
THE RIEMANN MAPPING THEOREM
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Abstract. This paper aims to provide all necessary details to give the standard mod-
ern proof of the Riemann Mapping Theorem utilizing normal families of functions. From
this point the paper will provide a brief introduction to Riemann Surfaces and conclude
with stating the generalization of Riemann Mapping Theorem to Riemann Surfaces: The
Uniformization Theorem.
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1. Introduction

The Riemann Mapping theorem is one of the most useful theorems in elementary complex
analysis. From a planar topology viewpoint we know that there exists simply connected
domains with complicated boundaries. For such domains there are no obvious homeomor-
phisms between them. However the Riemann mapping theorem states that such simply
connected domains are not only homeomorphic but also biholomorphic.

The paper by J.L. Walsh “History of the Riemann Mapping Theorem”[6] presents an outline
of how proofs of the Riemann Mapping theorem have evolved over time. A very important
theorem in Complex Analysis, Riemann’s mapping theorem was first stated, with an incor-
rect proof, by Bernhard Riemann in his inaugural dissertation in 1851. Since the publication
of this “proof” various objections have been made which all in all lead to this proof being
labeled as incorrect. While Riemann’s proof is incorrect it did provide the general guidelines,
via the Dirichlet Principle and Green’s function, which would prove vital in future proofs.

It would not be until 1900 that the American mathematician W.F. Osgood would produce a
valid proof of the theorem. 1 Osgood’s proof utilized the original ideas of Riemann but was
made more difficult than today’s methods of proof as he did not possess Perron’s method of

1Osgood’s proof was actually of a similar result from which the Riemann Mapping theorem can be
derived[4]
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solving the Dirichlet problem. Rather he used approximations from the interior of a simply
connected region and took limits of the piecewise linear case of the Dirichlet problem which
had been solved by Schwarz years earlier. Although this is considered the first correct proof,
Osgood did not receive recognition for his achievement with many mathematicians such as
Koebe receiving more recognition for giving a proof years later.

As a consequence of many years of study many other successful proofs have been presented
over the years using various methods. Such being the proof by Hilbert using the Calculus of
Variations and the proof by F. Riesz and L. Fejer using Montel’s theory of normal families
of functions. The goal of this paper is to provide the canonical proof (both for its simplicity
and precision) discovered by F. Riesz and L. Fejer in 1923 with all relevant details.

2. Preliminaries

Before beginning to prove anything a few important results and definitions must be stated.
Reader’s familiar with automorphisms of the unit disk, normal families of functions, and el-
ementary definitions/results in complex analysis may skip ahead to section 3.

An important distinction that should be understood at the outset of this paper is that
between biholomorphic and conformal maps. We take the definition of biholomorphic and
conformal as follows,

Definition (Biholomorphic). Domains U and V are said to be biholomorphically equivalent
(or biholomorphic) if there exists a bijective holomorphic function f : U → V whose inverse
is also holomorphic. Such f is called biholomorphic.

Definition (Conformal). If U ⊂ C is open then f : U → C is conformal if f is holomorphic
and f ′(z) 6= 0 for z ∈ U .

The difference between these definitions is emphasized here as the common statement of
the Riemann Mapping theorem utilizes the word conformal with the meaning of the above
definition of biholomorphic. Note that without this distinction there are functions that may,
depending on the readers background, be called conformal that for the purposes of this paper
are not.

Example. ez is conformal by the above definition but is not biholomorphic

This is easily seen by noting that the exponential function maps the complex plane to the
punctured complex plane and is its own derivative.

We now proceed with other useful definitions beginning with those pertaining to families
of functions.

Definition (Equicontinuous). Let E be an open and connected subset of the complex plane
and F be a family of complex valued functions on E. We say F is equicontinuous at z0 ∈ E
if for ε > 0 there exists δ > 0 such that for all f ∈ F

|z − z0| < δ ⇒ |f(z)− f(z0)| < ε

This coincides with the standard definition of continuity for each of the f at z0 except the
δ must be valid for all f in the family F . In the obvious way we then also define uniform
equicontinuous,
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Definition (Uniform Equicontinuous). A family F is said to be uniformly equicontinuous
on E if for every ε > 0 there exists a δ > 0 so that for all z, w ∈ E and f ∈ F

|f(z)− f(w)| < ε, whenever |z − w| < δ

Definition (Uniformly Bounded). A family F is uniformly bounded on E if there is a
constant M > 0 such that |f | ≤M for all f ∈ F .

From here we now present a quick discussion of simply connected domains. While the
notion of simply connectedness plays a large role in complex analysis it actually is a topolog-
ical property of, in our case, the complex plane. Intuitively a simply connected domain can
be defined as “a region in the plane which contains no holes.” While this general intuition
cannot be taken as a mathematical definition, fortunately it does not take very much to
make it rigorous.

Definition (Homotopy). A homotopy between two functions f and g from a space X to
a space Y is a continuous map G from X × [0, 1] → Y such that G(x, 0) = f(x) and
G(x, 1) = g(y). Two mathematical objects are said to be homotopic if there exists a homotopy
between them.

This notion of two functions being homotopic is of great importance examining closed
curves in the complex plane. Let γ(t) be any closed curve in the complex plane with
a ≤ t ≤ b and choose z0 ∈ C. Then the map G(s, t) = sz0 + (1 − s)γ(t), 0 ≤ s ≤ 1 is
a homotopy between the closed curve γ and the point z0. Since the complex plane is convex
we are ensured that for 0 ≤ s ≤ 1 that G(s, t) is some closed curve in the complex plane.
Thus this shows that every closed curve in C is homotopic to a single point2.

This shows that every closed curve in C is deformable to a point and intuitively implies
that the complex plane has no “holes”. While we have not yet proven the fact that closed
curves in a domain D containing a hole (such as an annulus) are not homotopic to a point
we take the case of the complex plane as inspiration for the following definition.

Definition (Simply Connected). We say that a domain D is simply connected if every closed
curve contained in D is homotopic to a point in D.

Thus by the above reasoning the complex plane (and all star shaped domains) are simply
connected. However it still remains to show that domains such as the punctured plane and
annuli are not simply connected. To do so we appeal to the following theorem.

Theorem. A domain D in the complex plane is simply connected if and only if C∗ \ D is
connected.

Proof. Let D be a domain in C and observe that by definition D is open and connected. We
first assume that D is simply connected. If D = C then we are done. If D 6= C∗ then we
observe that since D is connected, we must have that C∗ \ D is connected. If C∗ \ D was
not connected then we would be able to construct disjoint open and connected sets A and B
such that C∗ \D = A∪B which implies C∗ = D∪A∪B. But this implies that the extended
complex plane is not connected which is a contradiction.

Thus we have established the first implication and we now proceed with the second by

2Moreover this shows that any closed curve in a star shaped domain is homotopic to a point
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proving the contrapositive. Assume that D is not simply connected (thus D 6= C). Since D
is not simply connected it follows by definition of simply connected that there exists a closed
path γ in D that is not homotopic to a point. So there must exist at least one point s in
the region enclosed by γ which is not contained in D. So it then follows that s and ∞ lie in
different connected components of C∗ \D implying that C∗ \D is not connected. �

This theorem shows that our original definition of simply connected is consistent with the
intuition that we originally established. For example if we take a domain D = {z : a < |z| <
b}, an annulus, we observe that C∗ \D is disconnected with one connected component being
the disk {z : |z| ≤ a} and the other being the region {z : b ≤ |z|}. Thus the domain D is
not a simply connected domain. In a similar fashion any domain with a “hole” can be seen
to not be simply connected.

Concluding the preliminaries we present a few basic definitions and results from elementary
complex analysis.

Definition (Univalent). A function f is said to be univalent on D if it is analytic and
injective on D.

Proposition 1. If f is a univalent then any function composed of scaling, translating, and/or
rotating f is also univalent

Proof. The proof follows as a consequence of the fact that translation, rotation, and dilation
are all injective operations and therefore preserve injectivity. The fact that the resultant
function is still analytic is obvious. �

It is then useful to have the closed form representation for self maps on the unit disk.

Proposition 2. The biholomorphic self-maps of the open unit disk D are precisely the frac-
tional linear transformations of the form

f(z) = eiφ
z − a
1− az

, |z| = 1

where a is complex and |a| < 1 and 0 ≤ φ ≤ 2π.

The proof of this theorem is standard and can be found in any good introduction to
complex analysis.

3. Outline of Riemann Mapping Theorem

It becomes useful now to both state and give an outline of the proof for the Riemann
Mapping theorem as that the reader may better anticipate how each of the components
below will operate in the proof as a whole. It may be useful for the reader to return to
this section as they progress through the paper to fill in details and terms which may be
ambiguous after the first reading.

Theorem (Riemann Mapping Theorem). If D is a simply connected domain in C and D 6= C
then there exists a biholomorphic map of D onto the unit disk D.

Sketching the proof, we consider the family F of univalent functions on D such that
|f(z)| ≤ 1 on D and all elements of F take a fixed element z0 ∈ D to 0. First, we must show
that F is nonempty. Following this we then consider the extremal problem of maximizing
|f ′(z0)| over f ∈ F . It is in this portion of the proof which Montel’s theorem will become
essential to proving not only proving that the value above is finite but also attained by some
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function g in F . Finally the proof will be completed in showing that g is biholomorphic,
which as a consequence of the inverse function theorem reduces to showing that g is surjective.
This will be accomplished as a consequence of Hurwitz’s theorem and proof by contradiction.

4. Hurwitz’s Theorem

What we will refer to as Hurwitz’s theorem in this paper regards the behavior of zeros of
a sequence of convergent analytic functions. In this section we seek to show that a sequence
of univalent functions converging normally on some domain converges to either a constant
function or a univalent function.

Theorem (Hurwitz’s Theorem). Suppose {fk} is a sequence of analytic functions on a
domain D that converges normally on D to f(z) and suppose f has a zero of order N at
z0 ∈ D. Then there exists ρ > 0 such that for large k, fk(z) has exactly N zeros in the
disk {|z − z0| < ρ} counting multiplicities. Moreover these zeros converge to z0 as k tends
towards infinity.

The proof of this statement is commonly given as a consequence of the argument principle
and is presented in detail in both [1, 2]. However a proof utilizing Rouche’s theorem is
presented here both for completeness and for the reader who is unfamiliar with the advanced
calculus used in both of the above proof.

Proof. It follows since f has a zero of order N at z0 that for ρ > 0 small we can define a
disk S = {|z − z0| < ρ} ⊂ D such that f can be represented as f(z) = (z − z0)Ng(z) where
g is analytic on S and g(z0) 6= 0. Since g is continuous on S it then follows that we can find
some 0 < ρ′ < ρ such that on the circle {|z − z0| = ρ′} we get |g(z0)| ≤ 2 |g(z)|. It then
follows that

|g(z0)| (ρ′)N

2
≤ |g(z)| (ρ′)N = |z − z0|N |g(z)| = |f(z)|

Let 0 < c = |g(z0)|(ρ′)N
2

. Now choosing 0 < ρ′′ < ρ′ it follows that on the disk {|z − z0| < ρ′′}
we get by the uniform normal convergence of the fn’s that there exists an integer n0 such
that for n ≥ n0 we get |fn(z)− f(z)|∞ < c. Therefore given 0 < ε < ρ′′ it follows that for
values z on the circle {|z − z0| = ρ′′ − ε} we get the inequality

|fn(z)− f(z)| < c ≤ |f(z)|
So by Rouche’s theorem for n ≥ n0, fn and f have the same number of zeros in the disk
{|z − z0| < ρ− ε}. The statement that the zeros of the fn’s converge to the zeros of f is seen
by letting ρ′′ → 0 and observing that the result forces the zeros of fn to converge to z0. �

This result is very useful in proving the next necessary result ([2], pg 232).

Theorem. Suppose {fn} is a sequence of univalent functions on a domain D that converges
normally on D to a function f . Then either f is univalent or f is constant.

Proof. Suppose that the function f is not constant and suppose z0 and ζ0 satisfy f(z0) =
f(ζ0) = w0. Then it follows that z0 and ζ0 are zeros of finite order of f(z) − w0. Now by
Hurwitz’s theorem we have have the existence of sequences zk and ζk converging to z0 and
ζ0 respectively such that fk(zk) − w0 = 0 and fk(ζk) − w0 = 0. Since the fk’s are univalent
it follows then that either ζk = zk for all k implying in the limit that z0 = ζ0 or we have
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a contradiction that the fk’s are univalent and thus our assumption that f is not constant
must have been false. �

5. Montel’s Theorem

The second important component for proving the Riemann Mapping theorem is Montel’s
theorem. For our purposes it suffices to prove the version of the theorem presented in
Montel’s thesis

Theorem (Montel’s Theorem). Suppose F is a family of analytic functions on a domain D
such that F is uniformly bounded on each compact subset of D. Then every sequence in F
has a subsequence that converges normally on D

We begin our discussion of Montel’s theorem by first giving a necessary result in its proof

Theorem (Arzela-Ascoli). If E is a compact subset of C and F is a family of equicontinuous
complex valued functions on E that is uniformly bounded then the following are equivalent

a. The family F is equicontinuous at each point in E.
b. Each sequence of functions in F has a subsequence that converges uniformly in E.

This theorem is beyond the scope of this paper and the reader is referred to a good book on
analysis for its proof.Note that while this theorem has been stated in the context of complex
analysis for the purposes of this paper the result is still valid considering functions in Rn

and even more generally it is true in metric spaces [5].
We now have all the necessary tools to present a proof of Montel’s theorem

Proof of Montel’s Theorem. Let r > 0 be such that for z0 ∈ D, K = {|z − z0| ≤ R} ⊂ D.
Since F is uniformly bounded on compact subsets of D it follows that there exists some
constant M > 0 which is a uniform bound of F on K. It then follows by the Cauchy
estimates that

|f ′(z)| ≤ 1

r − ε
M, f ∈ F , z ∈ {|z − z0| < r − ε}, ε > 0

We then define C = 1
r−εM + ε′ where ε′ > 0. Then given z, w ∈ {|z − z0| < r − ε} it follows

that ∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣ ≤ C, when |z − w| < δ

when δ > 0 is small. This then implies that |f(z)− f(w)| ≤ C |z − w| where C is a uniform
Lipschitz constant for all f ∈ F . So it follows that given ε > 0 for an appropriate choice of
δ that F is uniformly equicontinuous on K.

We now consider sets En = {z ∈ D : |z| ≤ n, dist(z, ∂D) ≥ 1/n}. The En’s are obvi-
ously compact sets that as n→∞, En → D. Thus it follows that any compact subset of D
is contained in some En. Moreover it is not hard to see that En ⊂ En+1. Now let {fn} be a
sequence in F . By the Arzela-Ascoli theorem there is a subsequence f1,1, f1,2, f1,3, . . . that
converges uniformly on E1. This further has a subsequence f2,1, f2,2, f2,3, . . . which converges
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uniformly on E2. Continuing inductively we get a sequence of sequences

f1,1, f1,2, f1,3 . . .
f2,1, f2,2, f2,3 . . .
f3,1, f3,2, f3,3 . . .

...
...

...
. . .

Each of the rows of the above matrix converges uniformly on some En. Thus the diagonal
sequence converges uniformly on all En and therefore on each compact subset ofD completing
the proof. �

The usefulness of this theorem comes in showing the existence of extremal functions in
extremal problems. The basic principle can be illustrated in the problem of maximizing the
derivative at a point z0 over a family F of functions. This becomes useful in the proof of the
Riemann Mapping theorem in that it allows us to show the existence of the function g that
will turn out to be the biholomorphic map between the original simply connected domain
and the unit disk.

6. The Riemann Mapping Theorem

We now have all the necessary tools to give a proof of the Riemann Mapping theorem
using the method of F. Riesz and L. Fejer. The proof given here will be an adaptation of
the proof given in Ahlfors Complex Analysis

Theorem (Riemann Mapping Theorem). If D is a simply connected domain in C and D 6= C
then there exists a biholomorphic map of D into the unit disk D.

Proof. Fix z0 ∈ D and let F be the family of univalent functions on D such that |f(z)| ≤ 1
on D and f(z0) = 0 for all f ∈ F . We proceed with the proof here in three parts,

(1) F is nonempty
(2) There exists g ∈ F with maximal finite derivative
(3) The function g is a biholomorphic map from D to D

Beginning our proof of (1) we note that by assumption there exists a /∈ D. Then since D
is simply connected it follows that we can define a single valued analytic branch of

√
z − a

which we shall denote as h(z). It then follows that h is injective and does not take values in
both h(D) and −h(D) (for proof see [2] page 311). Without loss of generality it then follows
that the image of D under h covers a disk {|h(z)− h(z0)| < ρ} and does not take values
in the disk {|h(z) + h(z0)| < ρ}. Thus |h(z) + h(z0)| ≥ ρ for all z ∈ D and consequently
2 |h(z0)| ≥ ρ.

From this point it can then be verified that the function

f0(z) =
ρ

4

|h′(z0)|
|h(z0)|2

h(z0)

h′(z0)

h(z)− h(z0)

h(z) + h(z0)

belongs to F . Since h is univalent the fact that f0 is injective is self evident. To see that f0
is analytic on D observe that the rightmost fraction is the quotient of two analytic functions
where the denominator is nonzero on D (as a consequence of h(D) and −h(D) being disjoint).
Thus f0 is univalent. Moreover the estimate∣∣∣∣h(z)− h(z0)

h(z) + h(z0)

∣∣∣∣ = |h(z0)|
∣∣∣∣ 1

h(z0)
− 2

h(z) + h(z0)

∣∣∣∣ ≤ 4 |h(z0)|
ρ
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implies that

|f0(z)| ≤ ρ

4

|h′(z0)|
|h(z0)|2

h(z0)

h′(z0)

4 |h(z0)|
ρ

= 1

proving that |f0(z)| ≤ 1 and therefore f0 ∈ F .

Proceeding with the proof of (2) we let A = sup{|f ′(z0)| : f ∈ F} > 0. Note that we
have made no assumptions on A and that A could be infinite. We then take a sequence {fn}
of functions in F such that f ′n(z0) converges to A. Then by Montel’s theorem there exists a
subsequence of fn that converges normally on D to an analytic function g. It is clear from
the properties originally enforced on the fn’s that |g(z)| ≤ 1 on D and that g(z0) = 0 and
|g′(z0)| = A. This then proves that A is finite completing the proof of (2).

Finally we come to part (3). To prove this we quote our consequence of Hurwitz’s theo-
rem that since the fn’s are univalent that g must either be univalent or constant. Since
|g(z0)| = A > 0 it follows that g must have nonzero derivative on a neighborhood of z0 and
so g cannot be constant.

It now remains to show that g attains all values in the unit disk. In order to do this
we assume for contradiction that g(z) 6= w0 for some w0 such that |w0| < 1. We now start
construction of a function that will give us our contradiction. We begin with the function
g(z)−w0

1−w0g(z)
. Noting that this function is a biholomorphic self-map of the unit disk and the

numerator is never zero it follows that the image of this function is the unit disk minus the
origin. Observing that the numerator is always nonzero it follows that we can define an
analytic branch of the square root

F (z) =

√
g(z)− w0

1− w0g(z)

It then follows that F takes the punctured unit disk to the punctured unit disk. We then
define the function

G(z) =
F (z)− F (z0)

1− F (z0)F (z)

It then follows that this function takes the punctured unit disk to the punctured unit disk
taking z0 to 0. Thus G and g are both maps whose image takes z0 to 0 and are both elements
of F . However it follows by direct computation that

|G′(z0)| =
|g′(z0)|
2
√
|w0|

(1− |w0|2)
1− |w0|

(1− |w0|)2
=

A

2
√
|w0|

(1 + |w0|)

It then follows that since |w0| < 1 that |G′(z0)| > A which is a contradiction that g is the
function in F with maximum derivative at z0. Thus our assumption that g misses a value
in the unit disk must be false and we conclude that g must be onto the unit disk completing
the proof. �

7. Riemann Surfaces and The Uniformization Theorem

Beyond the scope of studying simply connected regions in the plane, the issue often arises
that we may want to study maps between more complicated surfaces. In complex analysis,
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a Riemann surfaces are one dimensional complex manifolds which can have holomorphic
functions defined between them. First introduced by Riemann in his thesis, these surfaces
serve as an visual alternative to multivalued functions and play a crucial role in multivariable
complex analysis. This section seeks to give the basic definitions necessary to construct a
Riemann surface as well as state the abstraction of the Riemann mapping theorem to such
surfaces: the uniformization theorem.

These surfaces can be thought to be deformed copies of the complex plane which locally
are homeomorphic to the plane while generally their topology could be quite different. We
begin our brief examination of Riemann surfaces with some general definitions assuming that
the reader is unfamiliar with general topology.

Definition (Topological Space). A set S of points p becomes a topological space if a family
F of subsets O, to be called open sets, is distinguished satisfying

(1) the union of any collection of open sets is open
(2) the intersection of finitely many open sets is open

Furthermore a topological space is called Hausdorff if it satisfies for p1 and p2 in S where
p1 6= p2 there exists open sets O1 and O2 so that p1 ∈ O1 and p2 ∈ O2 and O1 ∩O2 = ∅.

Remark. The spaces Rn and Cn are Hausdorff spaces

We now need some fundamental definitions regarding topological manifolds

Definition (Topological Manifold). An n-dimensional topological manifold is a Hausdorff
space M such that every point p ∈ M has an open neighborhood homeomorphic to an open
cell in Rn.

From here we can give the definition of a Riemann Surface

Definition (Riemann Surface). A Riemann Surface, R, is a 2-dimensional topological man-
ifold with open sets Uα and complex valued functions zα(p), p ∈ Uα, such that

(1) each zα is injective from Uα onto a domain zα(Uα) in the complex plane
(2) each composition zβ ◦ z−1α is analytic wherever it is defined, that is, from zα(Uα ∩Uβ)

to zβ(Uα ∩ Uβ)
(3) R is connected, that is, for any two points p and q in R there is a finite collection

of indices α1, . . . , αm such that p ∈ Uα, q ∈ Uαm and Uαj
∩ Uαj+1

is nonempty for
1 ≤ j ≤ m

We refer to Uα as a coordinate patch and to zα as a coordinate map on Uα.

While this may seem to be a difficult definition to take in at first glance it actually has
a very intuitive meaning. If we consider a 2-dimensional topological manifold it follows by
definition that it is constructed from open sets Uα. These open sets are each homeomorphic
to an open cell in R2 and are each assigned a coordinate function mapping Uα to C (which
can be interpreted here as R2). Requirement (1) simply states that we assign to each co-
ordinate patch a bijective function zα mapping Uα to some domain in C. The existence of
such functions is implied by the fact that every Riemann surface is actually a 2-dimensional
topological manifold.

Condition (2) states that through composition of coordinate maps we can move from one
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coordinate patch to the other. This becomes important in defining holomorphic functions
on the Riemann surface since the coordinates between patches may vary greatly.

Example. The simplest nontrivial Riemann surface is the extended complex plane C∗ =
C ∪ {∞}. This can be coordinatized by two coordinate patches U0 = C and U1 = C∗ \ {0},
with coordinate maps z0(z) = z and z1(z) = 1/z. It then follows that z0(U0∩U1) = C\{0} and
the change of coordinates map between coordinate patches is given by the analytic function

(z1 ◦ z0)(z) = 1/z, z ∈ C \ {0}

Just as the Riemann Mapping theorem was able to generalize the study of arbitrary simply
connected subsets of the complex plane to the study of the unit disk there is an analog for
Riemann Surfaces.

Theorem (Uniformization Theorem). Each simply connected Riemann surface is biholo-
morphically equivalent to either the open unit disk D, the complex plane C, or the Riemann
sphere C∗

It is important to note here that the proof given above showing that a domain D ⊂ C
is simply connected if and only if C∗ \ D is connected does not apply here. This proof
functions only in the case of the plane and in order to understand what it means to have
a simply connected Riemann surface we must go back to the definition. The proof of this
theorem is beyond the scope of this paper but the reader is encouraged to think about the
implications of this theorem. Similar to the effect of the Riemann Mapping theorem on the
complex plane, this theorem reduces all complicated Riemann surfaces into three already
well understood domains in which it is often easier to prove results.

Although proof of this theorem will not be given here we will end with showing that the
conclusion of the Uniformization theorem is valid by proving the following theorem.

Theorem. No two of the complex plane C, unit disk D, or extended complex plane C∗ are
biholomorphically equivalent.

Proof. We assume first that such a map φ : C → D exists. It then follows by Liouville’s
theorem that φ is constant and therefore is not biholomorphic. Note also that the proof
showing no biholomorphic function exists between C∗ and D is identical.

So it remains to show that there does not exist a biholomorphic map between C∗ and
C. To show this we first prove that C∗ is compact. Let zn be a sequence in the extended
complex plane. If there exists infinitely many indices n such that zn = ∞ then there is
an obvious choose of subsequence znk

→ ∞. If there exists only finitely many indices such
that zn = ∞ but it removing those indices zn remains unbounded then we can choose a
subsequence by removing the terms equal to infinity that converges to infinity. If there does
not exist any index n such that zn = ∞ it follows that zn is bounded and therefore con-
verges in some compact subset of C. Thus by Bolzano-Weierstrass we get that C∗ is compact.

Now it follows that topologically there does not exist a homeomorphism between C∗ and
C since continuous functions map compact sets to compact sets. Since C is not compact
it follows that there can exist no homeomorphism between the two spaces and therefore no
biholomorphic function between them can exist. �
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