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Abstract

The extension from the comfortable Euclidean plane to a non-
Euclidean space is both an attractive and a daunting one. In 1829,
Lobachevsky provided the first complete ”stable” version of a non-
Euclidean geometry, and later mathematicians like Poincare developed
different models in which these ideas operated. In this paper, we
will provide an introduction to the constructs of hyperbolic geometry
using two of these models. The first part will be a development of
hyperbolic geometry in the plane from an analytic standpoint. We
will then use these tools to develop similar ideas in the context of the
complex unit disk. Finally, we will present a proof from Unger [3] of
the Pythagorean Theorem in the Poincare disc.
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1 Introduction to the Hyperbolic Plane

We begin with the planar construction of hyperbolic geometry and the ex-
plore what it means to have a curve on the hyperbolic plane:

Definition 1.1. The hyperbolic plane is defined to be the upper half of the
complex plane:

H = {z ∈ C : Im(z) > 0}
Definition 1.2. A hyperbolic line is the intersection with H of a Euclidean
circle centered on the real axis or a Euclidean line perpendicular to the real
axis in C (the extended complex plane C ∪ {∞})

Recall that in the extended complex plane, a line is just the stereographic
projection of a circle on the Riemann sphere that runs through the north pole,
and thus is simply another form of a circle.

Definition 1.3. Two hyperbolic lines are parallel if they are disjoint.

So far we have not deviated too far from the realms of Euclidean geometry,
having only redefined a few terms. However, the following result is where we
really start to see major differences:

Theorem 1.4. Let l be a hyperbolic line in H and let p be a point in H not
on l. Then there exist infinitely many distinct hyperbolic lines through p that
are parallel to l.

This runs completely contrary to the parallel result (pun intended) in the
Euclidean plane, where only one such line exists.

Definition 1.5. A function f : C → C is a homeomorphism if f is a
bijection and if both f and f−1 are continuous.



2 Mobius Transformations

Recall the familiar definition of a Mobius Transformation:

Definition 2.1. A function f : C→ C is a Mobius transformation if it
is of the form:

f(z) =
az + b

cz + d

for a, b, c, d ∈ C

It is clear that Mobius transformations are homeomorphisms since they
are a composition of translations, dilations, and inversions which are all
homeomorphisms. We now present some useful properties of the Mobius
transformations which are critical to their use in developing the hyperbolic
metric.

Theorem 2.2. Mobius transformations map circles in the extended complex
plane to circles in the extended complex plane.

Proof. We consider only the case of circles that do not pass through infinity
(Euclidean circles) since the other case is similar and easier. It is also clear
that dilations and translations map circles to circles, so we only need to show
that the same is true for inversions (functions of the form w = 1

z
). Such a

circle is of the form |z − a|2 = r2 so under the inversion this becomes:

0 = |1− aw|2 − r2|w|2 = (1− aw)(1− aw)− r2|w|2

= (|a|2 − r2)|w|2 − aw − aw + 1

Setting w = u+ iv this becomes:

(|a|2 − r2)(u2 + v2) + Au+Bv + 1 = 0

Depending on whether or not r = |a|, this equation is either of the form
of a line or a circle, both of which are circles in the extended complex plane.
(Credit to Gamelin [2])



Definition 2.3. For an open set Ω ⊂ Ck
, we say a function f : Ω→ C is in-

variant under the Mobius transformations if for any Mobius transformation
m the function satisfies:

f(z1, . . . zk) = f(m(z1), . . .m(zk))

Definition 2.4. Given four distinct points z1, z2, z3, z4 ∈ C, we define the
cross ratio of these points to be:

[z1, z2, z3, z4] =
(z1 − z4)(z3 − z2)
(z1 − z2)(z3 − z4)

Theorem 2.5. Considering the cross ratio as a function from C4 → C then
the cross ratio is invariant under the Mobius transformations.

Theorem 2.6. The set of all Mobius transformations is precisely the set of
all homeomorphisms of C that take circles to circles.

We only sketch the direction of this proof since the full argument is rather
long. We have already shown that Mobius transformations are homeomor-
phisms of C that preserve circles, so it suffices to show that such a homeo-
morphism must be a Mobius transformaion.

We argue this by considering an arbitrary homeomorphism f and a mo-
bius transformation p that takes the points f(0), f(1), f(∞) to 0, 1,∞ (since
Mobius transformations uniquely map three-points to three-points). Since
p ◦ f takes circles to circles and it takes ∞ to ∞ then it must take the real
axis to itself so that p ◦ f(R) = R. Therefore, since p ◦ f fixes the real axis
then it must either map H to H or to the lower half plane. In the former
case set m = p and in the latter case set m = C ◦ p where C is the complex
conjugation z̄.

Thus, we have a Mobius transformation m so that m◦f(0) = 0,m◦f(1) =
1,m ◦ f(∞) = ∞, and m ◦ f(H) = H. The rest of the proof then involves
proving that m ◦ f is the identity z, which would imply that f is the inverse
of m and hence a Mobius transformation.

Theorem 2.7. The Mobius transformations are conformal and thus preserve
angles between curves.



Define the set of Mobius transformations which are the homeomorphisms
of H:

Mob(H) = {m : m(H) = H}

Theorem 2.8. Every element of Mob(H) takes hyperbolic lines in H to hy-
perbolic lines in H

Proof. Indeed, this follows as a consequence of Theorem 2.7 which states
that the elements of Mob(H) preserve angles between circles in C, together
with the fact that every hyperbolic line in H is the intersection of H with a
circle in C centered on R, and finally that every element of Mob(H) takes
circles in C to circles in C

Theorem 2.9. Every element of Mob(H) either has the form:

m(z) =
az + b

cz + d

where a, b, c, d ∈ R and ad− bc = 1 or:

n(z) =
az̄ + b

cz̄ + d

where a, b, c, d are purely imaginary and ad− bc = 1.

3 Hyperbolic Metric in the Plane

We are now ready to apply our knowledge of Mobius transformations to ana-
lyze the geometry of H. First, let us apply some of our ideas from Euclidean
geometry. Given a continuous, nonzero function ρ on Rk, recall that for some
piecewise-smooth path f : [a, b]→ Rk we define the path length as:

lengthρ(f) =

∫
f

ρ(z)|dz| =
∫ b

a

ρ(f(t))|f ′(t)|dt



Definition 3.1. Given some continuous nonzero function ρ on H we say
that length is invariant under Mob(H) if for any piecewise smooth path
f : [a, b]→ H and any γ ∈ Mob(H), we have:

lengthρ(f) = lengthρ(f ◦ γ)

Theorem 3.2. For every positive constant c, the element of arc length:

ρ(z) =
c

Im(z)
|dz|

on H is invariant under Mob(H).

Since we would like our arc length on H to be invariant under Mob(H),
this leads us to the following definition:

Definition 3.3. For a piecewise-smooth path f : [a, b] → H, we define the
hyperbolic length of f to be:

lengthH(f) =

∫
f

1

Im(z)
|dz| =

∫ b

a

1

Im(f(t))
|f ′(t)|dt

Now that we have some concept of length, we can move forward with
trying to define a metric on H:

Definition 3.4. A metric on a set X is a function:

d : X ×X → R

satisfying three conditions: (i) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0
iff x = y (ii) d(x, y) = d(y, x) for all x, y ∈ X (iii) d(x, z) ≤ d(x, y) + d(y, z)
for all x, y, z ∈ X. We say that (X, d) is a metric space.

Now, for any two points x, y let Γ(x, y) be the set of all piecewise-smooth
paths connecting x and y. Then consider the function:

dH : H×H→ R

defined by:

dH(x, y) = inf{lengthH(f) : f ∈ Γ(x, y)}



Proposition 3.5. For every element γ ∈ Mob(H) and for every pair of
points x, y ∈ H, we have that:

dH(x, y) = dH(γ(x), γ(y))

Proof. First notice that for any f ∈ Γ(x, y) then γ ◦ f ∈ Γ(γ(x), γ(y)). Now,
since hyperbolic length is invariant under Mob(H) we have that:

lengthH(γ ◦ f) = lengthH(f)

for every path f ∈ Γ(x, y). So:

dH(γ(x), γ(y)) = inf{lengthH(g) : g ∈ Γ(γ(x), γ(y))}

≤ inf{lengthH(γ ◦ f) : f ∈ Γ(x, y}

≤ inf{lengthH(f) : f ∈ Γ(x, y)} = dH(x, y)

Since γ is invertible and γ−1 ∈ Mob(H) then we can repeat this argument
the other way:

dH(x, y) = inf{lengthH(f) : f ∈ Γ(x, y)}

≤ inf{lengthH(γ−1 ◦ g) : g ∈ Γ(γ(x), γ(y))}

≤ inf{lengthH(g) : g ∈ Γ(γ(x), γ(y))} = dH(γ(x),γ(y)

Hence, dH(x, y) = dH(γ(x), γ(y))

Theorem 3.6. (H, dH) is a metric space.

Proof. We must show that dH satisfies the three defining conditions for a
metric on H.

For the first condition, let f : [a, b] → H be a path in Γ(x, y) and recall
the definition of lengthH(f):

lengthH(f) =

∫
f

1

Im(z)
|dz| =

∫ b

a

1

Im(f(t))
|f ′(t)|dt



By the definition of the hyperbolic plane, the integrand is always nonneg-
ative, and since dH(x, y) is defined to be the infimum of all the lengths of all
paths f ∈ Γ(x, y), then dH is also nonnegative.

For the second condition, we need to consider the lengths of paths in
Γ(x, y) and Γ(y, x). Let f : [a, b]→ H be a path in Γ(x, y) and consider the
composition of f with the function h : [a, b]→ [a, b] given by h(t) = a+ b− t.
Then clearly f ◦ h ∈ Γ(y, x) since (f ◦ h)(a) = f(b) = y and (f ◦ h)(b) =
f(a) = x. Then consider the following with the reparameterization s = h(t):

lengthH(f ◦ h) =

∫
f◦h

1

Im(z)
|dz| =

∫ b

a

1

Im((f ◦ h)(t))
|(f ◦ h)′(t)|dt

=

∫ b

a

1

Im(f(h)(t))
|f ′(h(t))||h′(t)|dt

= −
∫ a

b

1

Im(f(s))
|f ′(s)|ds

=

∫ b

a

1

Im(f(s))
|f ′(s)|ds = lengthH(f)

Therefore every path in Γ(x, y) gives rise to a path in Γ(y, x) of equal
length, and by the same argument, each path in Γ(y, x) gives rise to a path
in Γ(x, y) of equal length. Therefore, the set of lengths of the paths in each
set are equal, and hence have the same infimum, so dH(x, y) = dH(y, x)

Finally, we prove the third condition by contradiction. Suppose that
the triangle inequality does not hold for dH so there exists distinct points
x, y, z ∈ H so that:

dH(x, z) > dH(x, y) + dH(y, z)

Then set:

ε = dH(x, z)− (dH(x, y) + dH(y, z)) > 0

Since dH(x, y) = inf{lengthH(f) : f ∈ Γ(x, y)} then there exists a path
f : [a, b]→ H in Γ(x, y) with:



lengthH(f)− dH(x, y) <
ε

2

Similarly, there exists a path g : [b, c]→ H in Γ(y, z) with:

lengthH(g)− dH(y, z) <
ε

2

Let h : [a, c] → H be the piecewise-smooth concatenation of f and g so
that h ∈ Γ(x, z). Then we see that:

lengthH(h) = lengthH(f) + lengthH(g) < dH(x, y) + dH(y, z) + ε

But since dH(x, z) ≤ lengthH(h) by definition, then:

dH(x, z) < dH(x, y) + dH(y, z) + ε

This contradicts our construction of ε and hence condition 3 must hold
for dH

The following result can be constructed from Theorem 2.8, Proposition
3.5, and Theorem 3.6, but we do not present it here.

Theorem 3.7. Given a pair of points x, y ∈ H, there exists a Mobius trans-
formation γ ∈ Mob(H) such that γ(x) = iµ and γ(y) = iλ both lie on the
positive imaginary axis, and the hyperbolic distance between x and y (i.e.
the shortest distance) is given by:

dH(x, y) =

∣∣∣∣ log
λ

µ

∣∣∣∣
Definition 3.8. An isometry of a metric space (X, d) is a homeomorphism
f of X that preserves distance. That is, for a pair of points x, y ∈ X:

d(x, y) = d(f(x), f(y))

Theorem 3.9. The set of isometries of (H, dH) is precisely the set Mob(H).



4 The Poincare Disc Model and Metric

We now attempt to use the tools we have developed in the hyperbolic plane
to construct the Poincare Disc model of hyperbolic geometry, which operates
inside the complex unit disk D = {z ∈ C : |z| < 1}.

We know from complex analysis that there are several Mobius transforma-
tions, m, that take D→ H. For example, let us define such a transformation
ζ:

ζ(z) =

i√
2
z + 1√

2

− 1√
2
z − i√

2

Now let us define the set of all Mobius transformations which are home-
omorphisms of the unit disk:

Mob(D) = {m ∈ Mob : m(D) = D}
Theorem 4.1. All elements of Mob(D) are of the form:

m(z) = eiθ
z + a

1 + āz
where θ ∈ R and a ∈ ∂D.

Definition 4.2. Given some Mobius transformation m : D → H, a hyper-
bolic line in D is the image under m−1 of a hyperbolic line in H

It is easy to see that because of the complexity of such an inverse im-
age, the hyperbolic lines in D will generally not look quite as clean as the
hyperbolic lines in H



Definition 4.3. The hyperbolic length of a piecewise-smooth path f :
[a, b]→ D is defined to be:

lengthD(f) = lengthH(ζ ◦ f)

This definition is obviously not ideal since it depends on a specific trans-
formation ζ, but we will amend this now by showing that the actual length
is well-defined for any transformation.

Theorem 4.4. The hyperbolic length of a piecewise-smooth path f : [a, b]→
D is given by the integral:

lengthD(f) =

∫
f

2

1− |z|2
|dz|

Proof. We may use our formula for hyperbolic length in H:

lengthD(f) = lengthH(ζ ◦ f) =

∫
ζ◦f

1

Im(z)
|dz|

=

∫ b

a

1

Im((ζ ◦ f)(t))
|(ζ ◦ f)′(t)|dt =

∫ b

a

1

Im(ζ(f(t))
|ζ ′(f(t))||f ′(t)|dt

=

∫
f

1

Im(ζ(z))
|ζ ′(z)|dz

Calculating the integrand:

Im(ζ(z)) = Im

( i√
2
z + 1√

2

− 1√
2
z − i√

2

)
=

1− |z|2

| − z − i|2

|ζ ′(z)| = 2

|z + i|2

So:

1

Im(ζ(z))
|ζ ′(z)| = 2

1− |z|2

And hence:



lengthD(f) =

∫
f

2

1− |z|2
|dz|

Now we must show that this is independent of our choice of ζ. Let f be
a piecewise continuous path and let p be any Mobius transformation taking
D to H. Since p ◦ ζ−1 is a Mobius transformation and takes H to H then we
have q = p ◦ ζ−1 ∈ Mob(H)

Since ζ◦f is a piecewise smooth path in H and the invariance of hyperbolic
length on H is invariant under the Mobius transformations by Theorem 3.2,
then:

lengthH(ζ ◦ f) = lengthH(q ◦ ζ ◦ f) = lengthH(p ◦ f)

Hence, lengthD(f) is well defined.

Define Θ(x, y) to be the set of all piecewise-smooth paths f : [a.b] → D
connecting x and y where f(a) = x and f(b) = y. Also define:

dD(x, y) = inf{lengthD(f) : f ∈ Θ(x, y)}

Theorem 4.5. (D, dD) is a metric space, and any Mobius transformation m
taking H to D is a distance preserving homeomorphism between (H, dH) and
(D, dD).

Proof. Let m be any Mobius transformation taking H to D. Also let Γ(z, w)
be the set of all piecewise-smooth paths f : [a, b] → H with f(a) = z and
f(b) = w. For each pair of points z, w ∈ H we have:

dH(z, w) = inf{lengthH(f) : f ∈ Γ(z, w)} = inf{lengthD(m◦f) : f ∈ Γ(z, w)}

≤ inf{lengthD(g) : g ∈ Θ(m(z),m(w)}

≤ dD(m(z),m(w))

Similarly, if x, y ∈ D and x = m(z) and y = m(w) for points z, w ∈ H
then we see that:



dD(m(z),m(w)) = dD(x, y) = inf{lengthD(f) : f ∈ Θ(x, y)}

= inf{lengthH(m−1 ◦ f) : f ∈ Θ(x, y)}

≤ inf{lengthH(g) : g ∈ Γ(z, w)}

≤ dH(z, w)

Since dH(z, w) = dD(m(z),m(w)) for all z, w ∈ H and all m taking H to D,
and as dH is a metric on H, then we have that dD is a metric on D. Morevoer,
this shows that m is a distance-preserving homeomorphism between (H, dH)
and (D, dD)

Corollary 4.6. The set of isometries of (D, dD) is precisely the set Mob(D).

Proof. This follows from the fact that Mob(H) is exactly the set of isometries
of (H, dH) by Theorem 3.9, and that any Mobius transformation m taking H
to D is a distance-preserving homeomorphism and hence an isometry.

5 Hyperbolic Geodesics

We begin with theorem about distances in the Poincare disc.

Theorem 5.1. For any two distinct points z0, z1 in D there is a unique
shortest curve in D from z0 to z1 in the hyperbolic metric, namely, the arc of
the circle passing through z0 and z1 that is orthogonal to the unit circle.

Definition 5.2. The described paths in Theorem 5.1 are called hyperbolic
geodesics

We can consider hyperbolic geodesics as the Poincare disc analogs of
straight lines in the Euclidean plane.



Proposition 5.3. The hyperbolic distance from 0 to z is given by the for-
mula:

d(0, z) = log
1 + |z|
1− |z|

Proof. The proof is a simple calculation:

d(0, z) =

∫ |z|
0

2

1− t2
dt =

∫ |z|
0

(
1

1− t
+

1

1 + t

)
dt = log

1 + |z|
1− |z|



As we can see, the distance from 0 to z tends towards infinity as z ap-
proaches the boundary of the disk. Hence, we can see in the depictions of
shortest paths that the lines tend to curve in towards the center of the disk
where the distance between points is shorter in the hyperbolic metric, as
opposed to moving directly in between the points.

6 The Hyperbolic Pythagorean Theorem

We now present the proof from Ungar [3] of a model of the Pythagorean
Theorem in the Poincare disc model. Clearly the Euclidean Pythagorean
Theorem does not apply since we have different concepts of triangles and
length. However, as it turns out, there does exist a natural formulation of
the hyperbolic Pythagorean theorem.

Definition 6.1. A geodesic triangle or hyperbolic triangle is a region
bounded by three distinct hyperbolic geodesics

Definition 6.2. We define the operation of Mobius addition, ⊕, as:

z0 ⊕ z = eiθ
z0 + z

1 + z̄z0

where θ ∈ R and z0 ∈ D.

Notice the connection between this definition and our homeomorphisms
of the unit disk in Theorem 4.1. This operation can be viewed as a ”Mobius
left translation”

Definition 6.3. The Poincare hyperbolic distance function is defined
as:

d(a, b) =

∣∣∣∣ a− b1− āb

∣∣∣∣ = |a	 b|

where we use the notation a	 b = a⊕ (−b).

Proposition 6.4. The Poincare hyperbolic distance function satisfies the
Mobius triangle inequality:

d(a, c) ≤ d(a, b)⊕ d(b, c)



Proof. Define γa = (1− |a|2)− 1
2 for any a ∈ D. Then γa = γ|a| is a monoton-

ically increasing function of |a| that satisfies:

γ∣∣|a|⊕|b|∣∣ = γ|a|⊕|b| = γ|a|γ|b|(1 + |a||b|) ≥ γaγb|1 + āb| = γa⊕b = γ|a⊕b|

Since
∣∣|a|⊕|b|∣∣ = |a|⊕|b| and since γz = γ|z| is a monotonically increasing

function of |z|, then this inequality implies:

|a| ⊕ |b| ≥ |a⊕ b|
for all a, b ∈ D. Noting that:

(−x⊕ a)⊕ (x	 b) =
1− xā
1− x̄a

(a	 b)

for all x, a, b ∈ D, then we have:

d(a, b) = |a	 b| = 1− xā
1− x̄a

(a	 b) = |(−x⊕ a)⊕ (x	 b)|

≤ | − x⊕ a| ⊕ |x	 b| = d(a, x)⊕ d(x, b)

which proves the inequality.

Theorem 6.5. (The Hyperbolic Pythagorean Theorem) Let 4abc be
a hyperbolic triangle whose vertices are the points a, b, c ∈ D and whose sides
are A = −b⊕ c, B = −c⊕ a, and C = −a⊕ b. If the two sides A and B are
orthogonal, then |A|2 ⊕ |B|2 = |C|2

Proof. Let 4abc be any hyperbolic triangle whose vertices are the points
a, b, c ∈ D. A hyperbolic right triangle is a hyperbolic triangle one of
whose angles is π

2
. Furthermore, let 4abc be a hyperbolic right triangle

whose sides A and B are orthogonal.

Its right angle can be moved to the center of D via appropriate Mobius
transformations in the form of Mobius addition, such that its two orthogonal
sides now lie on the real and imaginary axes of D. Since Mobius transfor-
mations of the disk preserve both the hyperbolic length of geodesic segments
and the measure of hyperbolic angles, then the resulting triangle 4a′b′c′ ob-
tained by moving 4abc is congruent to this former triangle in the sense that



the two triangles possess equal hyperbolic lengths for corresponding sides
and equal measures for corresponding angles.

The vertices of the relocated hyperbolic right triangle 4a′b′c′ are a′ = x,
b′ = iy, and c′ = 0 for some x, y ∈ (−1, 1). The hyperbolic length of the
geodesic segment joining two points a and b of the disc is d(a, b) = |b 	 a|.
Accordingly, the hyperbolic lengths of the sides A,B,C of the triangle4a′b′c′
are |A|, |B|, |C| given by:

|A|2 = |b′ 	 c′|2 = y2

|B|2 = |a′ 	 c′|2 = x2

|C|2 = |a′ 	 b′|2 = |x	 iy|2 =

∣∣∣∣ x− iy1− ixy

∣∣∣∣2 = x2 ⊕ y2

Therefore:

|A|2 ⊕ |B|2 = |C|2
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