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1 Introduction

In Jonathan Novak’s paper, he seeks to prove a result that is at the core of the theory of random
walks, Polya’s Theorem, through use of modernized methods. Novak aims to prove this theorem
through use of concepts developed by Laplace and de Moivre. Novak’s audience is those who have
an understanding of basic probability theory, analysis, differential equations and who are studying
random walks and are seeking insight on different methods of proof for a core concept in that field.
The most interesting results that can be extrapolated from this paper are not only the results of the
theorem itself, in their elegance of statement and implication, but are also the intersections created
between differing fields of mathematics such as combinatorics, ODEs, and analysis.

2 Overview

In Probability Theory, an event is a set of outcomes from an experiment being performed. We
say that an event occurs with probability ρ (where ρ ∈ [0, 1]) if it occurs ρ% of the time the ex-
periment is performed. When we are looking at finite sample spaces (the set of all outcomes of
a specific experiment), not much care needs to be taken when dealing with finite sample spaces as
events having probability zero and one respectively imply that they will never and surely happen.
However, when we address infinite sample spaces (R,R2, etc.) more care must be taken as events
that have probability zero can occur and events with probability one do not always occur. This
is because there can be non-empty subsets of this infinite sample space with probability zero. To
denote these two ideas, we say that events with probability zero almost never happen and events
with probability one almost always happen.

Suppose that we have an integer lattice of some dimension d (Z ×
d times︷︸︸︷
· · · × Z). Take a particle

at a point in this lattice. Suppose that at each unit of time, the particle will jump to a random
neighboring lattice point with equal probability of jumping to any neighboring lattice point. This
is known as a simple random walk on Zd.
We can categorize these walks as either being recurrent or transient with the former meaning
the particle returns to its starting position with probability one and the latter categorizing random
walks that are not recurrent.

Pólya’s Theorem states that: The simple random walk on Zd is recurrent in dimensions
d = 1, 2 and transient in dimension d ≥ 3.[1] and we will now go through the derivation of this
result.

3 Notation

This paper uses these following notations.
-prob(E), where E is an event, denotes the probability that E will occur.
-
⊔
I Ai, with Ai denoting sets indexed by elements i ∈ I, denotes the disjoint union of these sets⊔

I

Ai =
⋃
i∈I

{(x, i) : x ∈ Ai}
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-B(f(z)) denotes the Borel Transform of a function which is defined by:

B(f(z)) =

∫ ∞
0

f(tz)e−tdt

4 Decomposition of Loops

Definitions: A generating function is an infinite sequence of numbers that are treated as the
coefficients of a series expansion. For a more rigorous treatment, the reader is referred to chapter
2, specifically sections 2.2 and 2.3 in [3]
Ordinary generating functions are those which act as coefficients for a conventional power
series

∑
anx

n.

In this section, we seek to represent the probability, p, that a random walk on Zd returns to its
original position x0 as a relationship between two generating functions so that we can apply limiting
operations and further mathematical methods to them to derive a result about transience/recurrence
of random walks.

Utilizing the mutual exclusivity of the events denoted by En and the fact the probability of an
event that is the disjoint union of a sequence of events En is simply the sum of the probabilities pn
where pn = prob(En) [Paper, pg. 1], we get that

E =
⊔
n≥0

En

and, as a result

p =
∑
n≥0

pn

We call a random walk on Zd that starts and ends at the same point a loop. We consider
walks of zero length to be loops and call these loops trivial. A nontrivial loop that is not the
concatenation (concatenation meaning the ”stitching” of said loops end point to the start of the
next loop and the end point of the final loop to the start of the first) of two nontrivial loops is
defined as nondecomposable.

Now consider a point x0 ∈ Zd and take `n to denote the number of loops of length n that are
based at the x0 and rn to denote the number of said loops that are nondecomposable. We can see
that `0 = 1 (as a trivial loop occurs for n = 0) and r0 = 0 as this trivial loop that occurs is not
decomposable.

We can see that

`n =
n∑
k=0

rk`n−k (4.1)

for all n ≥ 1 through a simple recursion argument. Consider any loop that has length n and take
the first nondecomposable component of it, call the length of this component k, we can then see
that there are rk of these loops. We then have that the remaining n− k steps along this walk also
form a loop which may be decomposable, giving us that there are `n−k of these loops. Now, consider
the quantity (2d)n, which is the total number of n-length walks emanating from a point in Zd. This
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can be seen in any dimension d, there are 2d possible directions to move in and this ”choice” can be
made n times giving us this quantity. We can divide both sides of equality in 4.1 by this quantity to
get a representation of qn(the probability that the particle is at its original position after n steps)
stated as.

qn =
n∑
k=0

pkqn−k

We now consider the the ordinary generating functions P (z) and Q(z), which in formal notation,
are represented by

P (z) =
∞∑
k=1

pkz
k Q(z) =

∞∑
k=1

qkz
k

Utilizing this power series notation, we can then see that the relationship between pn and qn is
alternatively given by the expression P (z)Q(z) = Q(z)− 1

Noting that pn ≤ qn ≤ 1, we have that the radius of convergence of both of these power series
is at least 1. Also, note that Q(z) is not equal to 0 for z in the interval [0,1) which gives us that

P (z) = 1− 1

Q(z)
(z ∈ [0, 1)).

By noting that

P (1) =
∞∑
k=1

pk = p

we can apply Corollary 7.28 of Abel’s Theorem Folland,pg. 331 to see that

p =
limz→1−
z∈[0,1)

∞∑
k=0

pkz
k =

limz→1−
z∈[0,1) P (z) = 1− 1

limz→1−
z∈[0,1) Q(z)

By considering the conditions placed on the coefficients pn and qn, we can see that the limiting
operation performed on Q(z) will either converge to a finite real number (implying transience of
said random walk) or will diverge to +∞ (implying recurrence of said random walk).

p =
limz→1−
z∈[0,1) P (z) = 1− 1

limz→1−
z∈[0,1) Q(z)

(4.1)

5 Constructing an Exponential Loop Generating Function

We now seek to analyze the limit in question by creating a more manageable representation of Q(z)
through consideration of the loop generating function as an exponential generating function as this
generating function admits a much simpler form. We can then take this simpler form and trans-
form it back into a a simple form for the ordinary loop generating function through use of a Borel
Transform so that we may perform further analysis on it.
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We can see that this requires that we find a representation for the loop generating function

L(z) =
∞∑
n=0

`nz
n

as Q(z) = L( z
2d

). Although the ordinary loop generating function does not lend itself to analysis
very easily, the exponential generating function

E(z) =
∞∑
n=0

`n
zn

n!

certainly does. This results from the fact that any loop on Zd is a shuffle of loops on Zd or in other
words, that each pair of counteracting movements on Zd can be thought of as acting on a copy of
Z1 and that looking at a walk on a d-dimensional lattice is just like combining all of the movement
commands into a single string of operations on the particle.

This is exactly what we need as the multiplication of exponential generating functions corre-
sponds to shuffles which is a property that will be discussed here, for a more robust treatment, the
reader is referred to [Enum Comb, Chapter 5].

We now take a moment to solidify some notational additions. We let `
(d)
n denote the number of

length n in Zd and take Ed(z) to denote the exponential generating function of `
(d)
n . Now, for the

purpose of this proof, consider the case when d = 2. We know that a loop on the two-dimensional
integer lattice is a walk that takes unit steps both horizontally and vertically and ends where it
started. A loop of length n on Z2 is made of a number k of horizontal steps along with n−k vertical
steps. From our previous results, we can see that the unit steps in the horizontal direction create
a loop of length k, likewise, that the steps in the vertical direction create a loop of length n − k.
Thus, we have that the number of length n loops on Z2 that results from taking k horizontal steps
and n− k horizontal steps is (

n

k

)
`
(1)
k `

(1)
n−k

The reasoning for this being that by specifying the time when the k horizontal steps are per-
formed determines when th n− k vertical steps occur (all of which possibilities must be taken into
account). As a result, we have that the total number of n-length loops on Z2 is

`(2)n =
n∑
k=0

(
n

k

)
`
(1)
k `

(1)
n−k

as we sum up the number of loops for each corresponding length k for all k such that 0 ≤ k ≤ n.
Now, for the purpose of drawing a conclusion about the multiplication of exponential generating
functions, we will count loops in one dimension giving us that

`(1)n =

{(
2k
k

)
if n = 2k is even

0 if n is odd

Since any loop on Z is a combination of k positive unit steps and k negative units for some k ≥ 0 and
similar to before, the times where the positive steps occur determine the times when the negative
steps occur, we get that
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E1(z) =
∞∑
k=0

`
(1)
k

zk

k!
=
∞∑
k=0

(
2k

k

)
z2k

(2k)!
=
∞∑
k=0

z2k

k!k!

Now, note that

E2(z) =
∞∑
n=0

`(2)n
zn

n!
=
∞∑
n=0

zn

n!

n∑
k=0

(
n

k

)
`
(1)
k `

(1)
n−k =

∞∑
n=0

zn

n!

n∑
k=0

(
n

k

)
We can apply the same line of reasoning to the general dimension d as by moving up by one di-

mension, we just add another axis to step along allowing us to make similar combinatoric arguments
giving us that

Ed(z) = E1(z)d

and

E1(z) =

This fact is utilized through combinatorial arguments to notice that the exponential generating
function for lattice walks in Z1 is a modified Bessel function of the first kind (generally
denoted as Iα(z)) which satisfies the following second-order differential equation:(

z2
d2

dz2
+ z

d

dz
− (z2 + α2)

)
F (z) = 0 (α ∈ C).

We call this differential equation the modified Bessel equation and although we will not go
indepth here, the reader is referred to [Special functions, Chapter 4] for a more exhaustive ref-
erence. Novak[Paper, pg.5] elicits both a series and integral representation of the modified function
from previous resources which will both prove useful to us and as stated are

rip reference from Novak and explain bessel .

Iα(z) =
∞∑
k=0

(
z
2

)2k+α
k!Γ(k + α + 1)

Iα(z) =

(
z
2

)α
√
πΓ(α + 1

2
)

∫ π

0

e(cos(θ))z(sin(θ))2αdθ

Note that

I0(2z) =
∞∑
k=0

z2k

k!Γ(k + 1)
= E1(z)

Which gives us that E(z) = I0(2z)d

6 Application of the Borel Transform

In this section, we would like to find a representation of the ordinary loop generating function, L(z),
in terms of a standard mathematical object by applying the Borel Transform to the expression for the
exponential generating function, E(z), which we already have a definition for in terms of standard
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mathematical objects.

A Borel Transform ((Bf)(z) =
∫∞
0
f(tz)e−tdt) is then used to turn this exponential generating

function into an ordinary generating function [1](a generating function where the coefficients corre-
spond to the coefficients, an, of a power series expansion

∑
anx

n) giving us an integral form for Q(z).

We can see how this occurs by writing out the Maclaurin series of f(tz) and interchanging
integration and summation (WHICH IS VALIDATED THROUGH UNIFORM CONVERGENCE
Prove this) giving us that

(Bf)(z) =

∫ ∞
0

f(tz)e−tdt =
∞∑
n=1

f (n)(0)
zn

n!

∫ ∞
0

e−ttndt

and by noting that
∫∞
0
e−ttndt = n!, we get that

(Bf)(z) =
∞∑
n=1

f (n)(0)zn

We now apply the Borel Transform to the exponential loop generating function E(z) to retrieve
an integral representation for the ordinary loop function L(z) giving us that

L(z) = B(E(z)) = B
(
I0(2z)d

)
=

∫ ∞
0

I0(2zt)
de−tdt

7 Utilization of Laplace’s Formula

In this section, we will now seek to show that the integral representation of the ordinary loop gen-
erating function diverging/converging for varying values of d is equivalent to the divergence or
convergence of a much easier to evaluate elementary integral giving us our wanted result about
transience/recurrence of a random walk on Zd.

We now have an integral representation for Q(z) which is useful as these sorts of integrals lend
themselves nicely to tests for convergence which will prove useful in evaluation of the original limit
of the generating function. As there are no ill-behaved points in the finite portion of the integral,
the convergence of the integral is dependent on the tail of the integral∫ ∞

N

I0(2zt)
de−t (N � 0).

and, furthermore, that the behavior of this integral is determined by the behavior of the integrand
as t→∞

To assist us in evaluation of this integral, we note that

I0

(
tz

d

)
=

(
tz
2d

)0
√
πΓ(0 + 1/2)

∫ π

0

ecos(θ)
tz
d sin(θ)2·0dθ =

1

π

∫ π

0

etf(θ)dθ (7.1)

where f(θ) = cos(θ) z
d
.

We will now use methods from Asymptotic Analysis to approximate this integral and to ensure that
the error does not affect our end result. To put it succinctly, Asymptotic Analysis is a method of
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describing the limiting behavior of a variety of equations and relations. We will be using an ele-
mentary result, so only a small portion of the field will be discussed here, but the reader is directed
to [GEN FUNC] for a more robust treatment.

We start by noting that the function defined by f(θ) is strictly maximized over at θ = 0 in
the interval [0, π]. We can talk about maximizing a complex-valued function despite the lack of an
ordering being present on C as, although z ∈ C, recall from 4.1 that we are looking at the interval
[0, 1) on the real line, which is ordered. Thus, the function etf(θ) is maximized at θ = 0 as t > 0.
Although t can be equal to 0, we cannot say that there is a maximum at θ = 0 because there are no
extrema present. If we look at what happens as t→∞, we can see that this maximization effect is
amplified LOCALIZES DEFINITION . This localization can be seen numerically by analyzing the
second degree Taylor polynomial of f centered at θ = 0

f(θ) ≈ P(2,0)(f(θ)) =
2∑
j=0

f (k)(0)
θk

k!
= f(0) + f ′(0)θ + f ′′(0)

θ2

2

Notice that f ′(0) = 0 and that f ′′(0) = −1 < 0 giving us that

f(θ) ≈ f(0)− |f ′′(0)|θ
2

2

We now will substitute this approximation for f back into the integrand of the right-most integral
in 7.1 giving us that

1

π

∫ π

0

etf(θ)dθ ≈ 1

π

∫ π

0

et(f(0)−|f
′′(0)| θ

2

2
)dθ =

etf(0)

π

∫ π

0

e−t|f
′′(0)| θ

2

2 dθ (7.2)

If we extend the right-most integral over the [0,∞) and ignore the rapidly decaying error incurred
by the higher-order terms from the Taylor polynomial, we receive half of a Gaussian integral

etf(0)

π

∫ ∞
0

e−t|f
′′(0)| θ

2

2 dθ

which as a result of [PAPER, Pg. 6] can be calculated exactly to give us

etf(0)

π

∫ ∞
0

e−t|f
′′(0)| θ

2

2 dθ =
etf(0)

π

√
π

2t|f ′′(0)|

From this, we can expect this function of t to be an approximation of our integral from 7.1, the
accuracy of which, increases as t tends towards ∞. This result is actually ensured by Laplace’s
Formula [6, Section 5.1] giving us that

1

π

∫ π

0

etf(θ)dθ ∼ etf(0)

π

√
π

2t|f ′′(0)|
(t→∞).

With the notation f(t) ∼ g(t) denoting that limt→∞
f(t)
g(t)

= 1. We can now bring everything together
to evaluate our integral in an approximate fashion giving us that

I0

(
tz

d

)d
e−t ∼ C · et(z−1) · tz−

d
2
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where C is a negligible constant. Through application of the monotone convergence theorem
is then analyzed using Laplace’s method from asymptotic analysis. The resulting asymptotic

formula is then shown to diverge for d = 1, 2 and to converge for d ≥ 3 by the monotone convergence
theorem giving us the result of Polya’s theorem.

8 Notable Results

Having proved this result for Zd, the natural question to ask next would be, to what other vector
spaces does this apply?
As it turns out, this result can also be applied to random motion in Rd as well, which is known
as a form of Brownian Motion, giving us similar results of recurrence and transience of random
walks in a continuous setting.
Although the proof behind this result is a bit more invovlved utilizing results from probability
theory, the intuition behind this extension is rather simple in that we are basically looking at a
lattice in dimension d with infinitessimal lengths separating each connected node which makes it
easy to see why Polya’s Theorem still applies.

To elaborate on the details of this, we can reference a web article written by Alex Chinco.
Chinco interprets Brownian Motion in Rd as a vector-valued process as a function of time with d
components
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