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Abstract

In this paper, we will prove a famous theorem known as the Weierstrass Approximation
Theorem. In 1885, Weierstrass (being 70 years of age) proved a rather astounding theorem that
on the interval [0, 1], any continuous function can be approximated infinitely close by a polyno-
mial function. His proof heavily relied on intricate analysis concepts and involved building up a
sequence of polynomials from a convolution with a Gaussian heat kernel. The proof we display
in this paper, is not of Weierstrass, but of Bernstein. In 1912, Sergei Bernstein introduced
his Bernstein polynomials to prove this theorem and used an elegant probabilistic argument.
His argument involved the use of Chebyshev’s Inequality which we will shall also prove in this
paper. Our rendition of Bernstein’s proof is taken from Kenneth Levasseur’s short paper in The
American Mathematical Monthly [3].

In order to prove Chebyshev’s Inequality, we will introduce some measure theory in order to
define Lebesgue measure and Lebesgue integration. Some of our measure-theoretic definitions
involving o-algebras and meaure spaces were taken from the Camridge University class notes of
“Probability and Measure” by J. R. Norris [4]. Our definition of Lebesgue integration will follow
the Daniell-Riesz approach that is described in the “Lebesgue Integral for Undergraduates”
text written by W. Johnston [2]. This approach does not attempt to introduce the reader to
complicated measure theoretic concepts but instead defines the Lebesgue integral by defining
what it means to integrate over step functions and approximating any function below by a
sequence of nondecreasing step functions. After defining the Lebesgue integral, we will move on
to define basic probabilistic concepts such as a probability space, probability measure, random
variables, density functions, distributions, expected value, and variance. Some of the examples
involving Lebesgue measure and probability are taken from Botts’ paper on “Probability Theory
and the Lebesgue Integral” [1]. We will then introduce two probability distributions and we will
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compute the mean and variance of the binomial distribution. Finally, we will prove Chebyshev’s
Inequality in its most general form and will apply it in Bernstein’s proof of the Weierstrass
Approximation Theorem.

1 Introduction of Concepts

Here we give a broad overview of the topics presented in our paper and how they build to prove the
Weierstrass Approximation Theorem.

To begin, Section 2 of this paper introduces basic measure theoretic concepts. It first gives the
definition of a power set and uses this to define a o-algebra which is essentially a subset of a power
set. Every set in the o-algebra is defined to be a measurable set which means that there exists some
way to assign a real positive number from 0 to co to every such set. There exist many ways to assign
real numbers (essentially lengths or volumes) to sets in the o-algebra and a function that does this
is called a measure. A measurable space is a set paired with its g-algebra. We continue by defining a
measure space which is effectively a measurable space equipped with a particular choice of measure.
Lastly, we state the definition of a measurable map which is a function that maps a measurable space
to a measurable space. After this, we introduce a particular type of measure called the Lebesgue
measure which we define on the reals. We use the Daniell-Riesz approach [2] to introduce Lebesgue
integration and by defining Lebesgue integration of step functions and approximating any function
from below by a nondecreasing sequence of step functions. This allows us, in limit, to define the
integral for any function that can be approximated by a sequence of step functions from below. The
space of such functions is called L°. We then go on to show that the space L is not linear (not
closed under linear operations) and show that the L° space is not a good space to define all Lebesgue
integrable functions. Therefore, we create a new space of functions called L' which turns out to be
equivalent to the space of Lebesgue integrable functions although we do not prove this result in the
paper.

After introducing the results above, Section 3 focuses on probabilistic theory. We give the
definition of a probability space which is a measure space where the measure defined on it is a
probability measure. A probability measure is essentially a measure that assigns every set a real
number from 0 to 1 and gives the entire sample space (universal set) a measure of 1. We then go
on to define a random wvariable which is essentially a measurable map with an additional restriction
imposed on it. Random variables can be either discrete or continuous. We first examine these cases
separately and later state that discrete and continuous cases of the same concept (random variables,
distributions) in probability theory can be unified using the Dirac delta function. We introduce
the concept of a probability mass function which assigns a probability to every discrete value of a
random variable. We also define the probability density function in the continuous case which assigns
an infinitesimal density to every value of a continuous random variable. Both the probability mass
function and the probability density function allow us to compute the probability that a random
variable hits certain values or is within a certain range through summation or Lebesgue integration
respectively. Lastly, Section 3 concludes by defining what a probability distribution is and mean
and wariance of a probability distribution. Finally, we prove Chebyshev’s Inequality in its most
general measure theoretic representation and show how the probabilistic statement of Chebyshev’s
Inequality is a special case of this.

Finally, we prove the Weierstrass Approximation Theorem in Section 4 through a constructive
proof using the Bernstein polynomials that were used in Bernstein’s original proof [3] along with
Chebyshev’s Inequality.

2 Measure Theory and the Lebesgue Integral

2.1 Basics of Measure Theory

Definition 2.1 (Power Set). Let X be some set. The power set of X, denoted as 2%, is the set of
all subsets of X.



Definition 2.2 (c0-algebra). Let X be a set and let 2% be its power set. Then a subset o C 2% is
called a o-algebra for X if it satisfies the following three properties:

e Xisino: Xe€o
e 0 is closed under complementation: A€o =X\ A€o

e ¢ is closed under countable unions:
Ay, Ag, As, ... € 0 and A; ﬂAj = @,i #7J
= U, di€o

The o-algebra for (or generated by) X can be denoted as o(X). One very simple (but not very
useful) o-algebra is the power set of X, namely 2X. We will see in the subsequent section why
o-algebras are important in the context of probability. Effectively, we may may view our set X as
a set of outcomes and o(X) would be the set of events where each event is in turn, a subset of
outcomes of X.

Definition 2.3 (Measurable Set). Let X be some set. If A € o(X) then A is called a measurable
set in X.

Definition 2.4 (Measurable Space). If X is some set and o is the o-algebra generated by X, then
the pair (X, o) is called a measurable space.

In the next definitions, let R denote the real numbers R with +oo.

Definition 2.5 (Measure). On the measurable space (X, o), the map pu: X — R is called a measure
if it satisfies the following three properties:

e Null empty set: u(@) =0
e Non-negativity: VE € o, u(E) >0

e Countable/Sigma additivity: Ay, As, As,... €0 and A; NA; =0,i#j
= p(UiZy Ai) = 2072, nl(4i)

There are many different measures that are used for very different purposes. The counting mea-
sure is pu(S) = |S| (number of elements in S) and is used in application with discrete probability
distributions. It is mostly used on countable sets. The Lebsegue measure is defined to have the
property that ([0, 1]) = 1. We will go into more detail on the Lebesgue measure and Lebesgue inte-
gration in the next section. Another type of measure that we will closely examine is the probability
measure which takes the value 1 on the whole space and takes all its values in the unit interval [0, 1].

Definition 2.6 (Measure Space). Let X be a set, commonly referred to as the universal set. Let o
be a o-algebra for X and p be the measure on the measurable space (X, o). The triple (X, o, ) is
called a measure space.

Essentially, a measure space is just a measurable space equipped with a measure . The main
example of a measure space that we will deal with is the probability space which is a measurable
space equipped with the probability measure mentioned earlier.

Definition 2.7 (Measurable Map). Let (X,0x) and (Y, 0y ) be two measurable spaces. A map or
function f: X — Y is called a measurable map if for every Y-measurable set A € oy, the inverse
image is X measurable f~1(4) € ox.

2.2 Lebesgue Measure and the Daniell-Riesz Approach to Lebesgue In-
tegration
Now we will provide a short and intuitive description of the Lebesgue measure. Instead of focusing

on rigorously defining the Lebesgue measure, we will focus on noting its most important properties.
We will then go on to describe the theory of Lebesgue integration using the Daniell-Riesz approach
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[2] which bypasses many complicated measure-theoretic concepts to define Lebesgue integration
through the use of step functions.

For consistency, we will refer to the Lebesgue measure in this section and all later sections with
the symbol p.

Definition 2.8 (Lebesgue Measure of an Interval). The Lebesgue measure has the important prop-
erty that the measure of an interval is its length regardless if the interval is open, closed, or half-open.

Therefore,
p([a,0]) = p([a, b)) = p((a,b]) = p((a,b)) =b—a (1)

Like any measure, the Lebesgue measure has the three properties of having a null empty set, is
non-negative, and is countably additive.

Definition 2.9 (Lebesgue Measure Zero). A set S has Lebesgue measure zero if it can be covered
with a sequence of open intervals Iy, I, I3, ... so that the sum of the measures of all of the intervals
(bounded total measure) can be made arbitrarily small. By the countable additivity property of
a measure, we know that the bounded total measure is, in fact, the measure of |J,_, I,,. More
formally,

Ve> 0,3 )oY pu(In) <e (2)
n=1

If a set S has Lebesgue measure zero, we write that p(S) = 0. It is relatively easy to see from
this that any set with a finite number of real numbers has Lebesgue measure zero. A slightly less
intuitive concept is that every countably infinite set of reals has Lebesgue measure zero [2]. By
countably infinite, we mean that there is some way to enumerate this inifinite set of real numbers.

To see why this is true, let’s assume that the set S is a countably infinite set of real numbers
ai,as,as, ... and let € > 0 be arbitrary.

Define our sequence of open sets to be

€ €
In:(an*2n+1, "+2n+1) (3)

Note that each a,, is at the center of the open set I,, so the union UZO:1 1,, covers our entire set
of real numbers. Furthermore, the bounded total measure of our covering becomes

;u(fn) = n;((an + 2,f+1) — (an — 2n+1 2:: gi ‘- 1/2 - )

The last equality in the derivation is due to the sum of the geometric series which converges in
our case since 1 < 1. Therefore, by definition, 1(S) = 0.

Now we will introduce Lebesgue integration. Before we can do this, we must first familiarize
ourselves with the step function and how we will use sums of step functions to approximate a class
of functions know as Lebesgue integrable functions. The Daniell-Riesz approach first builds up a
space of functions know as the L° space. As it turns out, the L space is not linear. In other
words, if two functions are in L°, then by addition and scalar multiplication, we can find a linear
combination of these two function that is not in LY. Because of this, the Daniell-Riesz approach then
goes on to create the L' space from the L? space and this new space is in fact, defined as the space
of all Lebesgue integrable functions. Although we will not prove this result here, it can be shown
that the space of Lebesgue integrable functions obtained through measure-theoretic definitions of
the Lebesgue integral is equivalent to the space L' in the Daniell-Riesz approach.

Definition 2.10 (Characteristic Function). A characteristic function on a set S is

@ ={ o288 )



Definition 2.11 (Lebesgue Integral of Characteristic Function). Let I be a bounded interval and
¢ be a real constant. The Lebesgue integral of cx(x) over R = (—o00,00) is defined as

/R ¢ i (@)dp(e) = c- (1) (6)

Here the du(z) in the integral denotes that our "dummy variable” of integration is x (which
commonly denotes the real number line) and that we are integrating with respect to the Lebesgue
measure p. In the appropriate contexts, we will use either du(x), du, or dz. In this section, we are
defining Lebesgue integration on the reals so we will solely use dx in our notation.

Definition 2.12 (Step Function). A step function f has the form
flx) =3¢ xi,(2) (7)
j=1

where ¢; is a real constant corresponding to the bounded interval I;.

Definition 2.13 (Lebesgue Integral of Step Function). The Lebesgue integral of the step function
f(x) = 32021 ¢j - x1;(¢) is defined to be

/ f@)dz =S¢ - p(Ly) (8)
R =

Now we will prove that any step function can be written as a sum of weighted characteristic
functions defined on disjoint intervals [2].

Lemma 2.1. A step function f = Y1 | k; - x, () with intervals T; can be rewritten as f =
Z?lzl ¢j - X1, () where the intervals I; are pairwise disjoint. In other words, A, N Ay =0, s # t.

Proof. Since we have a finite number of intervals J;, lay out the distinct endpoints of all the intervals
in order. So, we can assume that the intervals J; have r distinct endpoints on the real line which
we will denote in order from least to greatest by p;,i =1,2,3, ...

Now, construct m = 2r — 1 intervals I;. Let r of these intervals be trivial and of the form
[pj, pj] which only contain the single point p;,1 < j < r. Let the other r — 1 of these intervals be
open and take on the form (pj,pj+1) where the intervals lie in between the adjacent endpoints. By
construction, the intervals I; we have created are disjoint.

For any of the intervals I;, we know that either I; C J; or I; NJ; = . Now, let ¢; = Y k; for all
i where I; C J;. If I; N J; # 0 for all ¢, then define ¢; = 0.

Now, we want to prove that we can write our step function f equivalently as f = Z;ﬂ:l cj-xr, ().
Take any real value x between the two outermost endpoints p; and p,.. This value x must lie in one
of the intervals /5. Therefore, since the intervals I; are disjoint, we have that 7" ¢; - x1,(2) = cs.
And we know by the way we constructed the coefficients of our step function that ¢ = Y k; for all
i where I, C J;.

Thus, for any value @ € [p1,p,| we have that if © € I,, then f(z) = >0 ki - xu () = D ki
where I C J;. Finally, f(z) = cs = 377", ¢ - x1,(2). So,

F= kixn(@)=> ¢ xi(2) 9)
i=1 j=1

where the I;’s are disjoint.

Note how in this proof we made our disjoint interval step function construction using intervals
containing only one point and open intervals. We could simplify this step function by combining
terms in our summation with immediately adjacent intervals that have the same constant coefficient.
Our intervals would still be disjoint but our step function would now be constructed out of the fewest
number of intervals. This minimum interval representation is, in fact, unique. O

5



To see an example of the results proved in the lemma above, let our step function be

J=2xp,3 t4X[0,2] T X(1,4) T 3X(2,6) (10)

This step function can be rewritten to only contain disjoint intervals using the construction
above. So,

J=4xp0,0 +2+4)xp1 + CH+44+ )Xz + 2+ 1+3)xs,3 + 3X[a,4 + 0X[6,6) + 4X(0,1) (11)

+(2 +4+ 1))((172) + (2 +1+ 3)X(273) + (1 + 3))((374) + 3X(4,6)

Lastly, this step function can be simplified even further by combining adjacent intervals with the
same coefficients to get the unique representation

J=6xp,1 +4x0,1) + 7X(1,2 T 6X(2,3 +4X(3,4) + 3X[4.6) (12)

Theorem 2.2. The Lebesque integral of a step function f is well-defined. In other words, if f has
two different representations

m

= Zkz X () = ch X1, () (13)

j=1

then we have that

/fdsc*Zk w(J, ch (14)

Proof. First, let’s attempt to show that the integral of any step function f is equal to the integral of
the equivalent representation of f that contains the least number of disjoint intervals shown above.

To do this, let
f= Z ki x5 (z Z cj - xr, (@

where the second step function to the very right of the equality is the unique representation of f
shown in Lemma 2.1 that is only defined on disjoint intervals and has the minimum number of
intervals I; in its representation. So, assume just as we did in Lemma 2.1, that the coefficients of
the second step function are defined to be ¢; = E k; for all i where Iy C J;.

We also know from Definition 2.13 that [, f(x)dz = Y1 k; - u(J;). Since the set of intervals
{I;} partition the set of intervals {.J;}, we know that summing over all intervals I; C J;

(Jz) = Zkz . M(Ij)

Now, summing over all the J; intervals corresponds to summing over the r — 1 nontrivial intervals
1; € J; so

zk uJ zzk W) =Y s lly)

Lastly, we can also include all of the trivial intervals in our rightmost sum because they are
defined to have Lebesgue measure zero since the Lebesgue measure of a finite collection of real

numbers is 0. Finally,
> k) = 3wl

Lastly, by Definition 2.13, we have that the integrals of the two step functions Y . k; - x, ()
and Zy;l cj - x1,(r) are in fact the same and equal the Lebesgue integral of f.



Finally, for any step function representation Y. ; k;-x., () of f, we have that if Z;”:l cj-xr, ()
is the simplified step function representation defined in Lemma 2.1, then

JRCEED SURTEAED SRt
i=1 i=j

Now, this result shows us that if our function f has two different step function representations,
then we can reduce both step functions to the unique step function on disjoint intervals defined in
Lemma 2.1 such that the Lebesgue integral of the first two step functions is equal to the Lebesgue
integral of the simplified step function. Therefore, the Lebesgue integral is well-defined on the set
of step functions. O

Now we will show the space of step functions is closed under linear combinations (linear space).

Theorem 2.3. Let f and g be any step functions and a,b be real constants. Then, the function
a-f+b-gisa step function and

/R(a-f—&-b~g)dx=a/Rfdx—|—b/Rgdx (15)

Proof. Define f = Z;“:l cj - x1,(r) and g = Z?:m_H ¢j - x1, (). Then,

a-f+b-g=> ki xi(x) (16)

Jj=1

where kj =a-cjfor 1 <j<mand kj =b-c; for m+1 < j <n. Therefore, a- f+b- g is a step
function by definition. Using Definition 2.13, we can calculate its integral to be

/R(a-erb'g)dx = /R;kijlj (x)dx = j;k]w,u(fj) = j;wcj-u(fj)Jr; b-c;-pu(l;) = a/Rfderb/Rgdx

O
Theorem 2.4. Let f and g be step functions with f > g on all of R. Then, fR fdx > fR gdz.

Proof. We know by Theorem 2.3 that f(xz) — g(x) is a step function. So we can represent our step
function as f(x) — g(x) = Z;nzl ¢j - x1;(z) where each of the c;’s is nonnegative since our step
function is nonnegative. Therefore, we can write out by Definition 2.13 that

m

[ =pde =Y e nr)

The sum to the right is also nonnegative because all the c;’s must be nonnegative and any measure
© must be nonnegative. Finally,

/Rfdx—/Rgdx:/R(f—g)deO

Now we will describe the L° space of functions which we briefly mentioned at the beginning of
this section.

O

Definition 2.14 (L° Space). Let {¢,,(z)} be a sequence of nondecreasing step functions that con-
verges pointwise almost everywhere to a function f(z) that is defined on all of R. By nondecreasing,
we imply that on all of the reals, ¢, 11(x) > ¢, (2) and by pointwise convergence almost everywhere,
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we mean that the sequence {¢,(z)} converges to f(x) at every point on the reals except on a set of
Lebesgue measure zero. If these conditions are satisfied, then we define the integral of f as

n—00

fdx = lim (bn dx (17)
R

For functions f that have a finite integral as defined above, we say f belongs to the space L.

Note that in the definition of the integral above, the limit of the integral of the step functions
will always exist. This is because the sequence of step functions {¢,} is nondecreasing so our limit
of nondecreasing terms is either finite or unbounded. Now we will show that our definition for the
integral of any function in L is consistent.

Theorem 2.5. Let {¢,,} and {¢,} be two nondecreasing sequences of step functions whose integrals
are bounded and converge almost everywhere to a function f. Then,

lim [ ¢,dx = hm ondx (18)
Proof. Suppose f and g are in L° where f > g almost everywhere. Assume {¢,} is a sequence
of nondecreasing step functions that tends to f and that {¢,} is a sequence of nondecreasing step
functions that tends to g.

Then we know by Definition 2.14 that lim, o [, ¢ndz = f and lim, o [ pndz = g. Since
limits preserve inequalities, we know that

/fdx— lim ¢,de> lim @,Ldm:/gdm
R

n—roo n— oo R

Now, if f = g almost everywhere, then we get from the above inequality that

lim ¢ndr = lim ppdx
R

n—oo n—oo
and we are done. O

Now that we have defined the space L° and shown that it is consistent, we will provide an
argument as to why the space L° does not satisfy the properties we would want a space of integrable
functions to have. For example, it can be shown that the a sequence of pointwise convergent functions
in L% does not necessarily converge to another function in L°. Even worse, the space of L° functions
is not linear. In the next argument, we will generate two functions in L° such that their linear
composition is not in L° [2].

Let f be the characteristic function of the interval (0,1) so f = x(o,1). Evidently, f is a step
function so f € LY. Define the function g to be the limit of the characteristic functions {U?:1 I}
where for all the ordered rational numbers a; in (0,1), we have that I; = (a; — 5=, a; + 577).
Therefore, g = lim,, XU, 1) Note that ¢ is defined as a limit of nondecreasing step functions.

We know that since f is a simple step function, fR fdx = 1. Also, we have seen in one of the

earlier examples that fR XU, 1 ydr = Z;il w(l;) = % Therefore,

. e > 1
/Rgdx = lim (T rpde < nlgngoz;Xdew = Z}u(lj) =3 (19)
Jj= j=

Finally, g is a limit of nondecreasing step functions and its integral as defined by Definition 2.14
is bounded so g € L°. If L? where a linear space, then this would mean that

[ =aa= [ gar— [girz1-5=3 (20)



In the above equation, we are allowed to split up the integrand as we did with the first equality
by the results proven in Theorem 2.3. These results still hold under the limit because the limit is a
linear operator.

If f—gisin L then Definition 2.14 requires a sequence of nondecreasing step functions {¢, }
that converges pointwise almost everywhere to f — ¢g. But this means that every ¢, is less than or
equal to f —g. So any step function ¢,, in our sequence would be 0 everywhere except on the points
outside of U?Zl I; where it may equal 0 or 1.

Now, let = € (0,1) be a value where f(x) — g(z) = 1 and take a positive length interval I that
contains x. This interval must contain a rational number a; and therefore, I contains a nontrivial
interval A = I; N1 N (0,1). Furthermore, we know in this interval A that f —g =1—-1=01is
identically zero. We know that by Lemma 2.1, the unique step function representation of ¢, will
contain the term c- x for some constant c. Since f — g is identically zero on the interval A, we must
have that ¢ < 0. Therefore, ¢, <0 for all n = 1,2, ... on the interval (0, 1).

But this implies that [, fdz— [, gdz = lim, o [p ¢ndr < lim,_,o 0 = 0 which is a contradiction
since we assumed that f — g is in LY and that [,(f — g)dz > 1. Therefore, f — g cannot be in L°.

So, we have just shown that the L space doesn’t satisfy one of the most fundamental properties
we would want our space of integrable functions to have. Nevertheless, we can use the LY space to
define a space of functions called L' which is equivalent to the space of Lebesgue integrable functions.

Definition 2.15 (L' Space). The space L! of Lebesgue integrable functions consists of any function
f of the form f = g — h where g, h are in L°. Furthermore, the Lebesgue integral of f is defined as

/Rfda?:/Rgdaﬁ—/tha? (21)

Note that by the above definition, setting 2 = 0 we have that any function g in L° is also in L!.
This definition of L' fixes the problem of nonlinearity that we discovered in the LY space.

Theorem 2.6. Let f and u be two functions in L' and let a, b be arbitrary constants. Then, a-f+b-u

is in L' and
/(aerbu)dx:a/fderb/udac (22)
R R R

Proof. Since f and g are in L', we have by Definition 2.16 that f = g — h and v = v — w where
g, h,v,w are all in L°. Lets first assume that ¢ and b are both nonnegative. Then,

af +bu=ag—ah+bv—bw = (ag + bv) — (ah + bw)

We want to show that ag + bv and ah + bw are both in L°. To do this, let’s first prove that
for functions s and t in L° and nonnegative constants a and b, we have that as + bt is in L°. Let
the sequence of step functions {¢,} converge almost everywhere to s and let the sequence of step
functions {¢,} converge almost everywhere to t. Then, by the linearity of limits, {a¢, + by, } is
a sequence of step functions that converges almost everywhere to as + bt. Therefore, by Definition
2.14, as + bt is in L°. Also, we showed in Theorem 2.3 that integration of a step function is linear
and limit operations are also linear so

/(as—i—bt)dw = lim (aqbn + by )dx = hm a/ Opdx + lim b/ Pndz
R n— o0 n—o0 R

:a/sdx—i—b/tdx
R R

So finally, in our original statement, since a and b are both nonnegative, then ag+bv and ah+bw
are both in L°. This implies by Definition 2.15 that af + bu is in L!.

Now, there are three more cases to examine.

If a is nonnegative and b is nonpositive, then we can write

af +bu =ag — ah+ bv — bw = (ag + (—b)w) — (ah + (=b)v)
9



If a is nonpositive and b is nonnegative, then we can write
af +bu=ag—ah+bv—bw = ((—a)h + bv) — ((—a)g + bw)
If a is nonpositive and b is nonpositive, then we can write
af +bu=ag—ah+bv—bw = ((—a)h + (—=b)w) — ((—a)g + (—b)v)

Therefore, in each one of the cases above, we can reduce our problem to the first case where a
and b are nonnegative and can proceed with the same proof. O

Now we will prove by a quick application of the previous theorem that our definition of Lebesgue
integration in L! is consistent.

Corollary 2.6.1. Assume that f has two different representations in L' and f = g —h = v —w
where g, h,v,w are all in L°. Then, [, fdz = [, gdz — [p hdx = [{vdz — [; wdz.

Proof. We know that f = g—h =v—w so g+w = v+h. We know by Definition 2.15 that g+ w and
v+h are in L' and by the linearity of the Lebesgue integral, [, gdaz + [, wdz = [, vdx+ [, hdz. O

Theorem 2.7. If f isin L* and f >0, then [; fdx > 0.

Proof. We can write f = g — h where g and h are in LY. Since f > 0, we know that g > h almost
everywhere. Now, by Definition 2.15, we have that [, fdx = [, gdz— [; hdx and since g > h we have
by Theorem 2.4 and by the fact that limits preserve inequalites (with the exception of strictness)
that [, gdz > [, hdz. Finally, we have that [, fdz > 0. O

3 Some Basics of Probability and Chebyshev’s Inequality

3.1 Probability Space

Now that we have had an introduction to measure theory, we are ready to talk about the idea of a
probability space. Many of these definitions are taken from the Cambridge University class notes of
J. R. Norris [4].

Definition 3.1 (Probability Space). A probability space is a triplet (2, F, P) that describes a model
for a class of real-world situations:

e () represents the sample space which is a non-empty set of all possible outcomes of the model
being executed.

e F is a g-algebra on our sample space where (2 € F. Note that F inherits all the properties of
a o-algebra described in the previous section.

e P is called a probability measure if

— It is a measure that maps any event in F to its probability from 0 to 1 and the total
measure of the sample space is 1. In other words, P : F — [0,1] and P(Q2) = 1.

— It is countably additive. So if {A4;}2, C F is a countable collection of pairwise disjoint
sets, then P(Uso; 4i) = Do) P(A;).

Let’s attempt to describe the triplet (2, F, P) in a way that agrees with our intuitive understand-
ing of probability. A probability space is a structure that presents a mathematical model describing
a real-world system. This real-world system must have a set of outcomes €2 and the probability space
attempts to assign a probability by the measure P to all measurable subsets of outcomes (events)
which are elements of F.

As an example, take a discrete model to be the process of flipping a coin twice and recording
which way it lands (H or T) on both turns [1]. In this case, our sample space is the set @ =
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{HH,HT,TH,TT}. One possible element of our o-algebra could be the event £ = {HH,TT} in
which we get all heads or all tails on both flips. Then, we could define a probability measure

P(A)=>" 1= (23)

z€A

where |A| is the number of elements in the set of outcomes A. Then, in this case, we get that
P(E) = % which is exactly what we expected it would be. The reason our probability for E is
appropriate is because we chose a reasonable probability measure P that we assumed worked well
for the model. In general, we could have chosen any arbitrary P as long as it satisfied the properties
of a probability measure.

Of course, the same definition of probability spaces also applies to processes with a continuous
sample space. For example, as described in [1], we could take the example of spinning a pointer on
a dial where the pointer can take on any angle value on the half-open set Q = [0, 27).

As a reasonable assumption, we may want our probability measure to have the following prop-

erties
_ length of T

2 ’
Now the question comes to how we will choose a set of events F for the domain of our probability
measure P. Is it possible to extend the domain of P to the class of all subsets of 27 In general,
the answer is no as this set of all subsets does not satisfy the properties of a o-algebra. This can be
rigorously proven if we are allowed to use the axiom of choice and the continuum hypothesis.

P(I) P(E)=1 (24)

What probability theory allows us to say in general, is that our probability measure P can be
extended to all Lebesgue measurable sets of ). This is precisely why a probability space specifies
that P must be a measure which means that its domain contains only measurable sets. In other
words, we cannot determine the probability of an event in F if that set is non-measurable.

3.2 Random Variables, Probability Mass Functions, and Probability Den-
sity Functions

Random variables and probability densities are two concepts in probability that are closely related
to each other and are often presented together. They come in two flavors, discrete and continuous.
In its simplest form, a random variable is a variable whose value depends on the outcomes of a
system. For example, if we go back to the coin toss example, we could define a discrete real random
variable X to be 5 if the coin fell on heads and -10 if the coin fell on tails. We could also make an
educated guess that if the tossed coin is fair, then the probability of attaining a heads or a tails is %
Assigning a probability to an outcome of a discrete random variable is the purpose of the probability
mass function. More formally, we could write that for a sample space 2 = {heads, tails}

5, w = heads
X(w) = { —10, w = tails (25)
and we could define the probability mass function for X as
%, r=2>5
px(z) = (26)
3, x=-10

How would we define the terms above if we were to apply them to a continuous system such as
the spinner we discussed in the previous section? We have already noted that the sample space of the
angle of the spinner is 2 = [0, 27). Therefore, we could create a random variable X that attains a
value equal to the angle of the spinner when it is spun. Assigning a probability that the spinner angle
lands in a certain subset of [0, 27) is a bit harder. We can no longer ask what the probability is of the
spinner landing exactly at the angle w. The probability of our spinner angle equaling exactly some
value to infinite precision is zero. We must instead say that our random variable X has a probability
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density function which defines the infinitesimal probability that X attains any given value. The use
of the probability density function is in computing the probability that our random variable attains
a value within some range (or within a set that has a nonzero measure). For example, we may want
for our probability density function to have the following property as shown in equation (24). That
is, we could give the probability that our spinner angle random variable X is within some interval
I = [a, B) but the probability that our spinner angle is exactly any point within that interval is 0.
We could define X and its probability density function as follows

X(a) =« (27)
fxla) = o (28)

In order to obtain the probability that X is within some subset of our sample space, we will
Lebesgue integrate the probability density function for that random variable over the subset and
its value (normalized real number from 0 to 1). This will give us the probability that the random
variable X takes on any value in that set. We will go into more detail on this in the next section.

Definition 3.2 (Random Variable). Let (Q, F, P) be a probability space and let (E, ) be a mea-
surable space. We call X an (E,)-valued random variable if X : Q — E is (F,&)-measurable.
(F,E)-measurable means that for every subset S € &, its preimage X ~1(S) € F.

Simply stated, X takes on values in E for all the outcomes in its sample space 2. This definition
for a random variable establishes that X is a measurable map that maps measurable subsets of
outcomes F (events) in its probability space to measurable subsets in its range £ (values that the
variable takes on). (FE,&) must be a measurable space because we only wish to find probabilities
that our variable X lies in measurable subsets of E. The additional assumption that X must be
(F,E)-measurable enforces that any measurable subset of £ must have a measure determined by
the preimage of X. In other words, the probability that X lies in a measurable subset of E is
well-defined and will always exist.

A real-valued random variable is a random variable X where X : Q — R.

Now, for the purposes of this paper, we will define the concept of the probability density function
without any additional measure-theoretic concepts and with a few more restrictive properties so that
we can more readily deal with real-valued random variables and their densities.

Definition 3.3 (Probability Density Function). Let (£, F, P) be a probability space and let (E, &)
be a measurable space. Let X be a (E,&)-valued random variable where X : Q@ — E. Then, we
say that X admits a real-valued probability density function fx : E — [0,00) if it is a Lebesgue
integrable function and it satisfies the following three properties:

o fx(z)>0forallz e E

e For any measurable set A € £, we assume that we can write P as an integral in terms of fx
in the following way

PweQ: X(w) € A}) = /Afxdu (29)

e The integral of the probability density function over the entire range of X is 1
P@) = [ frdu=1 (30)
E

Note that by the above definition, the probability measure P still satisfies the properties of a
probability measure in a probability space (2, F, P). The first property ensures that our probability
measure will never be negative assuming that f is continuous. The second property makes sure that
P is countably additive since the Lebesgue integral is countably additive. The third property makes
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sure that the probability measure P never exceeds 1 and that the probability measure of the entire
sample space is 1.
The probability density function fx is sometimes called the Radon-Nikodym derivative of the

probability measure P and it is denoted by fx = d)(;;P _

3.3 Expected Value, Variance, and Important Probability Distributions

Though in the previous sections we mentioned discrete and continuous examples of various proba-
bilistic phenomena, we will now treat both discrete and continuous variables in the same way due to
a unifying interpretation that we will state below. The reason for this is that the discrete cases of
these definitions often involve summation rather than Lebesgue integration and use a measure known
as the counting measure (simply the number of elements in a set) rather than the Lebesgue measure.
In order to prove all of our results in more generality, we will try to not distinguish between discrete
and continuous cases of the same result. Furthermore, we will restrict all of our random variables to
be real-valued. We will commonly refer to a random variable X together with its probability density
function fx.

Before we can talk about what a probability distribution is, we must define the cumulative
distribution function which is a function on the reals.

Definition 3.4 (Cumulative Distribution Function). The cumulative distribution function for a real
valued random variable X : Q@ — R on a probability space (£2, F, P) is the function given by

Fx(r) = P(X <) (31)

For all real continuous random variables, it can be defined as the integral of the probability
density function over an interval.

Definition 3.5. For a real continuous random variables X with probability density fx, the cumu-
lative distribution function is

Fx(a) = /j fx(z)dz (32)

For all real discrete random variables, the cumulative distribution function can be defined as a
sum of step functions weighted by the respective probability at that point.

Definition 3.6. For a real discrete random variables X with probability mass function px and
range Rx = {x1,x2,x3,...} (where the z are real), the cumulative distribution function is

Fx(z) = Z px (xp)u(x — xg) (33)

rrERx

where the step function u is defined to be

1, >0
u(z) = { 0, otherwise (34)

Now that we have described the two different types of random variables and their cumulative
distribution functions, we must state a very interesting unification of these two definitions. If one is
to look at probability mass functions more closely, it becomes very clear that any probability mass
function can be written as a sum of Dirac delta functions weighted by the probabilities assigned to
those values by the probability mass function of that random variable. This approach can be useful
if a probability density function happens to be both continuous in one region and discrete in another.
Therefore, any discrete probability mass function can be treated as a generalized probability density
function. We will not attempt to prove this result in this paper.

The expected value for a real-valued, random variable X is a weighted sum or integral of the
values of X by the probability that it attains those values.
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Definition 3.7 (Expected Value). Let X :  — R be a real-valued random variable on a probability
space (2, F, P) with probability density function fx. The expected value of a random variable X
is defined to be

E[X] = / X(w)dP(w) = / rfx(x)dx (35)
weN R

As the reader may be familiar with, we will commonly refer to the expected value as the average
value or mean. One important property of the expected value is that it is linear. This is commonly
referred to as the linearity of expectation and we will use it in one of the later examples when we
want to compute the variance of a random variable.

The variance of a real-valued, random variable X is defined as the expected value of the squared
deviation of X from its mean. In general, it is a value that tells us how ”spread out” the values of
X are from their mean.

Definition 3.8 (Variance). Let X : @ — R be a continuous real-valued random variable on a
probability space (2, F, P) with probability density function fx. Let the mean of X be m = E[X].
The variance of X is defined to be

Var(X) = E[(X —m)? = /

weN

(X (w) —m)?dP(w) = /(x —m)%fx(z)dx (36)

R

We will commonly denote the variance as o? which means the standard deviation squared.

Definition 3.9 (Standard Deviation). Let X : Q@ — R be a continuous real-valued random variable
on a probability space (2, F, P) with probability density function fx. Let the variance of X be
Var(X). Then, the standard deviation o is defined to be 0 = \/Var(X).

Note that in the above definition, we are taking the square root of variance. This is justified by
the fact that the variance of a random variable can never be negative as it is the expected value of
squares.

Now, that we have defined probability density functions, cumulative distribution functions, and
mentioned how we could unify both the discrete and continuous cases using the Dirac delta function,
we can easily talk about a probability distribution. Although the terms probability distribution and
cumulative distribution function are used interchangeably in many different sources, we will make
sure to define a probability distribution as a pair of both a specific probability density function along
with its cumulative distribution.

For example, the normal distribution has a probability density of the form

1 _ =2

e 202 37
V2mo? (37)

where 1 is the mean of the distribution, ¢ is its standard deviation, and o2 is its variance.
By integrating the density function of the normal distribution, we get its cumulative distribution.

f(x‘u7 02) =

1 T — [
S+ er (k) (39)

The derivation for the cumulative distribution function above is a standard process of integration
which we will not go into here and it involves defining the error function (erf). Nevertheless, we
will now introduce the binomial distribution which is a discrete distribution. Unlike the normal
distribution, the binomial distribution does not have parameters for mean and variance and we
must calculate them directly. The binomial distribution represents the probability of getting j
successes out of n total experiments where the probability of success in each experiment is x.

For notational purposes, we will write the probability mass function of the binomial distribution
as

bn,ij) = ()l 0 (39)
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The cumulative distribution of the binomial distribution can be written as a simple sum

Fn i) =3 (7)ata =y (40)

=1

The mean of a binomially distributed random variable X where the binomial distribution has
parameters n, x is
X}:Z]Wb(n,xj Z] ()lea:) =3
j=1

(n=1)—(i-1) _ (n— 1)t =101 — ) (=D=G=1)
z_: (n—j)! SA-a) nxz (n—1) j—l))!j!x (1-2)

oo~ (1 (n—1)—(j-1)
_nmjz_:l<j_1>$] (1—-x) !

Setting [ = j — 1 and m = n — 1 we have that

—an() (1—2)" ' =na(z+ (1 —-2)™ =nz (41)

Now let’s compute the variance of the binomial distribution. By linearity of expectation,

Var(X) = E[(X — E[X])?] = E[X?] — E2XE[X]] + E[E[X]?] (42)
= E[X?] - 2E[X])* + E[X)? = E[X? - E[X]?

The last equality in the above formula can be derived from the fact that the expected value of a
constant is equal to that constant.
Using the above formula, we can write

Var(X) = E[X?] - E[X]? = E[X?] - E[X] + E[X] - E[X])* = E[X(X — 1)] + E[X] — E[X]? (43)

So, for the binomial distribution,

BIX(X = 1)) =30 —1) - bnz:d) = 3 i 1) 5o

-3 e

2! (1—a)"~
= (=2l - e
Letting k = j — 2 we have
n—2
_ n! k42 n—2—k _ © k2 n—2—k
_1)}_;19!(71—2—1@)!”’ (1-2) Zk'n—Q— (1-2)
=0

n(n— 1)z Zb —2,2:k) = n(n — 1)2?
Finally, the variance of the binomial distribution is
Var(X) = E[X(X —1)] + E[X] — E[X]* = n(n — 1)2* + nx — (nx)? (44)

=n%z? —na® +nx — n?2? = nx(l — 1)
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3.4 Chebyshev’s Inequality

Now we will state Chebyshev’s Inequality and will prove it in its most general form using Lebesgue
integration [4].

Theorem 3.1 (General Chebyshev’s Inequality). Let (W, o, ) be a measure space and let | be a
real-valued measurable function defined on W. p is the Lebesgue measure. Also, let g be a real-valued
measurable function that is nonnegative and nondecreasing on the range of f. Then, for any real
number t > 0 and 0 < p < oo, we have that

1
g(t)

Proof. Let t be fixed and define A, = {x € W : f(z) > t}. Define the characteristic function x4, on
the set A;. Since g is nondecreasing and it is nonnegative on the range of f, we must have that

p{z e W: fz) > 1)) < /Wg<f<x>>du<x> (45)

0 < g(t)xa, <g(f(z))xa,

Note that the second inequality is true because f(x) > ¢t on A; and g is nondecreasing. On points
x outside of A;, all three parts of the inequality above are equivalently zero. Now, using Lebesgue
integration to integrate over W, we get that

a()u(Ar) = g(t) /W XA = /W o(t)xa,dp

By Theorem 2.6 and 2.7, we know that Lebesgue integration preserves inequalities so

/Wgu)xAtdus /Wg(f(m))xAthZ /A () < / o(f () du

w

The last inequality in the formula above holds because g is nonnegative everywhere.

Finally, we have that
1
A < —/ x))d

O

In reality, Chebyshev’s Inequality is rarely presented in the form above and is typically shown as
defined below.

Theorem 3.2 (Chebyshev’s Inequality). Let X : Q — R be a random variable on a probability space
(2, F, P). Suppose X has finite expected value m and finite nonzero variance a*. Then, for any real
number k > 0,

P(IX —m| > ko) < % (46)

Proof. Our general measure-theoretic description of Chebyshev’s Inequality can be reduced to the
one defined here. We know from Theorem 3.1 that for a real-valued measurable function f defined
on R and real-valued measurable function g that is nonnegative and nondecreasing on the range of
f we have that
1
Pwe: fXE@) 2 < — [ g(fw)dP(w)
g(t) weN

for any real number ¢ > 0 and 0 < p < co.

Now, we can let g(t) = t? if x > t and 0 otherwise. Also, we can substitute | X (w) —m/| for f and
let t = ko in the above inequality. Then we will get that

P{we O |X(w) —m| > ko)) < k21a2 /weg X(w) — m*dP(w)
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P(X - m| > ko) < k212/eQ(X(w)—m)2dP(w)

But the integral in the rightmost expression is just equal to Var(X) = o2 so finally, we get that

0.2

1
P(|X —m| > ko) < 57 12

4 Approximation of Functions by Polynomials

Now that we have built up all the necessary probabilistic theory, we can give a concise and elegant
proof of the Weierstrass Approximation Theorem [3].

4.1 Bernstein’s Proof of the Weierstrass Approximation Theorem

Theorem 4.1 (Weierstrass Approximation Theorem). If f is a continuous real-valued function on
the interval [0, 1], then for arbitrary € > 0, there exists a polynomial function p such that max | f(x)—
p(z)| < € where 0 < x < 1.

Definition 4.1. The Bernstein polynomials are defined as

W (f; ) :i:f ' <)xﬂ 1—2)"77, n=012,.. (47)

Jj=

Perhaps the main reason why Bernstein’s proof is so widely supported is due to the fact that it
is constructive and allows us to actually find a sequence of polynomials which uniformly converge to
any function on the interval. The proof is given below and it is a reproduction of Bernstein’s Proof
as shown in [3].

Proof. Let f be a continuous real valued function on the closed interval [0,1]. Also, let F, , be
a sequence of families of random variables that admit a probability density function which is a
binomial distribution where 0 < x < 1 is the probability of success and n = 0,1,2, ... is the total
number of trials. In particular, define F,, , to have a value of f (%) if j successes occur.

Then, the expected value of F}, , can be calculated through a finite sum

S CIT) =35 () -2 = Bt (1)

j=0 Jj=

Our next and final step is to prove that E[F, ;] converges uniformly to f in n on the closed
unit interval. First note that since f is continuous on the compact set [0,1], it is bounded and
uniformly continuous. Boundedness of f gives us that |f(x)] < M on [0,1] where M is a real bound
for our function. From this we have by the Triangle Inequality that for any two points z,y € [0, 1],
[f(z) = fy)] <2M.

Uniform continuity gives us that for all € > 0, there exists a 6 > 0 such that if |z — y| < J, then
F@) — F)] < 5.

For reasons that will soon become clear, let us choose an integer k such that 2 kQ < 5 and choose

positive integer N such that % < 4. Then, for all n > N we have that

F@)=Bafi2)] = | f(2)E[Foy)| = Zf b, )| = |F@)a + (=) =3 £ )b, )

Jj=0
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Since we chose 5 \ﬁ < 4, we have that

n

by

3 _ _k_
n z|<2\/ﬁ

@)= 1) ot

1) - 1) < ¥

77I‘<5

By boundedness, we have that |f(z) — f(%)| < 2M so

Y J y j k

» Z ) ‘f(x) f(n)’b(n,x,]) < 2M Pr( sow > ﬁ)

%7$|22ﬁ
Therefore,

' k
|f(x) = Ba(fi2)| < ‘Z ‘f(:c)—f(i)‘b(n,x;3)+2MPT( it = T\/ﬁ)
‘%—m|<5

Let’s bound the first summand in the inequality above. Now, by uniform continuity |f ()= f (%)| <

5 and since Z?:o b(n,z;7) = (1 + (1 —x))™ = 1, we have that

3 ‘f )‘ bnwif) < 5 D bmaii) < 5

L-g|<s i-z|<s

w\m

Bounding the second summand involves the application of Chebyshev’s Inequality. First, note

that the maximum of (1 — x) occurs at = § where (1 — ) = . So we have that | —z| >

z(l—x)
Qf >k ——.
Therefore, we get that |j — nz| > ky/nz(1l — x). So,
Pr(%—aj > 2\f) Pr(|j — nz| > ky/nz(1 — x))

By the results proved in the previous section, we know that the mean of the binomial distribution
b(n,z; j) is p = nx and its standard deviation is 0 = y/nxz(1 — x) so applying Chebyshev’s Inequality,

Pr(|j —na| > kv/na(l—2)) <

Finally, this result allows us to bound our second summand and our initial choice of k specified
that 24 = < 5 S0

J k 2M €
2MPr(|= —z|> —) < — < =
a2 s =% =2
Therefore, we have the result that
€ €
|f(1’)*Bn(f;f'3)|<§+§:€ (49)

and we have successfully shown that |f(z) — B, (f;x)| < € for all € [0,1] and n > N. Finally,
this means that the Bernstein polynomials By, (f;x) converge uniformly to f(x) on the closed unit

interval [0, 1] which is exactly what we sought to prove.
O
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5 Conclusion

In this paper, we introduced several important theories that we attempted to make understandable
at the undergraduate level. We began with basic definitions of measure theory and then tied these
concepts into probability theory to define some widely used probabilistic terms such as random
variables and distributions. In order to discuss, probability density functions, mean, and variance,
we needed to introduce the Lebesgue integral. In order to define it in a simple and understandable
way for an undergraduate student, we used the Daniell-Riesz approach. The measure theoretic and
probabilistic definitions we wrote out were in turn, used to prove the general form of Chebyshev’s
Inequality. Finally, we used this inequality in Bernstein’s proof of the Weierstrass Approximation
Theorem to prove that any continuous function on the unit interval could be approximated by a
uniformly convergent sequence of polynomials.

One question that arises from the previous section is if the Bernstein polynomials can approximate
any continuous function, then why are they not used in practice? The answer lies in not how close
these polynomials approximate any continuous function, but how fast. The Bernstein polynomials
have a significant drawback in the number of iterations it takes (how high of an n we have to take)
to approximate certain functions well. It can be proven that to get an error term difference between
a sequence of Bernstein polynomials and a continuous function f to be better than 1/n, we must
have that f(z) = ax + b is a linear function. In general, Bernstein’s polynomials are used for their
theoretical implications and are rarely used for computational purposes.
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