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1 Introduction

In their paper [4] "Mahler Polynomials and the Roots of Unity", Karl Dilcher and Larry
Ericksen introduce the reader to the relationships between the partial sums

Pn(z) =
n−1
∑

j=0
z2

j
= z + z2 +⋯ + z2

n−1
(z ∈ ℂ, n ∈ ℕ) (1)

of the function of the function f (z) =
∑∞
j=0 z

2j (defined on the open unit disk), and the
roots of unity. One of their paper’s goals to is prove a result concerning the divisibil-
ity of Pn(z) by cyclotomic polynomials (a result which they call Proposition 2.2) that
they claim that Mahler only referred to implicitly. In addition, the paper contains many
results concerning the distribution of zeros of Pn(z). For instance, they show that for
n ≥ 3, all zeros of Pn(z) must lie in some open disk centered at the origin with a radius
depending on n [4, p.346], and also that for n ≥ 2, all critical points of Pn(z) must lie
inside the unit circle [4, p.349]. In the process, the authors mention related conjectures,
in particular, that there are infinitely many Wieferich primes, and that every Pn(z) has
at least one zero outside the unit circle. The paper concludes by connecting cyclotomic
polynomials to Meresenne primes and by challenging the reader to generalize the pa-
per’s results to the polynomials Pq;n(z) =

∑n−1
j=0 z

qn , where q is some arbitrary natural
number, not necessarily 2.

This paper fills in the details of Proposition 2.2, and builds up the algebraic and
number-theoretic machinery that is necessary to understand the proposition. Without
further ado, into the Mathematics we go!

2 Definitions:

Definition 2.1. If z is an nth root of unity and zn ≠ 1 for every natural k < n, we say
that z is a primitive nth root of unity [7].

Definition 2.2. According to Wolfram Mathworld, for n ∈ ℕ the nth cyclotomic poly-
nomial is the polynomial:

φn(z) =
n
∏

k=1,
�k primitive

(z − �k) (2)
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where �k denotes the kth primitive nth root of unity [6].

Definition 2.3. If m ∈ ℕ then t(m), called the order of m modulo 2, is the smallest
positive integer t such that tm ≡ 1 mod m [4, p.339].

Definition 2.4. For a prime p, let w(p) be the highest power of p that divides 2p−1 − 1
[4, p.344].

Remark. Dilcher and Ericksen note that for every prime p, w(p) ≥ 1 by Fermat’s little
theorem [4, p.344].

Definition 2.5. AWieferich prime is a prime p satisfying w(p) = 1 [4, p.344].

The following algebraic definitions are taken from Bruce Ikenaga’s website [5] and
from Patrick’s Morandi’s course notes [3], and are provided to aid the reader.

Remark. F, in the following theorem statements, denotes any arbitrary field, finite or
infinite.

Definition 2.6. A ring [5, Rings] is an abelian group R with binary operation + (“ad-
dition”), together with a second binary operation ∙ (“multiplication”). The operations
satisfy the following axioms

1. Multiplication is associative: For all a, b, c ∈ ℝ,

(a ∙ b) ∙ c = a ∙ (b ∙ c). (3)

2. The Distributive Law holds. For all a, b, c ∈ ℝ,

a ∙ (b + c) = a ∙ b + a ∙ c and (a + b) ∙ c = a ∙ c + c ∙ c (4)

Definition 2.7. We say that a ringR hasmultiplicative identity (and call R a ring with
1, or a ring with unity) [5, Rings] if there is an element 1 ∈ ℝ such that 1 ≠ 0, and
such that for all a ∈ ℝ,

1 ∙ a = a and a ∙ 1 = a (5)

Definition 2.8. If R is a ring, then R[x] (called the ring of polynomials in x with
coefficients in ℝ [5, Polynomial-Rings], consists of all formal sums

∑∞
i=0 aix

i, where
ai ≠ 0 for all but finitely many values of i. Addition and multiplication of polynomials
in this ring is defined in the usual way. It is easily verified that R[x], as defined above,
satisfies the ring axioms.

Definition 2.9. If f(x) =
∑∞
i=0 aix

i is a nonzero polynomial, the degree [3, p.53-54] of
f, denoted by deg(f), is the largest n ≥ 0 such that an ≠ 0. If f is the zero polynomial
(has all an = 0), we say that f has degree −∞, and write deg(f ) = −∞. We formally
define −∞+−∞ = −∞ and for every integer n, we formally define −∞+ n = −∞. As
stated by Morandi, the purpose of these conventions is to make the relationship between
the degree of a product of polynomials and the degree of each as straight-forward as
possible.
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Definition 2.10. Let f and g be polynomials in F[x]. Then we say that f divides g [3,
p.53-54] and write f | g if there is a polynomial ℎ ∈ F [x] with g = fh.

Definition 2.11. IfR and S are rings, a function f ∶ ℝ → S is a ring homomorphism
(or a ring map) [5, Ring homomorphisms and isomorphisms] if f (x+y) = f (x)+f (y)
and f (xy) = f (x)f (y) for all x, y ∈ R. If R,S are rings with identity, then we require
f (1) = 1.

Definition 2.12. For x ∈ ℤ, I define x as {y ∈ ℤ ∶ y ≡ x mod n}. This is called the
equivalence class of a mod n.

Definition 2.13. Let R be a ring. An ideal I of R [5, Ideals] is a subset of R such that

1. I is closed under addition: If a, b ∈ I, then a + b ∈ I

2. I contains the zero element of R: 0 ∈ I .

3. I is closed under additive inverses: If a ∈ I , then −a ∈ I .

4. If a ∈ I and r ∈ R, then ar ∈ I and ra ∈ I. That is, S is closed under multiplication
(on either side) by artibrary ring elements.

Example. Let R = ℤ. For n ∈ ℤ, let nℤ ≡ {an ∶ a ∈ ℤ}, the set of integer multiples
of n. I claim that nℤ is an ideal ofℤ. Suppose x, y ∈ nℤ. Then there exists integers a, b
such that x = an, y = bn. Then x + y = (a + b)n, so x + y ∈ ℤ, so nℤ is closed under
addition [3, p.56]. Evidently, 0 ∈ nℤ, and if a ∈ nℤ then −a ∈ nℤ. Now suppose that
x = na ∈ nℤ and r ∈ R. Then xr = rx = r(na) = r(an) = (ra)n, and since ra ∈ ℤ,
xr, rx ∈ I . Thus I is an ideal of ℤ. Note that if n > 0,

nℤ = {… ,−2n,−n, 0, n, 2n,…} = 0. (6)

This important connection will be revisited later.

Example. Suppose f ∈ F [x]. Now consider I = {gf ∶ g ∈ F [x]}, the set of
all multiples of f. Then I , denoted by (f ), is an ideal of F [x], following the exact
calculation as in the previous example.

Example. If R is any commutative ring and a, b ∈ R, then I = {ar + bs ∶ r, s ∈ R}
is an ideal of R [3, p.57]. Also, if a1,… , an ∈ R, then I = {a1r1 + … + anrn ∶
r1,… , rn ∈ R} is an ideal of R, by a similar calculation [3, p.57].

Remark. Following the remarks given in [3, p.59-60], given any ideal of a ring R, we
may define an equivalence relation x ≡ y mod I provided that x − y ∈ I . It is easily
proven that this defines an equivalence relation. Now we construct the corresponding
equivalence classes. For any r ∈ I , I define r = {s ∈ R ∶ s ≡ r mod I}, which I call
the equivalence class of r mod I.

Definition 2.14. The following definitions are found at [3, p.58]. Let R be a ring and
I an ideal of R. If a ∈ R, then the coset a + I is defined as a + I = {a + x ∶ x ∈ I}.
a is called a coset representative of a + I. If a + I and b + I are cosets of R, we define
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(a + I) + (a + I) = (a + b) + I and (a + I) (a + I) = ab + I . Furthermore, if n is a
nonnegative integer and a + I a coset, we define

n(a + I) = (a + I) +… + (a + I)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n times

(7)

(a + I)n = (a + I)… (a + I)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n times

(8)

Furthermore, I formally define (a + I)0 = 1 + I = 1 and 0(a + I) = 0 + I . It must
be verified that coset arithmetic is well defined, that is, the resulting coset does not
depend on the choices of coset representative for the starting cosets. This is done in [3,
p.59-60].

Now, the following lemma connects cosets to equivalence classes.

Lemma 2.1. Let I be an ideal of the ring R. Then for any a ∈ R, a = a + I .

Proof.

a = {x ∈ R ∶ x ≡ a mod I} (9)
= {x ∈ R ∶ x − a ∈ I} (10)
= {x ∈ R ∶ ∃r ∈ I ∶ x − a = r} (11)
= {x ∈ R ∶ ∃r ∈ I ∶ x = a + r} (12)
= a + I (13)

Theorem 2.2. Let I be an ideal of a ring R. Then R/I, the set of cosets of I, forms a
ring under coset addition and multiplication. The additive identity, or zero, is the coset
0+I = 0. The reader may easily verify that R/I is indeed a ring as asserted. R/I is called
a quotient ring of R. Furthermore, if R is a ring with unity, then R/I is also, with identity
element 1 = 1+I , and ifR is a commutative ring (multiplication is commutative), then
R∕I is also a commutative ring. The verification of these steps may be found in [3,
p.60].

Remark. Since cosets are equivalence classes, R∕I is the same thing as the set of
equivalence classes mod I of R.

The following quotient ring is especially pertinent to Dichler and Eriksen’s results
concerning divisibility by cyclotomic factors. It is Z[z]

(zk−1) , where k is a natural number
and Z[z] is the ring of polynomials over ℂ with integer coefficients. Note that because
Z[z] is a ring with unity, Z[z]

(zk−1) is too. The zero of this ring is zk − 1. Z[z]
(zk−1) is a

ring with unity. It is important to note that with respect to the ideal (zk − 1), for any
p(z) ∈ ℤ[z], p(z) = p(z) + (zk − 1), by the previous lemma. This means that Z[z]

zk−1 =
{p(z) ∶ p(z) ∈ ℤ[z]}.
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Now, in the context of ℤ[z] with ideal
(

zk − 1
)

, ∃r ∈ ℤ[z] where p(z) = q(z) +
r(z)(zk − 1) iff p ≡ q mod zk − 1 iff p − q ∈

(

zk − 1
)

iff p +
(

zk − 1
)

= q +
(

zk − 1
)

iff p = q (the third if-and-only-if follows from Lemma 5.14 in [3, p.59]). Now, I prove
the following lemmas which are critical for the proof of Proposition 2.2 (Dilcher and
Eriksen do not themselves prove them).

Lemma 2.3. For non-negative integers a, b where a ≥ b and positive integer k, if a ≡ b
mod c then za ≡ zb mod zc − 1.

Proof. Suppose a, b, c are as given and a ≡ b mod c. Now, let a − b = lk, where
k ∈ ℤ. Note that since a ≥ b, a − b ≥ 0, and since k > 0, l ≥ 0. Now, a = b + lk ≥
0. Therefore, za = zb+lk. Now, we have that zk − 1 ≡ 0 mod zk − 1. Therefore,
zk − 1 = zk − 1 = 0, zk − 1 = 0, zk = 1, zk ≡ 1 mod zk − 1. Furthermore, we have
that za = zkl+b = zkbzb =

(

zk
)b
zb =

(

1
)b
zb =

(

1
)

zb = zb, all by the ring axioms

under the ring ℤ[z]
zk−1 . Therefore, z

a ≡ zb mod zk − 1, and this completes the proof.

Lemma 2.4. For non-negative integers a, b and positive integer k, if a ≡ b mod c then
za ≡ zb mod zc − 1.

Proof. If a ≥ b, then by the previous lemma, za ≡ zb mod zc − 1. If a < b, then b > a,
b ≥ a, so zb ≡ za mod zc − 1. Because congruence is an equivalence relation, za ≡ zb
mod zc − 1. This completes the proof.

Now, we have built up the minimum algebric structure required to understand the
proof of Proposition 2.2. Yet a familiarity with basic number-theoretic concepts is also
required, thus the following number-theoretic definitions and examples are provided to
aid the reader.

Definition 2.15. According to Long, the gcd [1, p.33] of two integers not both zero
is the largest positive integer that divides both. That is, for n, m ∈ ℤ not both zero,
gcd(n, m) = d means that d|n and d|m and that if k ∈ ℕ, d < k, then ¬(k|n and k|m).

Definition 2.16 (Totient Function). According to [1, p.85], the Euler Totient Function
is the function � ∶ ℕ → ℕ where �(n) counts the number of natural numbers k in the
range 1 ≤ k ≤ n where gcd(k, n) = 1 (that is, the number of positive integers in that
range that are relatively prime to n).

Definition 2.17. According to [1], any subset R of the integers is called a reduced
residue system modulo n ∈ ℕ iff

1. gcd(r, n) = 1 for every r ∈ R;

2. R contains �(n) elements;

3. No two distinct elements of R are congruent modulo n.

Remark. Note that by definition, all reduced residue systems modulo n have �(n) ele-
ments.
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Example. If p is a prime, the set S = {1,… , p − 1} is a reduced residue system
modulo p. All of the elements of S are relatively prime with p. �(p) = p − 1 = #S.
Now suppose r1, r2 ∈ S satisfy r1 ≡ r2 mod p. Then p|r1 − r2. But r1 < p − 1 and
r2 ≥ 0, so −r2 ≤ 0, r1 − r2 < p− 1. This contradictions the claim that p|r1 − r2 unless
r1 − r2 = 0, r1 = r2. Therefore r1 and r2 are not distinct. This shows that S is indeed
a reduced resiude system modulo p.

The following lemma is also critical to the proof of Preposition 2.2.

Lemma 2.5. If {w1, w2,… , wm} is a reduced residue system modulo n, where n is odd,
then for any non-negative integer j, the set {2jw1, 2jw2,… , 2jwm} is also a reduced
residue system modulo n.

Proof. Suppose j is an arbitrary non-negative integer. First, I show that gcd(2jwk, n) =
1 for every k ∈ {1,… , m}. So suppose k ∈ {1,… , m}. Since {w1, w2,… , wm} is a
reduced residue system modulo n, gcd(wk, n) = 1. Now evidently, 1|wk and 1|n. Now
suppose that l > 1, l|2jwk and l|n. However, n is odd, so l is odd (if l were even then n
would be even), so l ∤ 2j . However, l|2jwk. Therefore, l|wk. But this is a contradiction
because l > 1 divides bothwk and n, yet gcd(wk, n) = 1. Therefore, gcd(2jwk, n) = 1
for every k ∈ {1,… , m}. Second, since {w1, w2,… , wm} contains elements, �(n),
{2jw1, 2jw2,… , 2jwm} must also contain �(n) elements. Finally, suppose that there
exist distinct k1, k2 ∈ {1,… , m} where 2jwk1 ≡ 2jwk2 mod n. Then there exists an
integer a such that 2jwk1 = 2jwk2 + an. Thus 2j(wk1 − wk2) = an. Thus 2j|an.
But since n is odd, 2j ∤ n, therefore 2j|a. Thus, there exists an integer l satisfying
2jl = a. But then 2j(wk1 − wk2) = 2jln, wk1 − wk2 = ln, implying that wk1 ≡
wk2 mod n, which is impossible unless wk1 = wk2 , since {w1,… , wm} is a reduced
residue system modulo n. Therefore, 2jwk1 = 2jwk2 . Thus, all three reduced residue
system conditions have been verified, so {2jw1, 2jw2,… , 2jwm} is a indeed a reduced
residue system modulo n.

Now, I formulate a more ring-theoretic way of understanding reduced residue sys-
tems. I claim that if a is an equivalence class of integers modulo n, then either all
elements of a are relatively prime to n, or all elements of a are not relatively prime to
n. Suppose that it is false that all elements of a are not relatively prime to n. Then
there exists k1 ∈ a satisfying gcd(k1, n) = 1. I claim therefore that for any k2 ∈ a,
gcd(k2, n) = 1. Suppose not, that there exists k2 ∈ a satisfying gcd(k2, n) ≠ 1. I
will derive a contradiction by showing that this implies that gcd(k1, n) ≠ 1. Since
gcd(k2, n) ≠ 1, there exists a natural number l > 1 where l|k2 and l|n. However, since
k1, k2 ∈ a, k1 ≡ a mod n and k2 ≡ a mod n, therefore there exists integers v1, v2 satis-
fying k1−a = v1n, k2−a = v2n. Therefore k1−k2 = (v1−v2)n, so k1 = k2+(v1−v2)n.
Now, since l|k2 and l|n, we have that l|k1, but since l|n and l > 1 and gcd(k1, n) = 1,
we have the aforementioned contradiction.

Staring at the definition of reduced residue system for long enough, one sees that
a reduced residue system modulo n is merely a set of �(n) integers, each from a dis-
tinct equivalence class of integers modulo that is relatively prime to n (of which there
are �(n) of). Therefore, between any two reduced residue systems {w1,… , wm} and
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{x1,… , xm}modulo n, we may form a one-to-one correspondence linking elements be-
longing only to the same equivalence class of integers modulo n. For instance, suppose
that {1, 2, 3, 4} and {17, 21, 43, 19} are two reduced residue systems modulo five. Then
the aforementioned bijection associates 17 to 2, 19 to 4, 43 to 3, and 21 to 1, because
17 ≡ 2 mod 5, 19 ≡ 4 mod 5, 43 ≡ 3 mod 5, and 21 ≡ 1 mod 5.

Now, we have built up enoughmachinery to understandDilcher and Eriksen’s Propo-
sition 2.2.

3 Proposition 2.2

Theorem 3.1 (Proposition 2.2). If p ≥ 3 is a fixed prime, then for all m ≥ 1 we have
that:

φp(z2
t(p)m−1) divides Pt(p)pm(z). (14)

Proof. Dichler and Ericksen proceed as follows: Suppose p and m are as given. Then,
letting t = t(p) (note that t ∈ ℕ), regrouping the terms, they note that:

Ptpm(z) =
(

z2
0
+ z2

1
+ z2

2
+…+ z2

tm−1
)

+
(

z2
tm
+ z2

tm+1
+…+ z2

2tm−1
)

+
(

z2
2tm

+ z2
2tm+1

+…+ z2
3tm−1

)

+…………………

+
(

z2
(p−1)tm

+ z2
(p−1)tm+1

+…+ z2
tpm−1

)

(15)

=
(

z2
0
+ z2

tm
+ z2

2tm
+…+ z2

(p−1)tm
)

+
(

z2
1
+ z2

tm+1
+ z2

2tm+1
+…+ z2

(p−1)tm+1
)

+
(

z2
2
+ z2

tm+2
+ z2

2tm+2
+…+ z2

(p−1)tm+2
)

+……………………

+
(

z2
tm−1

+ z2
2tm−1

+ z2
3tm−1

+…+ z2
tpm−1

)

(16)

=
tm−1
∑

j=0

(

z2
j
+ z2

tm+j
+ z2

2tm+j
+…+ z2

(p−1)tm+j
)

(17)

=
tm−1
∑

j=0
z2

j
(

1 + z2
j (2tm−1) + z2

j (22tm−1) +…+ z2
j (2(p−1)tm−1)

)

(18)

=
tm−1
∑

j=0
z2

j
Qj(z), (19)

where
Qj(z) = 1 + z2

j (2tm−1) + z2
j (22tm−1) +…+ z2

j (2(p−1)tm−1). (20)
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Then they assert the fact that

φp(z2
tm−1)

(

z2
tm−1 − 1

)

= zp(2
tm−1) − 1, (21)

which follows from the identity φp(z) = zp−1 + zp−2 +…+ z+ 1 and the difference of
powers formula (zp −1) = (z−1)φp(z), after having substituted z2

tm−1 in for z. As the
authors then clearly state, we want to show that each Qj(z) is divisible by φp(z2

tm−1).
Then, the authors write that "to do so, we reduce each [Qj(z)]1 modulo [zp(2tm−1) − 1].
This can be achieved by reducing the exponents modulo p(2tm − 1)". What is meant
by this statement is very unclear. Then the authors make a calculation regarding the
aforementioned exponents, which is restated more clearly as follows. For a fixed � ∈
{1,… , p − 1}, let xj,� = 2j(2vtm − 1) be the exponent of a single monomial of Qj(z).
Now by the difference of powers formula,

xj,� = 2j(2vtm − 1) = 2j(2tm − 1)
(

2(�−1)tm + 2(�−2)tm +…+ 2tm + 1
)

(22)

Let B = 2tm − 1. Evidently, xj,� is divisible by B, and (abbreviating xj,� by x until
further notice),

x∕B = 2j
(

2(�−1)tm + 2(�−2)tm +…+ 2tm + 1
)

. (23)

Now, because 2t ≡ 1mod p by the definition of t, all of the monomials in the parenthesis
of the above equation are congruent to one modulo p, thus after adding and multiplying
the congruences we have that

x∕B ≡ 2j� (mod p) (24)

as asserted by Dilcher and Eriksen. Now, this gives us that for some k ∈ ℤ, x∕B−2j� =
kp , x − 2jB� = k(pB), thus x ≡ 2jB� mod pB. As x = xj,� , we thus have that:

xj,� ≡ 2jB� (mod p(2tm − 1)) (25)

Now, the authors state that because {� ∶ � = 1,… , p − 1} is a reduced residue sys-
tem modulo p, {2j� ∶ � = 1,… , p − 1} is also a reduced residue system modulo
p. This follows from Lemma 2.5. However, the authors assert in the next line that
"Hence [Qj(z)] (mod zp(2tm−1) −1) is the same for any j, with the terms (other than the
initial “1”) permuted". The authors throw a lot of details under the rug with this asser-
tion. What they mean is that for any j1, j2 ∈ {0,… , tm − 1}, Qj1 (z) ≡ Qj2 (z) mod
zp(2tm−1) − 1. The authors do not prove this assertion, so what follows is my own proof
of it. Suppose that j1, j2 are in the aforementioned range. Now Qj1 (z) =

∑p−1
�=0 z

xj1 ,� ,
Qj2 (z) =

∑p−1
�=0 z

xj2 ,� . I claim that there exists a bijection � ∶ Jp−1 → Jp−1 of Jp−12 so
that for every � ∈ {1,… , p−1}, xj1,� ≡ xj2,�(�) mod p(2tm−1). If I can show this, then I
will be done. Why is this? Suppose we had such a �. Then for every � ∈ {1,… , p−1},

1 I use square brackets to denote my insertion of text into quotes. I do not attach any mathematical meaning
to the notation at any point within this proof.

2 For a natural number n, I define Jn as {k ∈ ℕ ∶ 1 ≤ k ≤ n}.
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by Lemma 2.3 we have that zxj1 ,� ≡ zxj1 ,�(�) mod zp(2tm−1) − 1. Since congruence is
preserved under addition, adding up each congruence yields that:

p−1
∑

�=1
zxj1 ,� =

p−1
∑

�=1
zxj2 ,�(�) (mod zp(2tm−1) − 1) (26)

Now let y� = xj2,� . Then because � is a permutation, we have that {y�} = {y�(�)},
{xj2,�} = {xj2,�(�)}, thus we have that

∑p−1
�=1 z

xj2 ,�(�) =
∑p−1
�=1 z

xj2 ,� , and from this and
the above equation, we obtain that

p−1
∑

�=1
zxj1 ,� =

p−1
∑

�=1
zxj2 ,� (mod zp(2tm−1) − 1) . (27)

After adding one to both sides (as for every j, xj,0 = 0), we obtain exactly what we
were trying to prove.

Now, I will exhibit such a �. First, I prove the following lemma.

Lemma 3.2. For every l1, l2 ∈ {0,… , tm − 1} and X ∈ Jp−1, there exists a unique
Y ∈ Jp−1 such that 2l1BX ≡ 2l2BY mod p(2tm − 1).

Proof. Suppose that l1, l2 are as described and X ∈ Jp−1. Now let S1 = {2l1� ∶
� = 1,… , p − 1} and S2 = {2l2� ∶ � = 1,… , p − 1}. Both S1 and S2 are reduced
residue systems modulo p by Lemma 2.5. Now, because every reduced residue system
modulo p is a choice of exactly one element from each of the p− 1 equivalence classes
of integers modulo p, if we let � denote the equivalence class of integers modulo p
that 2l2X belongs to, there exists exactly one element � = 2l1Y of S2 in �. But since
all elements of the same equivalence class are equivalent to one another, we have that
2l1X ≡ 2l2Y mod p. Multiplying each part of the congruence by B, we have that
2l1BX ≡ 2l2Y B mod p(2tm−1 − 1). Thus we have found a Y ∈ Jp−1 with the desired
property. Now suppose Y ′ is such that 2l1BX ≡ 2l2BY ′ mod p(2tm − 1). Then 2l1X ≡
2l2Y ′ mod p. However, 2l2Y ′ ∈ S2, but since there is only one element of S2 belonging
to the equivalence class �, we have that 2l2Y ′ = 2l2Y , therefore Y = Y ′, which is what
we were trying to show. Thus, the element Y that we found is unique, which completes
the proof of the lemma.

Therefore, we have that for every � ∈ Jp−1 there exists a unique �(�) ∈ Jp−1
such that 2j1B� ≡ 2j2B�(�) mod p(2tm − 1). Rephrasing this, we have that for every
� ∈ Jp−1, 2j1B� ≡ 2j2B�(�) mod p(2tm − 1). Equivalently, for every � ∈ Jp−1, xj1,� ≡
xj2,�(�) mod p(2tm − 1). I now claim that � is bijective. First, I show that � is onto.
Suppose that y ∈ Jp−1. Then by Lemma 3.2, there exists a � ∈ Jp−13 such that 2j1B� ≡
2j2By mod p(2tm − 1). But by uniqueness of �(�), y = �(�). This shows that � is onto.
Now I claim that � is one-to-one. So suppose that �(�1) = �(�2). I show that �1 = �2.
Now, we have that 2j1B�1 ≡ 2j2B�(�1) mod p(2tm − 1) and 2j1B�2 ≡ 2j2B�(�2) mod
p(2tm − 1). But 2j2B�(�1) = 2j2B�(�2). Thus, we have that 2j2B�(v1) ≡ 2j1B�1 mod

3 Using the first sentence in the above paragraph with l1 = j2, l2 = j1.
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p(2tm − 1) and 2j2B�(v1) ≡ 2j1B�2 mod p(2tm − 1). Now if we use the first line of
the previous paragraph with l1 = j2, l2 = j1, X = �(�1), by the uniqueness of the
corresponding Y , we have that �1 = �2, which is what we were trying to show. So we
have found a permutation � with the desired property, which is what we were trying to
show.

The rest of the proof is rather straightforward. Since we now know that for every
j1, j2 ∈ {0,… , tm − 1}, Qj1 (z) ≡ Qj2 (z) mod zp(2tm−1) − 1, we have that for every
j ∈ {0,… , tm − 1}, Q0(z) ≡ Qj(z) mod zp(2tm−1) − 1. Now, as stated by Dilcher and
Eriksen, if we can show that:

1 + z2
tm−1 + z2

2tm−1 +…+ z2
(p−1)tm−1 ≡ φp(z2

tm−1) mod zp(2tm−1) − 1 , (28)

we will be done. This is because Q0(z) = 1 + z2tm−1 + z22tm−1 +… + z2(p−1)tm−1, and
if Q0(z) ≡ φp(z2

tm−1) mod zp(2tm−1) − 1, then for an arbitrary j ∈ {0,… , tm − 1},
Qj(z) ≡ φp(z2

tm−1) mod zp(2tm−1) − 1, so

Qj(z) − φp(z2
tm−1) = K(z)

(

zp(2
tm−1) − 1

)

= K(z)φp(z2
tm−1)

(

z2
tm−1 − 1

)

, (29)

by Equation 21. This immediately shows that φp(z2
tm−1) divides Qj(z), but since this

is true for arbitrary j in the desired range, we have that φp(z2
tm−1) divides Pt(p)pm(z),

which is what the Proposition asks to be shown.
Then, Dilcher and Eriksen prove Equation 28. As they state, they show that for

v = 1,… , p − 1,
2�tm − 1 ≡ �(2tm − 1) mod p(2tm − 1) . (30)

This completes the proof because if it is true, then for � = 1,… , p−1, z2�tm−1 ≡ z�(2tm−1)
mod zp(2tm−1)−1 bymy Lemma 2.5, therefore sinceφp(z2

tm−1) = 1+z2tm−1+z2(2tm−1)+
…+ z(p−1)(2tm−1), after adding up each congruence and adding one we have that:

1 + z2
tm−1 + z2

2tm−1 +…+ z(2
(p−1)tm−1) ≡ φp(z2

tm−1) mod zp(2tm)−1 − 1, (31)

which is what we were trying to show. Finally, Equation 30 is true because, as the
authors state, it is equivalent upon rearrangement to the equation

(2tm − 1)[2(�−1)tm + 2(�−2)tm +…+ 2tm + 1 − �] ≡ 0 mod p(2tm − 1), (32)

which is true since the expression in square brackets vanishes modulo p. With this, the
proof is complete.

4 Conclusion:

After this result is proven, the authors prove a number of subsequent results. Some
of those results utilize Proposition 2.2 and some do not. The ones that do not mainly
concern the distribution of zeros of Pn(z). For instance, Dilcher and Eriksen also prove
that for all n ≥ 3, all zeros of Pn(z) lie in the disk:

{

|z| < 1 + log(n−1)
2n−2

}

. However,
these resulsts are not the main focus of this paper. Some additional results proven in [4]
concerning cyclotomic factors of Pn(z) are listed below:
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Corollary 4.0.1. [4, p.343]: Let n be such that n = t(p)pm for some prime p ≥ 3 and
integer m ≥ 1. Then Pn(z) is divisible by all φd(z) with d|p(2tm − 1) and pu(p)+1|d,
where u(p) is the highest power of p dividing 2t(p)m − 1.

Corollary 4.0.2. [4, p.344]: If p ≥ 3 is a prime and t = t(p), w = w(p), then for all
m ≥ 1,

∏

pk|m

φpk+w+1 (z) |Ptpm(z). (33)

One might wonder how exactly Proposition 2.2 is used implicitly by Mahler. In [2,
p.208], Mahler writes the following:

In [2, p.208], Mahler has computer-generated evidence that certain Pn(z) are di-
visible by certain cyclotomic factors. Although Mahler is indeed invoking Proposition
2.2 implicitly by stating that P6(z), P12(z), etc. are divisible by certain cyclotomic fac-
tors, he has made no mistakes, that is, he is not using any results that have not yet been
proven. As shown above, Mahler uses known cyclotomic factors of some Pn(z) in order
to understand how many pairs of complex-conjugate cyclotomic roots each such Pn(z)
has. Proposition 2.2 and Corollary 4.0.2 are especially useful in that they allow one to
find cyclotomic factors of a Pn(z) where n is so large that any computer-algebra system
will be unable to do so.
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