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1 Introduction

Suppose we have an irrational number, α, that we want to approximate with a rational
number, p/q. This question of approximating an irrational number is the primary concern
of Diophantine approximation. In other words, we want |α−p/q| < ε. However, this method
of trying to approximate α is boring, as it is possible to get an arbitrary amount of precision
by making q large. To remedy this problem, it makes sense to vary ε with q. The problem
we are really trying to solve is finding p and q such that

|α− p

q
| < 1

q2
which is equivalent to |qα− p| < 1

q
(1)

Solutions to this problem have applications in both number theory and in more applied
fields. For example, in signal processing many of the quickest approximation algorithms are
given by solutions to Diophantine approximation problems. Diophantine approximations
also give many important results like the continued fraction expansion of e. One of the most
interesting aspects of Diophantine approximations are its relationship with transcendental
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numbers (a number that cannot be expressed of the root of a polynomial with rational
coefficients). One of the key characteristics of a transcendental number is that it is easy to
approximate with rational numbers.

This paper is separated into two categories. The first concerns itself with some basic
Diophantine approximation and continued fraction results. This section is almost entirely
based upon an introductory textbook to the subject by Serge Lang [1]. Many of the results
and proofs in this section utilize only algebra and induction, so they should not be too
difficult to follow. The second half of the paper is devoted to transcendental numbers.
Many of the results in this section are stated without proof because the proofs are outside
the scope of this paper. Finally, the paper concludes with the proof of e’s continued fraction
representation. Although this result is not required in proving the transcendence of e, it is
still a neat result and the proof emphasizes how many arguments in this field need to be
specifically constructed on a case-by-case basis.

2 Continued Fractions

Definition 1. A continued fraction is a way of expressing a rational number as an iterated
sum of positive integers plus reciprocals. They are usually expressed at [a0, . . . , an] where

[a0, . . . , an] = a0 +
1

a1 +
1

a2 +
1

· · ·+ 1
an

One property of continued fractions is that [a0, . . . , an] = [a . . . , an − 1,+1] so it is
possible for the length of a continued fraction expansion of any number whose continued
fraction expansion has finitely many terms to be either even or odd.

Let p, q be integers defined inductively with p0 = a0, q0 = 1, and

pn = a0p
′
n−1 + q′n−1 and qn = p′n−1

where
p′n
q′n

= [a1, . . . , an]

Then,

pn
qn

=
a0p
′
n−1 + q′n−1
p′n−1

= a0 +
1

[a1, . . . , an]
= [a0, . . . , an]

Theorem 1. For p, q defined above and n ≥ 2,

pn = anpn−1 + pn−2 (2a)

qn = anqn−1 + qn−2 (2b)

Proof. Base Case: For n = 2,

p2
q2

= a0 +
1

a1 + 1
a2

=
a2(a0a1 + 1) + a0

a0a1 + 1
=
a2(a0p

′
0 + q′0) + p0

a2p′0 + q0
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p2
q2

=
a2p1 + p0
a2q1 + q0

Note that we are using the substitution p′0 = a1 and q′0 = 1.
Inductive case: Assume n > 2 and assume that:

p′n−1 = anp
′
n−2 + p′n−3

q′n−1 = anq
′
n−2 + q′n−3

Using the previous definitions of pn and qn:

pn = a0p
′
n−1 + q′n−1 = a0(anp

′
n−2 + p′n−3) + anq

′
n−2 + q′n−3

pn = an(a0p
′
n−2 + q′n−2) + a0p

′
n−3 + q′n−3

pn = anpn−1 + pn−2

qn = p′n−1 = anp
′
n−2 + p′n−3

qn = anqn−1 + qn−2

If we define p−1 = 1 and q−1 = 0 then:

p1
q1

=
a1p0 + 1

a1q0
=
a1a0 + 1

a1
= a0 +

1

a1

This makes the above theorem hold for n ≥ 1. The immediate consequence of this theorem
is that both pn and qn are strictly increasing. This is due to an, pn, and qn being greater
than or equal to 1 for all n ≥ 0.

This theorem is the best way to define both pn and qn and is much easier to work with
than their original equations. Seeing as almost every result in Diophantine approximation
has to be proven inductively, this result will be constantly utilized. Since this result is the
basis for almost every result involving Diophantine approximations, many people start with
equations (2a) and (2b) as their definitions for pn and qn.

3 Rational Approximations

Let α be a real irrational number. Note that we can we can express α as

α = a0 +
1

α1

where a0 is the largest integer smaller than α. This also means that α1 > 1 which lets us
inductively say:

αn = an +
1

αn+1

So, the continued fraction representation of α is [a0, a1, . . . , αn+1]. Since α is irrational, its
continued fraction expansion fraction expansion must be infinite because if it ever terminated
that would imply that α could be represented as a fraction. So, we can say that

α = [a0, a1, . . . ]
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Definition 2. A principal convergent of α = [a0, a1, . . . , an, . . . ] is defined as the rational
number pn/qn that satisfies:

pn
qn

= [a0, . . . , an]

This means that if we cut off the continued fraction of α at n, we get a rational number
with can be expressed in terms of the p and q that was described in the continued fractions
section.

For any real number α = [a0, a1, . . . , αn+2] we can use (2a) and (2b) to prove the following
two equations:

qn+1α− pn+1 =
(−1)n+1

αn+2qn+1 + qn
(3)

and

qnα− pn =
(−1)nαn+2

αn+2qn+1 + qn
(4)

Since αn+1 ≥ 1 The nth principal convergent of α satisfy the following properties:

1. For even n, the nth principal convergents form a strictly increasing sequence converging
to α.

2. For odd n, the nth principal convergents form a strictly decreasing sequence converging
to α.

3. for all n:

|qnα− pn| <
1

qn+1
(5)

The first two assertions can be obtained from (2a) and (2b) by letting α = [a0, a1, . . . , αn]
and manipulating them into the form:

pn−2
qn−2

− pn
qn

=
(−1)n−1αn
qnqn−2

which immediately yields the result we want because if n is even, then pn
qn
− pn−2

qn−2
> 0. The

opposite is true if n is odd. The third statement comes from equation (4). Since qn+1 > qn
because q is strictly increasing, we can rewrite the above equation as a solution to equation
(1):

|qnα− pn| <
1

qn

Also, for n ≥ 1, |qnα− pn| is closer to zero than any other integer so we can say that

|qnα− pn| = ||qnα||

Where ||x|| is the integer closest to x.

Theorem 2. For n ≥ 2,

||qn−1α|| = an||qnα||+ ||qn+1α||

which implies that
||qnα|| < ||qn−1α||
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Proof. From equations (1a) and (1b)

qn+1α− pn+1 = α(anqn + qn−1)− anpn − pn−1

(qn+1α− pn+1)− an(αqn − pn) = (αqn−1 − pn−1)

||qn+1α|| = −an||αqn||+ ||αqn−1||
The trick with || · || comes from the fact that αqn− pn is the opposite sign of αqn+1− pn+1.
This means that ||(qn+1α−pn+1)−an(αqn−pn)|| = ||qn+1α||+an||αqn||. The second result
follows quickly from the first result.

This theorem implies that every subsequent approximation is better than the one before
it. Now, we are going to define the principal convergents in another way.

Definition 3. A best approximation to α is a fraction p/q such that

||qα|| = |qα− p|, and ||qα|| < ||q′α||

where 1 ≤ q′ < q.

The reason that these properties are what define a best approximation is because α−p/q
are close to 0 (given by the first equations) and there are no denominators smaller than q
that give as good of an approximation. One helpful property of this definition of best
approximations is that p and q are relatively prime (they share no common factors). If they
were not reduced, then we could write p = p′r and q = q′r with r ≥ 2. This would mean
that

r · |q′α− p′| = |qα− p|
|q′α− p′| < |qα− p|

which contradicts the requirement that ||qα|| < ||q′α||.
One useful property of best approximations is that the best approximations to α are the

principal convergents to α. On top of that, the smallest integer, qm, greater than qn such
that ||qmα|| < ||qnα|| is qm = qn + 1.

Theorem 3. The best approximations to α are the principal convergents to α. Additionally,
for n ≥ 1, qn is the smallest integer q > qn−1 such that ||qα|| < ||qn−1α||.

Proof. This will only prove one direction of the above statement. If pn/qn is a principal
convergent to α, then pn/qn is a best approximation to α. This does require us to assume
the other direction of the statement: any best approximation is a principal convergent.

For n = 0, since q0 = 1 there is no q such that 1 ≤ q < q0. Thus, the definition of a best
approximation is satisfied for p0/q0.

Assume inductively that pn/qn satisfies the conditions required for it to be a best ap-
proximation of α. Then, we want to prove that pn+1/qn+1 is also a best approximation. Let
q be the smallest integer > qn such that

||qα|| < ||qnα||

and let p be the integer that satisfies ||qα|| = |qα − p|. Since we have inductively assumed
that pn/qn is a best approximation, p/q is also a best approximation. Since we have already
asserted that best approximations are principal convergents, p/q must be a principal con-
vergent. Since q is chosen to be as small as possible, q = qn+1 which means that p = pn+1.
This proves that if pn/qn is a principal convergent, then pn/qn is a best approximation to
α.
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4 Transcendental Numbers

To define what a transcendental number is, we must first define algebraic numbers. A
complex number, β, is algebraic if and only if there is a non-zero polynomial, P (z) that has
rational coefficients with β as a root. In other words, this means that P (β) = 0. Note that
since every coefficient of P is rational, we can clear the denominators are write

amβ
m + am−1β

m−1 + · · ·+ a1β + a0 = 0

Where am ∈ Z. The degree of an algebraic number is the minimal degree of the polynomial
that satisfies P (β) = 0.

Definition 4. A transcendental number is defined as a number that is not algebraic. In
other words, a number w is transcendental if and only if there is no polynomial with rational
coefficients such that P (w) = 0.

There are many interesting properties that transcendental numbers have. One such
property is that almost every number is transcendental. In 1873 Georg Cantor proved
that the set of transcendental numbers is uncountable and the set of algebraic numbers is
countable. [2]

Proof. Cantor (1873). The algebraic numbers are countable because the set of polynomials
with rational coefficients are countable and each polynomial has finitely many zeros. Since
the algebraic numbers are the zeros of these polynomials, they must be countable. The
complex numbers are uncountable by Cantor’s diagonalization argument and the union of
transcendental and algebraic numbers form C. Because the algebraic numbers are countable,
the transcendental numbers must be uncountable.

What makes this result so striking is the fact that it is difficult to generate transcendental
numbers and check a number for its transcendence. Although transcendental numbers vastly
outnumber algebraic numbers, they are still difficult to find.

The two most famous transcendental numbers are π and e. However, it is unknown
whether π+e or eπ are transcendental although we know at least one of them must be. Due
to its difficulty, many of the proofs in transcendental number theory are very complicated
and outside the scope of this paper. As such, almost all of the theorems in this section will
be stated without proof. The first result in the theory of transcendental numbers was given
by Liouville:

Theorem 4 (Liouville’s Theorem (1853)). Let β be a real algebraic number with degree
n > 1. Then, there is a positive constant c(β) that depends on β such that for all rational
numbers p/q with gcd(p, q) = 1 and q > 1 the following equation holds:∣∣∣β − p

q

∣∣∣ > c(β)

qn
(6)

The proof of this result is constructive. It starts with the minimal polynomial that
satisfies P (β) = 0 and uses estimates to construct a c that satisfies the desired inequality.

Intuitively, what this result says is that rational numbers approximate transcendental
numbers better than algebraic numbers. Liouville used this equation to prove the existence
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of transcendental numbers by constructing a number that violated (6). Specifically, he
proved that the number

∞∑
n=0

1

10n!

is transcendental. The above number is called Liouville’s Constant.

Theorem 5. Liouville’s Constant is transcendental.

Proof. Let L denote Liouville’s Constant for notational convenience. Then, the partial sums
of L are:

pk
qk

=

k∑
n=0

1

10n!

This means ∣∣∣L− pk
qk

∣∣∣ =

∞∑
n=k+1

1

10n!
<

1

10(k+1)!

If ϕ was algebraic of degree m, then by Liouville’s theorem:∣∣∣L− pk
qk

∣∣∣ > c(L)

10k!m

for all pk/qk. But for large enough k we can say that:

c(L)

10k!m
>

1

10(k+1)!

Which contradicts our bounds on |L− pk/qk|. Thus, L is transcendental.

5 Irrationality Measure

We know that rational approximations of transcendental numbers converge better than those
of algebraic numbers. One question we should ask is how much faster do the approximation
of transcendental numbers converge? Sadly, the answer is that there is no general difference
in estimates between all transcendental numbers and algebraic numbers. This is due to
some transcendental numbers having Diophantine approximations that converge at about
the same rate as algebraic number approximations.

One way of classifying how well numbers are approximated is by a slight tweak to equa-
tion (1):

0 <
∣∣∣x− p

q

∣∣∣ < 1

qµ

where x is a real number and there are at most finitely many integers p and q that satisfy the
equation. Specifically, we are asking how big we can make the power of q in the denominator
before x becomes ”badly approximated” by rational numbers.

Definition 5. Let x be a real number. Then, the irrationality measure, µ(x), of x is the
smallest µ such that the inequality ∣∣∣x− p

q

∣∣∣ > 1

qµ+ε

holds for any ε > 0 and large enough p and q.
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Both definitions of µ(x) are equivalent. One could interpret µ(x) as the number that
causes x to become badly approximable. µ(x)’s value directly depends on if x is rational,
algebraic, or transcendental:

µ(x) = 1, x is rational

µ(x) = 2, x is algebraic of degree > 1

µ(x) ≥ 2, x is transcendental

Note that there is some overlap between the possibilities for x when µ(x) = 2, x could
either be algebraic or transcendental. These results were exceptionally difficult to prove.
Showing that µ(x) = 2 for algebraic numbers was the result that Klaus Roth was awarded
the Fields Medal for in 1958 [4].

Some of the more interesting irrationality measures are those of Liouville’s constant (L)
and e. It has been proven that µ(L) =∞ which is a major reason it is so easy to prove that
L is not algebraic. We will prove that µ(e) = 2 later in the paper. Since µ(e) = 2 it is one
of the worse transcendental number when it comes to being approximated with its principal
convergents.

There are two computation formulas for µ(x) given in Sondow [3] that allow for easier
computation of µ(x) given that we know x’s continued fraction:

Theorem 6. For a real number x = [a0, a1, a2, ...], the irrationality measure of x, µ(x) is
given by:

µ(x) = 1 + lim sup
n→∞

log(qn+1)

log(qn)
(7a)

µ(x) = 2 + lim sup
n→∞

log(an+1)

log(qn)
(7b)

The irrationality measure of a number gives us another way of evaluating how fast the
principal convergents of an irrational number converge. Also, if a number’s principal conver-
gents converge exceptionally quickly, that number must be transcendental. This allows for
an important connection between Diophantine approximations and transcendental number
theory.

6 The continued fraction for e

The continued fraction expansion for e is given by

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...]

This continued fraction expansion was originally given by Euler in 1737. I am presenting
the proof given in Lang [1] which is the same that Euler used. The proof does not require
any of the machinery that has been developed in this paper other than some basic ideas
and definitions of continued fractions. Even so, this result is still important in the theory
of Diophantine approximation because it allows us to easily compute partial quotients.
Additionally, this does not prove that e is transcendental. The proof of e’s transcendence
was given by Hermite in 1873 using the fact that d

dxe
x = ex and doing some clever integration

and approximation. [2]
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The proof is made up of two parts. In the first, a function is constructed that satisfies a
continued fraction relation. This function is then related to e, which in turn allows for the
direct proof of e’s continued fraction representation. The construction of the function and
its relationship to e is given in Appendix A. In it, we prove that

e− 1

e+ 1
= [0, 2, 6, 10, . . . ]

With this knowledge, we can prove what e’s continued fraction is.

Theorem 7. The continued fraction of e is

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...]

Proof. Let rn/sn be the principal convergents to the number

α =
e+ 1

e− 1
=
(e− 1

e+ 1

)−1
Rearranging the above equation gives

e =
α+ 1

α− 1
(8)

From the continued fraction given in (U), we know that

α =
(e− 1

e+ 1

)−1
=
(

0 + ([2, 6, 10, ...])−1
)−1

= [2, 6, 10, ...]

α = [2, 6, 10, . . . ]

This means that the principal convergents of α satisfy

rn = (2 + 4n)rn−1 + rn−2 (9a)

sn = (2 + 4n)sn−1 + sn−2 (9b)

Let ζ = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...] and let pn/qn be the principal convergents to ζ.
Due to the simple pattern of ζ’s continued fraction, we can obtain the following recursive
relationship for p and q when n ≥ 2:

p3n+1 = (2 + 4n)p3n−2 + p3n−5 (10a)

q3n+1 = (2 + 4n)q3n−2 + q3n−5 (10b)

These relations give us the ability to define p and q in terms of r and s . Specifically:

p3n+1 = rn + sn and q3n+1 = rn − sn (11)

The argument is inductive with the base case being n = 0, 1 and the inductive case being
for n ≥ 2. Here, just p’s relationship is derived but the one for q is done is exactly the same
manner.

Case 1: n = 0. We can verify directly using the definitions of partial quotients (2a) and
(2b)

r0 = 2 and s0 = 1
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p3·0+1 = p1 = 1 · p0 + p−1 = 2 + 1

p1 = r0 + s0

Case 2: n = 1. We can verify directly using the newly derived recursive formula for p3n+1,
(10a) that

r1 = 6 · 2 + 1 = 13 and s1 = 6 · 1 + 0 = 6

p3·1+1 = (2 + 4) · 3 + 1

p4 = r1 + s1

Inductive case: Assume that p3n+1 = rn + sn and p3n−2 = rn−1 + sn−1. Using (10a) we get

p3(n+1)+1 = (2 + 4(n+ 1))(rn + sn) + rn−1 + sn−1

p3(n+1)+1 = (2 + 4(n+ 1))rn + rn−1 + (2 + 4(n+ 1))sn + sn−1

Using the recursive formula form of r and s, (9a) and (9b), gives us

p3(n+1)+1 = rn+1 + sn+1

These equations relating p with r and s allows us to relate ζ to α:

p3n+1

q3n+1
=
rn + sn
rn − sn

=
rn
sn

+ 1
rn
sn
− 1

Since pn/qn are partial quotients of ζ and rn/sn are partial quotients of α, we know that
p3n+1/q3n+1 → ζ and rn/sn → α as n→∞. Equation (8) gives us the relationship that we
want:

ζ =
α+ 1

α− 1
= e

So, e has the continued fraction expansion of

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ]

6.1 e’s Irrationality measure

Using the continued fraction of e, it becomes easy to determine what its irrationality measure
is.

Theorem 8. The irrationality measure of e is equal to 2.

Proof. Since e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ] we can say that for a0 = 2 and m ≥ 1,

a3m = a3m−2 = 1 and a3m−1 = 2m

From Theorem 6 we know that

µ(e) = 2 + lim sup
n→∞

log(an+1)

log(qn)
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Since log(1) = 0 and a3m = a3m−2 = 1 we know that µ(e) ≥ 2. With those two cases out of
the way, the only case we need to worry about is when n = 3m− 2. For this case we need
an estimate of q3m−2.

I assert that q3m+1 ≥ (m + 1)m for all m ≥ 0. In the case where m = 0 this is easy to
verify as q1 = a1 = 1. Now, assume inductively that for some m ≥ 1 both q3m−2 ≥ mm−1

and q3m−5 ≥ (m− 1)m−2. By equation (10b):

q3m+1 = (4m+ 2)q3m−2 + q3m−5 ≥ 4mm + 2mm−1 + (m− 1)m−2

In other words:
q3m+1 ≥ 4mm + positive ≥ 4mm

factoring out a (m+ 1)m gives us:

q3m+1 ≥ (m+ 1)m · 4
( m

m+ 1

)m
= (m+ 1)m · 4

(
1 +

1

m

)−m
Since (1 + 1

x )−x is a decreasing function that tends to e−1 as x → ∞, we can say that
(1 + 1

m )−m ≥ e−1 for m ≥ 1 which means:

q3m+1 ≥
4

e
(m+ 1)m ≥ (m+ 1)m

This in turn implies that q3m−2 ≥ mm−1 for all m ≥ 1. Thus:

µ(e) = 2 + lim sup
m→∞

log(2m)

log(q3m−2)
≤ 2 + lim

m→∞

log(2m)

(m− 1) log(m)
= 2

Since 2 ≤ µ(e) ≤ 2, µ(e) = 2.

7 Conclusion

Diophantine approximations give us many useful results that can be applied to a plethora of
problems. This paper only touched the surface of what Diophantine approximation is used
for. Some further applications of Diophantine approximation include approximating roots of
functions and analysis of approximation formulas. The relationship between transcendental
numbers and Diophantine approximation is exceptionally important. The future advances
in the theory of transcendental numbers will most likely be highly reliant on results from
Diophantine approximation.

A The Lambert Continued Fraction

Let f be the function described as:

f(c, x) = 1 +
1

c
x+

1

c(c+ 1)

x2

2!
+

1

c(c+ 1)(c+ 2)

x3

3!
+ . . .

=

∞∑
k=0

1

c(c+ 1) · · · (c+ k − 1)

xk

k!
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Where c is taken to be any real number that is not an integer because otherwise the
series would not be defined. The domain of f is R because for large enough k the terms in
f ’s series expansion are smaller in absolute value than the corresponding terms in the series
expansion for e.

Theorem 9. The function described above can be represented using continued fractions as:

z

c

f(c+ 1, z2)

f(c, z2)
=

[
0,
c

z
,
c+ 1

z
,
c+ 2

z
. . .

]
(12)

where (c+ n)/z is an integer that’s greater than or equal to 1 for all n ≥ 0.

Proof. Some messy series manipulation yields the relationship:

f(c, x) = f(c+ 1, x) +
x

c(c+ 1)
f(c+ 2, x) (13)

By inverting both sides then multiplying by f(c+ 1, x) we get:

f(c+ 1, x)

f(c, x)
=

1

1 + x
c(c+1)

f(c+2,x)
f(c+1,x)

This expression of f looks similar to one of a continued fraction. However, there is a
small problem stopping us from writing the function as a continued fraction: we don’t know
how to express an. The substitution z2 = x solves this issue:

z

c

f(c+ 1, z2)

f(c, z2)
= 0 +

1
c
z + z

(c+1)
f(c+2,z2)
f(c+1,z2)

Which is generalized as:

z

(c+ n)

f(c+ n+ 1, z2)

f(c+ n, z2)
=

1
c+n
z + z

(c+n+1)
f(c+n+2,z2)
f(c+n+1,z2)

Which finally gives us the repeated fraction expression of f .

z

c

f(c+ 1, z2)

f(c, z2)
=

[
0,
c

z
,
c+ 1

z
,
c+ 2

z
. . .

]

The restriction on c and z are given in the theorem are due to the restrictions that were
imposed upon continued fractions when we defined them.

The first thing we should note about this continued fraction is that it works for c and z
given by c = 1/2 and z = 1/(2y) where y is a positive integer greater than or equal to 1.
The expansion is given as:

1

y

f(3/2, 1/4y2)

f(1/2, 1/4y2)
=
[
0, y, 3y, 5y, ...

]
For these specific values of c and z, we get what is called the Lambert continued fraction.
Additionally, the f(c, z) for the values above has a special relationship to e.
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Theorem 10. For all w ∈ R,

ew − e−w = 2wf
(3

2
,
w2

4

)
(14a)

ew + e−w = 2f
(1

2
,
w2

4

)
(14b)

The proof of this theorem is given by looking at the kth terms in the series expansions
of f and ew ± e−w and doing some algebraic manipulations. This eventually leads to the
conclusion that every term in both series expansions are the same and the equations above
hold.

Since it has already been confirmed that f ’s continued fraction is legitimate for c = 1/2
and z = 1/y, if we let w = 1/y we obtain:

e1/y − e−1/y

e1/y + e−1/y
=

1

y

f(3/2, 1/4y2)

f(1/2, 1/4y2)
=
[
0, y, 3y, 5y, ...

]
In the special case where y = 2 we get:

e1/2 − e−1/2

e1/2 + e−1/2
=
e− 1

e+ 1
=
[
0, 2, 6, 10, ...

]
(15)

This actually proves that e is irrational. This is because the sum and product of rational
numbers are rational. Since (e+1)/(e−1) is irrational and a composition of rational numbers
and e, this implies that e must be irrational. Another useful consequence of this result is
that we can use it to approximate hyperbolic tangent because of the relationship:

tanh
(1

y

)
=

sinh(1/y)

cosh(1/y)
=
e1/y − e−1/y

e1/y + e−1/y
=
[
0, y, 3y, 5y, ...

]
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