) = Zi
∗/(B

j
∗ ∩ Zi

∗).

A consequence of this definition is a natural extension of the standard Betti num-
bers.

Definition 4.5. The nth (i, j)-persistent Betti number is βi,jn = rankH i,j
n .

13



These parametrized Betti numbers record the number of holes that persist from
the ith complex to the jth complex. However, if we wish to track entire lifetimes
of homological features, we need to construct a new representation in the form of a
persistence diagram. We can begin by counting the number of n-generators that are
born at Ci

∗ which die at Cj
∗ , by

µi,jn = (βi,j−1
n − βi,jn )− (βi−1,j−1

n − βi−1,j
n ).

Then, considering i as the ‘birth time’ and j as the ‘death time’, we form the pair (i, j),
which we insert into a multiset Dn with multiplicity µi,jn .

4 Taking R2
∆ = {(x, y) ∈ R2 :

x = y} and D∆ = {x ∈ R2
∆ : mult(x) =∞}, we can form the multiset Dn = Dn∪D∆.

A multiset of this form is a persistence diagram, and ranging over all suitable i < j
encodes the persistence data of H0,N

n (C).

ε

Figure 4: A persistence diagram (where the circles represent pairs in D0,
and squares in D1), perhaps corresponding to 5 points sampled from a
circle. Note the unpaired circle, representing a persistent connected com-
ponent, and the unpaired square, representing a possibly persistent missing
area.

4A multiset is a regular set S, along with a function mult : S → N∪{∞} that counts the number
of occurrences mult(x) for each x ∈ S.
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Persistence diagrams encapsulate the persistent homologies of simplicial filtra-
tions, and allow for a qualitative topological analysis of point cloud datasets. They
form a central object of study in persistent homology, and are stable under pertur-
bations of the input dataset. We hope that this paper has provided the reader with
sufficient background informations and constructions to begin understanding persis-
tent homology at a deeper level.
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