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CONNER HANSEN

1. Introduction

L. A. Zadeh’s paper Fuzzy Sets* [1] introduces the concept of a fuzzy set, provides def-
initions for various fuzzy set operations, and proves several properties regarding these
operations, culminating in a theorem analogous to the hyperplane separation theorem for
traditional sets. The paper aims to introduce and establish a groundwork for these objects,
upon which future work may be built. We cover the material in the paper, condensing or
elaborating as appropriate, in an attempt to tailor it to students in the 33X series. Finally,
we provide a brief summary of the reception and current usage of fuzzy sets in the scientific
and mathematical community.

2. Definitions & Theorems

2.1. Set Properties & Basic Operators. The concept of a fuzzy set is analogous to that
of a typical set for which membership is a spectrum rather than a binary. Zadeh’s exact
definition is: “A fuzzy set (class) A in X is characterized by a membership (characteristic)
function fA(x) which associates with each point in X a real number in the interval [0, 1].”
fA(x) determines the degree to which x is contained in A (or the “grade of membership”).
Element x of X is considered to be contained in A if fS(x) > 0. Fuzzy sets are thus an
abstraction of standard sets (subsequently referred to as the crisp sets where the context
alone does not make it clear) with continuous rather than binary characteristic functions.
Fuzzy set operations are defined to be intuitive extensions of crisp set operations, and in
all cases reduce to the equivalent operations when applied to crisp sets.

Fuzzy set equality is defined by:

(1) A = B ⇐⇒ fA(x) = fB(x), ∀x ∈ Ω

and is stricter than crisp set equality in the sense that the characteristic functions must
agree on a value chosen out of the uncountable set [0, 1] rather than the finite set {0, 1}.
A fuzzy set is empty if its characteristic function is equivalent to zero. Set containment is
defined as:

(2) A ⊆ B ⇐⇒ fA(x) ≤ fB(x), ∀x ∈ Ω

substituting in a strict inequality in the case of a strict subset. Note that a crisp set
contains all fuzzy sets which contain the same elements as itself. The complement of a
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fuzzy set S, denoted S′, is the fuzzy set defined by the characteristic function:

(3) fS′ = 1− fS
As a set is entirely defined by its characteristic function, fS will sometimes be used to
denote set S.

The intersection and union operators on fuzzy sets are defined as follows:

A ∪B = max(fA, fB)(4)

A ∩B = min(fA, fB)

From the definitions of minimum and maximum functions, it follows that these operations
act as expected on crisp sets, and that they maintain the associativity for all fuzzy sets.
The characterization of A ∪ B as the smallest set containing both A and B (respectively,
A ∩ B as the largest contained set) holds for fuzzy sets. As a brief demonstration of this
in the union case, let C = A∪B. Thus fC = max(fA, fB) is greater than or equal to both
fA and fB and C contains both sets. At the same time, ∀x, fC = fA or else fC = fB, so
any fD greater than both will also be greater than fC and thus C is contained by any set
containing A and B.

The standard identities of crisp set logic apply to fuzzy sets, most provable by employing
some casework. The equality:

(5) 1−max(fA, fB) = min(1− fA, 1− fB)

can be easily verified by examining the three cases fA(x) {>,<,=} fB(x) for a given x,
and gives the first of the two forms of DeMorgan’s Laws:

(A ∪B)′ = A′ ∩B′(6)

(A ∩B)′ = A′ ∪B′

The equality:

(7) max(fC ,min(fA, fB)) = min(max(fC , fA),max(fC , fB))

which can be verified by examining all six possible weak orderings fX ≤ fY ≤ fZ of the
characteristic functions of A, B, and C for a given x, give the first of the two distributive
identities:

C ∪ (A ∩B) = (C ∪A) ∩ (C ∪B)(8)

C ∩ (A ∪B) = (C ∩A) ∪ (C ∩B)

Other identities such as the idempotent, domination, and commutative laws follow directly
from the definitions of the minimum and maximum functions.

2.2. Mappings & Algebraic Operators. We define as well several algebraic operations
making use of arithmetic on characteristic functions. The algebraic product of two sets is
a set with characteristic function equal to the product of their characteristic functions:

(9) AB = fAB = fAfB
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and has the immediate properties:

AB ⊆ A ∩B, for fuzzy sets A and B(10)

AB = A ∩B, for crisp sets A and B

The algebraic sum is analogous, but with the complication of not being defined on all sets.

(11) A+B = fA+B = fA + fB, ∀A,B s.t. fA + fB ≤ 1

The absolute difference is defined:

(12) |A−B| = f|A−B| = |fA − fB|

and acts as an exclusive or operation on crisp sets.
A relation in set theory is a set of ordered pairs R ⊆ X ×X with elements of the form

a, b ∈ X, (a, b) ∈ R. The concept can be extended to an n-ary relation on Xn (elements
being ordered tuples of length n). A fuzzy relation is a relation R defined by a fuzzy
set. For example, consider the relation in R = {(a, b)} ⊂ R2, “b the value stored in
some digital computer to represent a.” We know fR(0, 0) = fR(1, 1) = 1 and fR(3, 3) = 0
since computers can store the exact values of 0 and 1, but not of 3. However without
knowing more about the computer we do not know exactly what approximation of 3 it will
store, so for b in some small punctured interval around 3 we could assign fR(3, b) = .1.
This example is of course highly subjective, as is the point of fuzzy sets. Someone with
extensive knowledge of number representation in computers might limit b down to some
finite set of values near 3, and accordingly assign higher grades to each of those relations
fR(3, b).

The composition of two individual ordered pairs (a, b) and (b, c) within a fuzzy rela-
tions R1 and R2, is the pair (a, c) ∈ R2 ◦ R1 with characteristic function fR2◦R1(a, c) =
min[fR1(a, b), fR2(b, c)]. We extend this to define the composition R2 ◦R1 as:

(13) R2 ◦R1 = fR2◦R1(a, c) = sup
b∈Ω

min[fR1(a, b), fR2(b, c)], ∀a, c ∈ Ω

that is, the maximal characteristic value among all such ordered pairs. The composition
is associative, as can be demonstrated using supremum and minimum properties, but the
proof is ugly and not of interest to us.

Now we turn to fuzzy sets induced by mappings. Consider T : X → Y for X and Y
spaces (or crisp sets) in Ω. If T is one-to-one and A is a fuzzy set in X then T defines a
fuzzy set B ∈ Y :

(14) fB(y) = fA(x), y = T (x) ∀x ∈ X

and likewise T−1 defines A given B. For T not one-to-one we resolve the ambiguity in the
same manner was we did with compositions of relations–by using the maximal value.

(15) fB(y) = sup
y∈T−1(y)

fA(x), ∀x ∈ X

A convex combination of vectors u and v has the form λu + (1 − λ)v, λ ∈ [0, 1]. For
fuzzy sets, the convex combination is a ternary operator, with the third argument standing
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in for the scalar in the vector operation:

(A,B; ∆) = f(A,B;∆)(x) = ∆A+ ∆′B = f∆(x)fA(x) + (1− f∆(x))fB(x), ∀x ∈ Ω(16)

A ∩B ⊆ (A,B; ∆) ⊆ A ∪B, ∀A,B,∆(17)

Property 17 is apparent when written in the characteristic function form: min(fA, fB) ≤
f∆fA + (1− f∆)fB ≤ max(fA, fB). Note that since we have control over every value f∆(x)
individually, given any fuzzy sets A, B, and C with A ∩B ⊆ C ⊆ A ∪B we can find some
∆ such that C = (A,B; ∆). To do so we simply solve the convex combination equation for
f∆, resulting in the unique expression given by equation 18.

fC = f∆fA + (1− f∆)fB = f∆fA + fB − f∆fB = f∆(fA − fB) + fB

(18) f∆(x) =
fC(x)− fB(x)

fA(x)− fB(x)
, ∀x ∈ Ω

2.3. Convexity & Boundedness. From here on, we will work with fuzzy sets in Eu-
clidean space En. We will also introduce Γα as our notation for the crisp set containing
only elements belonging with a grade of membership of at least α to the fuzzy set in
question.

(19) Γα = {x ∈ Ω| fS(x) ≥ α}
Zadeh does not give a name to this type of set, but makes enough use of them to merit
one. We will refer to Γα as a partition of S for grade α.

A crisp set C in En is said to be convex iff all convex combinations of vectors in C are
also contained in C, that is, x, y ∈ C =⇒ λx + (1 − λ)y ∈ C, ∀λ ∈ [0, 1]. We define the
convexity of a fuzzy set in two equivalent ways. Note they rely more on the vector convex
combination than on the fuzzy set convex combination.

Definition 1 (convexity (1)). A fuzzy set S is convex if the crisp sets Γα are convex for
every α ∈ [0, 1].

In words, this means that if we choose an arbitrary grade of membership and redefine S
as the crisp set containing only elements that previously belonged to S with that grade of
membership or higher, then this new set will be convex in the traditional sense. Alterna-
tively, we define S to be convex iff for any x and y in S, all elements that can be expressed
as a convex combination of x and y have at least as high a grade of membership to S as
either x or y.

Definition 2 (convexity (2)). A fuzzy set S is convex if ∀λ ∈ (0, 1), fS(λx+ (1− λ)y) ≥
min[fS(x), fS(y)].

We prove the equivalence by examining both directions. Consider S convex by the
first definition, and choose α = min[fS(x), fS(y)]. Then Γα convex implies it contains
λx + (1 − λ)y and for all elements γ ∈ Γα we have fS(γ) ≥ α = min[fS(x), fS(y)]. Now
consider S convex by the second definition. Then for any α, if x and y are contained in Γα
we have fS(λx+ (1− λ)y) ≥ min[fS(x), fS(y)] ≥ α, thus λx+ (1− λ)y ∈ Γα which is the
definition of convexity for crisp sets. Thus we have equivalence.
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We now prove the following theorem:

Theorem 1. If both A and B are convex then A ∩B is convex.

Proof. Let C = A ∩B with A and B convex. Then:

fC(λx+ (1− λ)y) = min[fA(λx+ (1− λ)y), fB(λx+ (1− λ)y)]

and

fA(λx+ (1− λ)y) ≥ min[fA(x), fA(y)]

fB(λx+ (1− λ)y) ≥ min[fB(x), fB(y)]

Making substitutions we get:

fC(λx+ (1− λ)y) ≥ min[min[fA(x), fA(y)],min[fB(x), fB(y)]]

which is equivalent to:

fC(λx+ (1− λ)y) ≥ min[min[fA(x), fB(x)],min[fA(y), fB(y)]]

fC(λx+ (1− λ)y) ≥ min[fC(x), fC(y)]

and thus C is convex. �

Next we turn to boundedness. A fuzzy set is bounded if Γα is bounded in norm ∀α > 0.
Note this definition does not exclude the set of all elements with nonzero membership grade
from being unbounded, nor the set of elements with zero membership grade from being
empty. Unions and intersections of bounded sets are bounded as well (simply consider the
maximum norm in the partitions of the two sets for a given grade).

Lemma 1. If S is bounded, then for every ε > 0, there exists a hyperplane H such that
fS(x) ≤ ε for all x opposite H from the origin.

To see this we construct a sphere around the origin with radius R > max(Γε), containing
all x ∈ Γε. Any hyperplane tangent to this sphere has the desired property.

The following definitions will be used copiously throughout the rest of the paper:

Definition 3 (essentially attained). For fuzzy set S, c ∈ [0, 1] is essentially attained at x0

if ∀ε > 0, every spherical neighborhood of x0 contains points xi such that fS(xi) ≥ c− ε

Definition 4 (maximal grade). For a fuzzy set S, the maximal grade M = supx∈Ω(fS(x))

We will prove that a fuzzy set attains or essentially attains its maximal grade at at least
one point in Ω. Zadeh’s original statement of the lemma (omitting the previously stated
definitions) is as follows: “Let A be a bounded fuzzy set and let M = supx fA(x). . . Then
there is at least one point x0 at which M is essentially attained. . . ” The lemma as stated is
slightly incorrect, since M need not be essentially attained if it is literally attained, however
he mentions that possibility later on in the paper.1 First, we state the Bolzano-Weierstrass
theorem, which we take to be a basic result of analysis.

1It’s also of note that the original statement can be made legitimate if we restrict fS(x) to be continuous,
as fS(x) must then approach M before taking that value.
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Theorem 2 (Bolzano-Weierstrass). If S is a subset of Rn, S is compact ⇐⇒ every
sequence of points in S has a convergent subsequence whose limit lies in S.

Theorem 3. Let S be a bounded fuzzy set and M , the maximal grade in S, nonzero. Then
M is either obtained or essentially obtained at at least one point.

Proof. If there exists a point x0 such that fS(x0) = M , then we are done. The case of a
crisp set containing a single point demonstrates that M need not be essentially attained in
this case. Now suppose that no such point exists and consider the sequence of crisp sets:
{Γα(n)} where α(n) = M − M

n+1 . By definition of M , for every finite n there exist a point

with membership grade higher than α(n) so every element of the sequence is non-empty.
By the boundedness of S, Γα(1) is bounded, and its closure Γα(1) is compact. Since α(n)

is increasing, every Γα(n) is contained in Γα(1). Consider the sequence {xn}, with xi an
arbitrary point in Γα(n). By the Bolzano-Weierstrass theorem, some subsequence of {xn}
converges to some point x0 in Γα(1). Since no point xn satisfies fS(xn) = M , for any
fixed xk we can take N large enough that xn>N 6= xk, and thus every neighborhood of x0

must contain an infinite number of unique points in {xn}. Since we can also take N high
enough that every xn>N has a membership grade within ε of M , M is essentially obtained
at x0. �

Note, Zadeh assumed Γα(1) itself was compact and applied the Bolzano-Weierstrass
theorem directly to that set. As equation 20 shows, we can easily define a set such that
Γα(1) is open and does not contain the limit of {xn} (0, in this case). Fortunately, the
original proof does not rely on Γα(1) actually containing x0.

(20) x ∈ R1, fS(x) =

{
1

1+x , x > 0

0, x ≤ 0

A crisp set is said to be strictly convex if the midpoint of any two distinct points within
it lies in its interior. As with other crisp set properties, we extend it to fuzzy sets applying
it separately to partitions.

Definition 5 (strict convexity). A fuzzy set S is strictly convex if for any α ∈ (0, 1],
∀x, y ∈ Γα, .5x+ .5y ∈ Γintα

We introduce as well the concept of strong convexity.

Definition 6 (strong convexity). A fuzzy set S is strongly convex if for any λ ∈ (0, 1) and
for any distinct x and y, fS(λx+ (1− λ)y) > min(fS(x), fS(y))

Here Zadeh offhandedly mentions some basic properties, which we will elaborate on
slightly. First, strict convexity does not imply strong convexity, nor the other way around.
The crisp set containing the unit disk in R2 provides an example of a strictly but not
strongly convex fuzzy set. A counter-example in the other direction is much more difficult
to construct. Strong convexity does in fact imply strict convexity in R1, since if x and y
are contained in Γα then by strong convexity the entire interval between them is contained



REVIEW OF FUZZY SETS 7

in it as well, and they form the boundary of that interval. We will leave off finding a
counterexample in this direction, since the result is not especially useful.

Second, intersections maintain both strict and strong convexity. We will walk through
the reasoning.

Proof. Let A and B be fuzzy sets in Rn. Let C = A ∩B.
Suppose A and B are strongly convex, let x and y be two arbitrary, distinct points, and

let z be an arbitrary convex combination of x and y. Suppose fC(z) ≤ min(fA(x), fA(y)).
Then by the strong convexity of B and by the definition of intersection, either fB(x) <
fC(z) and fC(x) = fB(x) or fB(y) < fC(z) and fC(y) = fB(y). The same logic applies if
fC(z) ≤ min(fB(x), fB(y)). Thus x, y, and z still satisfy strong convexity properties for
C.

Now suppose A and B are strictly convex, x and y arbitrary points belonging to partition
of grade α for both A and B, and z is their midpoint .5x+ .5y. Then by strict convexity
of both sets, for every point u near z, fA(u) ≥ α and fB(u) ≥ α, and thus fC(u) =
min(fA(u), fB(u)) ≥ α. Thus u ∈ Γα the partition by grade α of C, and since this is true
for every u near z, z ∈ Γintα . �

We note a few interesting properties of strongly convex sets that Zadeh skipped over.
These are: the characteristic function of a strongly convex set has no zeroes, attains its
supremum at no more than one point, and has at most one maximum on any line. To show
the first we assume z is a zero of fS and take x and y to be two points such that z is a
convex combination of them. These three points determine a line, with z lying between x
and y. If fS(x) 6= 0 6= fS(y) then we have violated strong convexity. Otherwise, if x has
nonzero grade then select a new point on the line, on the same side of z as x. Repeat until
fS(x) is nonzero, and follow the same procedure with y. If for either x or y, no such point
can be found, then fS is uniformly zero on that ray so strong convexity is violated. For
the second statement, assume fS assumes its maximum at two points and note that strong
convexity is violated for any convex combination of the two points. For the final statement
assume that the maximum value of fS on the line occurs twice, and again strong convexity
is violated for convex combinations of the two points.

Definition 7 (core of a fuzzy set). If S is a fuzzy set with maximum grade M , its core,
denoted C(S) is the crisp set of all points at which M is essentially attained.

Theorem 4. If S is a convex fuzzy set, C(S) is a convex set.

Proof. Let x and y be any two points in C(S), and let l be the line segment connecting them
(the set of all convex combinations of the two points). The for any given ε > 0 and any δ > 0
we can choose x0 and y0 such that |x0 − x|, |y0 − y| < δ and fS(x0), fS(y0) > M − ε. By
the convexity of S, all points on the line segment l0 connecting x0 to y0 are also contained
in ΓM−ε. If we let P be the cylinder of radius δ around l (extended slightly to contain the
balls around x and y at either end), then P contains x0 and y0, and by the convexity of
cylinders, all points on l0 are contained within P . Thus for any convex combination of x
and y we can choose any ball Bδ and any ε and a point with the desired membership grade
lying on the resultant segment l0 will be contained in Bδ. �
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Corollary 1. A strongly convex fuzzy set S ⊂ R1 attains or essentially attains its maximal
grade at exactly one point.

Proof. By lemma 3 S attains or essentially attains M at a point. As previously stated, a
strongly convex set cannot attain M at two points. Suppose it attains M at one point and
essentially attains M at another point x. Then choose any point between them, and let its
membership grade be α < M . We can choose a point close to x with membership grade
arbitrarily close to M , so we may choose a point with grade higher than alpha too violate
strong convexity. Finally suppose M is essentially attained at two points x and y. Then
by theorem 4, M is essentially attained on the interval [x, y]. Then again we can choose
any point on the interval with grade alpha and find points on either side in the interval
with grades greater than α. �

We now define the shadow of a fuzzy set, that is, its projection of a fuzzy set in Rn

onto a hyperplane H (dimension n − 1) in Rn. This can be viewed as a map from every
point in Rn to the nearest point on H (mapping each line normal to the plane onto the
point at which it intersects the plane). In accordance with equation 15, the shadow takes
on the supremum of all values mapped to it. Zadeh provides the following definition for
the shadow on a hyperplane aligned with the axis:

Definition 8 (shadow of a fuzzy set (axis version)). For fuzzy set A ⊂ Rn and hyperplane
H normal to the ith basis vector, the shadow of A on H is defined by:

(21) fSH(A)(x̂) = fSH(A)(x1, . . . , xi−1, xi+1, . . . , xn) = sup
xi∈R1

[fA(x1, . . . .xn)]

However, using dot product notation for planes, this concept can easily be stated for an
arbitrary hyperplane:

Definition 9 (shadow of a fuzzy set). For fuzzy set A ⊂ Rn, u, v ∈ Rn, and hyperplane
H defined as {x ∈ Rn|(x− u) · v = 0}, the shadow of A on H is defined by:

(22) fSH(A)(x̂) = fSH(A)(x1, . . . , xi−1, xi+1, . . . , xn) = sup
xi∈R1

[fA(x1, . . . .xn)]

ORNOT

Lemma 2. The shadow fSH(A)(x) of convex fuzzy set A on hyperplane H is convex.

To demonstrate this, let x and y be any two points on H. Assume fA has a maximum
on the normals lines intersecting H at x and y, and let x0 and y0 be points on the lines
at which fA takes on those values. Then by the convexity of A, fA is at least equal to
min(fA(x0), fA(y0)) on the segment connecting those two points. The projection of that
segment onto H will be the line segment connecting x and y, and thus convex combinations
of x and y have the necessary minimum grade. Suppose instead either one or both of the
lines have no maximum. Then we can instead take x0 or y0 so that their grades are
arbitrarily close to the supremums to show that the connecting line segments have grade
at least equal to the supremum.

Theorem 5. Let A and B be convex fuzzy sets in Rn. If SH(A) = SH(B)∀H, then A = B.
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Before we prove this, a note on convexity. Zadeh’s initial definition of convexity for
fuzzy sets was stated int terms of partitions using weak inequalities ({x|fS(x) ≥ α}). In
the latter half of the paper he begins making use of strict partitions ({x|fS(x) > α})
without acknowledging the switch. It is easy, but still worthwhile, to verify that convexity
for weak partitions implies convexity for strict partitions, and thus that this usage is valid.
We prove this by contradiction. Assume there exists some convex fuzzy set S and some
value α such that {x|fS(x) > α} is not convex. Then for some point x with fS(x) ≤ α,
there exist two points x1 and x2, for which x = λx1 + (1 − λ)x2 for some λ ∈ (0, 1) and
fS(x1), fS(x2) > α. We define β = min[fS(x1), fS(x2)] and consider the weak partition Γβ.
Then clearly x1, x2 ∈ Γβ and x /∈ Γβ, so we have a contradiction.

We have thus show that for a fuzzy set S to be convex implies that both its weak and
its strict partitions are convex. We now prove theorem 5

Proof. We show that the existence of a point x0 with fA(x0) 6= fB(x0) implies the existence
of a hyperplane H such that fSH(A)(x0∗) 6= fSH(B)(x0∗) where x0∗ is the projection of
x0 onto H. Suppose ∃x0 with fA(x0) = α > β = fB(x0). Define the partition of B,
Γβ = {x ∈ Rn|fB(x) > β}. By convexity of Γβ, and since x0 is not contained in the set,
we can find a hyperplane F such that Γβ lies entirely on one side of it (and not on F

itself). 2 Then if we let H be a hyperplane orthogonal to F and take the shadow of B
on H, fSH(B)(x

∗), then fSH(B)(x
∗
0) = β since a line normal to H at x0 must lie in F , and

maxx∈H fB(x) = β. On the other hand fA(x0) = α > β so fSH(A)(x
∗
0) ≥ α > β, and the

two shadows are unequal. �

We now derive a fuzzy set analog to the convex set separation theorem, stating that two
disjoint convex sets can be separated by a hyperplane in the ambient space. We start by
defining the degree of separation of two fuzzy sets.

Definition 10 (degree of separation of fuzzy sets). Let A and B be convex fuzzy sets in
Rn, and let H be a hypersurface in Rn. Suppose ∃KH ∈ R such that fA(x) ≤ KH on one
side of H, and fB(x) ≤ KH on the other, and moreover let it be the infimum of all such
values. Then the degree of separation of A and B by H is DH = 1−KH .

The problem of minimizing the degree of separation, as stated above, of two fuzzy sets is
beyond the scope of Zadeh’s paper. We consider a special case of this situation, where H is
a hyperplane (rather than a hypersurface), and denote the minimum degree of separation
across all hyperplanes D = 1− M̄ , M̄ = infH(KH). From here on, the degree of separation
will refer to the case of H limited to hyperplanes, and we now state the separation theorem’s
analog:

Theorem 6. Let A and B be bounded convex fuzzy sets in Rn with maximal grades MA

and MB. Let M = supx∈Rn [min(fA(x), fB(x))] be the maximal grade of their intersection.
Then the degree of separation of A and B is D = 1−M .

2Here Zadeh states that we can find “supporting hyperplane,” implying that x0 must lie on the boundary
of Γβ . This is not quite trivial since it is a result of A’s convexity and the relationship α > β, but for the
proof, the weaker statement featured above is sufficient.
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Proof. We divide the problem into two cases, M = min(MA,MB) and M < min(MA,MB).
Case 1: Assume M = MA < MB. Then by the boundedness of B there exists a

hyperplane H such that fB(x) ≤ M for all x on one side of H. On the other side,
fA(x) ≤ M by our assumptions on M . Now suppose there exists some other hyperplane
H ′ and constant M ′ < M such that fA(x) ≤ M ′ on one side and fB(x) ≤ M ′ on the
other. We denote the set of points on the first side of the plane H+ and the set of points
on the second side of the plane H− (both sets including the boundary H). Then on H+,
fA(x) ≤M ′ < MA and thus the core of A must lie entirely on the second side. By theorem 3
A has a core, or else attains its maximal grade, so fA > M ′ on H−, and thus if fB(x) > M ′

for any x, it occurs on H+. We now have supx∈H+(min[fA(x), fB(x)]) limited by fA(x) and
supx∈H−(min[fA(x), fB(x)]) limited by fB(x), and thus supx∈H+∪H−(min[fA(x), fB(x)]) =
M ≤M ′, which contradicts our assumptions on M ′.

Case 2: Now assume M < min(MA,MB). Let ΓAM = {x ∈ Rn|fA(x) > M}, and
respectively for ΓBM . For either partition to be empty would violate our assumption for
case 2, and for the partitions to not be disjoint would violate our definition of M . Since
ΓAM and ΓBM are convex disjoint crisp sets, we simply apply the regular separation theorem
to guarantee the existence of H. The same argument by contradiction used in case 1
guarantees that no higher degree of separation is possible. �

3. Conclusion & Applications

Zadeh introduces fuzzy sets as a method of modeling subjective situations, but that
characterization is somewhat vague. In the most abstract sense, as we stated in the first
section, a fuzzy set is just a map with some nice properties of a space to the real numbers.
The concept, under the name “fuzzy sets” has rarely been cited since 1965, however Zadeh’s
work under the name of “fuzzy logic” is an often referenced topic. Fuzzy logic is essentially
a direct extension of fuzzy sets to boolean logic, in the same manner that boolean logic
is derived from crisp sets. Though infinite-valued logic existed earlier than 1965, Zadeh’s
paper is the reason it is known today as fuzzy logic.

Fuzzy logic appears to be of less interest to the pure math community than to engineers
and applied mathematicians. Fuzzy logic is cited especially often in the field of robotics,
controllers, and language synthesis, as autonomous machines operating in the real world
often need to simulate an animal’s more adaptable thought processes. This is, of course,
precisely Zadeh’s stated reason for introducing fuzzy set theory. Though rarer, additional
academic explorations into fuzzy logic do occur. The relationship between fuzzy sets and
probability (readers may have noted the similarity between a the characteristic function
of a set and the probability density function of a probability distribution) was explored by
Bart Kosko in his paper Fuzziness vs. Probability [2].
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