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Abstract. Among statistically-driven models, one of the greatest challenges

is the prevention of overfitting due to excessive complexity or parameters too

specific to the sample set. Given the uniquely chaotic structure of the stock
market and the signals into which its progression can be decomposed, common

solutions to this do not necessarily apply. We explore a framework outlined by

a group of researchers from the Lawrence Berkeley National Laboratory to esti-
mate the probability of backtest overfitting (PBO) from combinatorially sym-

metric cross-validation and establish a minimum backtest length (MinBTL) in

order to effectively fit a model, but avoid overfitting.
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1. Introduction

With the growing prevalence of technical analysis as a basis for amateur trading,
the combination of the attraction of extensive testing and tuning of models against
historical asset pricing data and increased public awareness of pseudo-mathematical
analysis techniques, such as stochastic oscillators, Fibonacci ratios, Elliot waves,
and more lead the unaware down the tempting trap of overfitting. Overfitting,
with regards to mathematical models, refers to tuning that, either per complexity
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or through standard tuning, accurately predict performance within the sample set,
but not outside of it. In a pair of papers, ”Pseudo-Mathematics and Financial Char-
latanism: The Effects of Backtest Overfitting on Out-of-Sample Performance” and
”The Probability of Backtest Overfitting,” one in Notices of the American Math-
ematical Society and the other in the Journal of Computational Finance (Risk
Journals), respectively, David H. Bailey, Jonathan M. Borwein, Marcos Lopez de
Prado, and Qiji Jim Zhu explain a modification of k-fold cross-validation (K-FCV)
and leave-one-out cross-validation (LOOCV) known as combinatorially symmetric
cross-validation (CSCV) which best caters to time series data, in order to build a
distribution of PBOs (probabilities of backtest overfitting) for different model con-
figurations to optimize for the most accurate algorithm, weight for PBO. Beyond
building this distribution, this algorithm further evaluates performance degrada-
tion, based on metrics such as the Sharpe Ratio, the Sortino Ratio, Jensen’s Alpha,
and the Probabilistic Sharpe Ratio [2]. The authors further discuss the mathemat-
ical premise of a metric referred to as MinBTL, a minimum length of backtests as
a function of the number of trials attempting to determine overfitting [3]. In all,
though these metrics and algorithms do not provide ideal targets for model opti-
mization so much as evaluations that should instruct decision making post-model
generation with regards to investment and advertisement.

2. Definitions

We define a number of the important terms around the problem that is posed.

Definition 2.1. (Backtest Overfitting) Overfitting is characterized by an invest-
ment strategy with optimal in-sample performance achieving below-median ex-
pected ranking out-of-sample. Application of Bayes’ Theorem, this is given by:

(2.1)

N∑
n=1

E[rn|r ∈ Ω∗n]Prob[r ∈ Ω∗n] ≤ N/2

where Ω∗n = {f ∈ Ω|fn = N} and Ω is the the ranking space of ”N ! permutations
of (1,2,...,N) indicating the ranking of the N stratgies” [2].

We also provide the authors’ definition of the Probability of Backtest Overfitting.

Definition 2.2. (Probability of Backtest Overfitting) This probability is that of
the occurrence above: that a strategy with optimal IS performance receives a below-
median ranking OOS.

(2.2) PBO =

N∑
n=1

Prob[rn < N/2|r ∈ Ω∗n]Prob[r ∈ Ω∗n]

Definition 2.3. (Sharpe Ratio) The Sharpe Ratio (SR) quantifies a ”strategy’s
performance on the basis of a sample of past returns” [3]. Per [5], this ”is defined
as the ratio of the excess exepected return to the standard deviation of return.”

(2.3) SR =
µ−Rf
σ

[3] annualizes this as follows:

(2.4) SR =
µ

σ

√
q
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”where q is the number of returns per year” [2]. Note that we know the standard
deviation of this distribution to be y−1/2. The authors also provide an estimator
for the annualized Sharpe ratio:

(2.5) ŜR
a−→ N

[
SR,

1 + SR2

2q

y

]
Since the SR cannot perfectly be determined for a dataset by a single point or

discrete set of points, we refer to its estimate at a point as ŜR.

Though the SR is the primary performance metric referenced in this work, a
number of other metrics are referenced, which we shall briefly define.

Definition 2.4. (Sortino Ratio) The Sortino Ratio is a variant of the SR, with
distinction made between harmful and total overall volatility through usage of the
considered asset’s downside deviation, i.e. the standard deviation of its negative
returns. It is calculated by subtracting the risk-free rate (rate of return from an
investment with no risk; a basis of comparison for additional risk taken in an
investment) from the asset’s return and dividing by downside deviation. If < R >
is the Expected Return, Rf is the risk-free rate of return, and σd is the downside
deviation, this formula is thus

(2.6)
< R > −Rf

σd

Definition 2.5. (Jensen’s Alpha) Alpha (Aj) measures performance of some asset
or portfolio relative to expected return, adjusted for risk. It is calculated using Rp
for expected portfolio return, Rf for risk-free rate, Bp for the beta of the portfo-
lio/asset (relative volatility/systematic risk of an asset to the market), and Rm for
expected market return:

(2.7) Aj = Rp − [Rf +Bp ∗ (Rm −Rf )]

Definition 2.6. (Non-Normal ŜR) If we assume returns to not necessarily be
sampled from a normal distribution, [4] cites a conclusion by E. Mertens that the
SR still follows a normal distribution as follows:

(2.8) (ŜR− SR)
a−→ N

(
0,

1 + 1
2SR

2 − γ3SR+ γ4−3
4 SR2

n

)

Definition 2.7. (Confidence Band Around ŜR) To account for skewness (a mea-
sure of asymmetry of a probability distribution) and kurtosis (the sharpness of the

peak of a frequency-distribution curve), we pose a confidence band around ŜR. We
manipulate equation (2.8) to determine an estimate on the standard deviation:

σ̂
ŜR

=

√
1− γ3ŜR+ γ̂4−1

4 ŜR
2

n− 1

The n − 1 here is given by Bessel’s correction, a method of correcting for bias.
Given significance level α, the confidence band around the true SR is:

(2.9) Prob[SR ∈ (ŜR− Zα/2σ̂ŜR, ŜR+ Zα/2σ̂ŜR)] = 1− α
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Definition 2.8. (Probabilistic Sharpe Ratio) Per [4], the Probabilistic Sharpe Ra-
tio (PSR) is an ”uncertainty-adjusted investment skill metric,” with the purpose of
”[correcting]... inflationary effects.” We define PSR in terms of a benchmark (can

be set by default to 0) SR, SR∗, and an observed SR, ŜR:

(2.10) P̂SR(SR∗) = Prob[ŜR > SR∗] = 1−
∫ SR∗

−∞
Prob(ŜR) · dŜR

The cdf of this distribution is thus

(2.11) P̂SR(SR∗) = Z

 (ŜR− SR∗)
√
n− 1√

1− γ̂3ŜR+ γ̂4−1
4 ŜR

2


Returning to [2], there are a series of lemmas that the authors rely on to demon-

strate the theorem that we shall later discuss.

Lemma 2.9. We show that E[maxN ] = E[maxxn] for large N where xn ∼ Z
where Z is the CDF of the Standard Normal distribution is approximated by:

(1− γ)Z−1
[
1− 1

N

]
+ γZ−1

[
1− 1

N
e−1
]

where γ ≈ 0.5772156649, the Euler-Mascheroni constant, and N � 1. It can be
shown that the upper bound of E[maxN ] is

√
2 ln[N ]

Proof. Given that the independent random variables which are sampled follow
exponential distributions, their maximum converges asymptotically to a Gumbel
distribution, a probability distribution which models the maximum of a set of
samples from various other distributions. Its cumulative distribution function is

e−e
−(x−µ)/β

. Similarly, per the Gumbel distribution’s covering of the Maximum
Domain of Attraction of the Gaussian distribution, it also estimates the expected
value of the maximum of multiple independent random Gaussian variables. We
show this by applying the Fisher-Tippett-Gnedenko theorem to the Gaussian dis-

tribution with G[x] = e−e
−x

as the CDF of the Standard Gumbel distribution and
α = Z−1

[
1− 1

N

]
, β = Z−1

[
1− 1

N e
−1]− α, with Z−1 the inverse of the Standard

Normal’s CDF:

lim
N→∞

Prob

[
maxN −α

β
≤ x

]
= G[x]

The limit of these maxima normalized, per the Gumbel Maximum Domain of At-
traction, is

lim
N→∞

E

[
maxN −α

β

]
= γ

with γ once again being the Euler-Mascheroni constant. This provides the result
originally stated in the Lemma. �

We later provide a definition of cross-validation in outlining the specific algorithm
provided by the authors.



PREDICTING AND PREVENTING OVERFITTING OF FINANCIAL MODELS 5

3. Minimum Backtest Length

Having established E[maxN ], it is possible to approximate and bound MinBTL.
Bailey, et al. state the following:

Theorem 3.1. MinBTL is set to the strategy out of N with IS Sharpe ratio
E[maxN ], but expected OOS Sharpe ratio 0:

minBTL ≈

(
(1− γ)Z−1[1− 1

N ] + γZ−1[1− 1
N e
−1]

E[maxN ]

)2

<
2 ln[N ]

E[maxN ]
2

On one hand, this is stated to imply that this value increases with more configu-
rations, but we also note that it is simply a necessary, not a sufficient condition for
overfitting to occur. Bailey, et al. present the example of only having 5 years worth
of historical data against which to backtest, which limits the number of model con-
figurations to 45, almost guaranteeing that the model with overfit.

Assuming the distributions used to calculate MinBTL have not been pre-prepared,
it is possible to utilize the Combinatorially Symmetric Cross-Validation algorithm
mentioned above to determine the PBO (and other useful metrics) by manual test-
ing.

4. Combinatorially Symmetric Cross-Validation (CSCV)

Before outlining the algorithm itself, we briefly define cross-validation. We will
later describe the differences betweeen CSCV and the traditional cross-validation
methods mentioned above: K-FCV and LOOCV. Cross-validation refers, quite sim-
ply, to splitting the initial dataset into training and test sets in order to evaluate
the predictive capacity of a model. K-FCV refers to using k partitions of the data,
and in k iterative instances using each partition as the validation set, while using
the other k − 1 partitions as training data. A final estimation can be produced
through some sort of combination (typically an average) of the outputs of all k
separately trained models.

Now, the CSCV algorithm proceeds per the following steps:

(1) T × N matrix M consists of N columns representing N trials, each with
T observations of profit or loss per the Nth strategy’s performance at that
moment.

(2) The optimal strategy can eventually be selected by subsampling each col-
umn, calculating Sharpe ratio, and choosing the strategy with the highest
such ratio.

(3) Divide M into S disjoint submatrices.
(4) Create combinations of the components of each S of size S/2 by the follow-

ing formula:(
S

S/2

)
=

(
S − 1

S/2− 1

)
S

S/2
= ... =

S/2−1∏
i=0

S − i
S/2− i

(5) From each combination, build training and testing sets and evaluate neces-
sary metrics. This is as follows:
(a) Join the S/2 submatrices in the chosen combination to form a T/2×N

training set.
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(b) Form a testing set J = M\J of dimension T/2 × N . These orders
are irrelevant for the Sharpe ratio, but are important for other perfor-
mance metrics, such as return maximum drawdown ratio.

(c) Form order N vector Rc of the performance metric for each strategy
(each column of J).

(d) Form a similar vector for J .
(e) Choose the optimal strategy from the training set based on its ranking

in the sorted performance vector.
(f) Determine the relative rank of this strategy by dividing its rank in

the testing set by N + 1. If overfitting is not occurring, this strategy
should outperform this testing ranking OOS.

(g) We determine the logit in order to indicate consistency between IS and
OOS performance, as a metric for backtest overfitting:

λc = ln
ωc

(1− ωc
where ωc is the aforementioned relative ranking.

(6) Finally, we determine the distribution of ranks by using X as the charac-
terization function and #(CS) as the cardinality of CS :

f(λ) =
∑
c∈CS

X{λ}(λC)

#(CS)

5. Statistics Derived from CSCV

Aside from the aforementioned PBO statistic produced by CSCV, we also discuss
the production of 3 other useful metrics: performance degradation of the model over
time OOS, probability of monetary loss OOS of the optimal IS model, and stochastic
dominance: whether using this strategy of model selection produces preferable
results to random selection of model configuration.

5.1. PBO. Having performed CSCV, we can now estimate the PBO with the fol-
lowing formula:

φ =

∫ 0

−∞
f(λ)dλ

A simple interpretation of this value is as the underperformance of an optimal IS
model OOS as compared to the median of all considered models. The ideal case in
which this optimal model outperforms the median for the majority of the N trials
is signified in the output of the CSCV algorithm by λC > 0. On the other hand,
φ ≈ 0 indicates a low proportion of outperformance of the median by the optimal
model, which, in turn, indicates a low chance of overfitting. By contrast, φ ≈ 1
indicates a high likelihood of overfitting. Bailey, et al. pose a set of applications
for the PBO:

(1) As an application of the Neyman-Pearson framework, a common statistical
tool for considering significance, an investor could simply fight overfitting
by rejecting any model determined to be optimal with a PBO determined
to be greater than 0.05.

(2) In some Bayesian application, it may be possible to utilize the PBO as
a prior probability in determining the posterior probability of a model’s
prediction.
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(3) The PBO can be utilized as a weighting factor for portfolios. Weights could
be determined as (1− PBO), 1/PBO or some other method.

5.2. Performance Degradation and Probability of Loss. To discuss the di-
rect negative implications of overfitting, we consider the optimal pair of performance
metrics, typically the Sharpe Ratio, but also possible the Sortino ratio, Jensen’s
Alpha, or the Probabilistic Sharpe Ratio, determined for each combination of mod-
els in step 5 of the CSCV algorithm: (Rn∗ , Rn∗). Since there is no necessary
correlation between each of the groups from which Rn∗ and Rn∗ are taken, even
though we know that Rn∗ = max{R}, it is possible that Rn∗ < max{R}. Thus,
per compensation effects such as ”overcrowded investment opportunities, major
corrections, economic cycles, reversal of financial flows, structural breaks, bubble
bursts, etc.” [3], regressing Rn∗

c
= α+βRcn∗ +εc practically results in a negative β.

Beyond regression, another statistic, the proportion of combinations with negative

performance, Prob[Rn∗
C
< 0], can be used to indicate the occurrence of poor per-

formance not actually driven by overfitting, but rather by other factors. This and
other statistics can be derived by plotting the aforementioned pairs: (Rn∗ , Rn∗).

5.3. Stochastic Dominance. We seek a definition for stochastic dominance which
demonstrates that the OOS performance of an optimally selected strategy is supe-
rior to one which is randomly selected. In the first-order, we define this as the case
in which

∀x : Prob[Rn∗ ≥ x] ≥ Prob[Mean(R) ≥ x]

∃x : Prob[Rn∗ ≥ x] > Prob[Mean(R) ≥ x]

Visually, this is indicated by the cdf of Rn∗ being at or below that of R.
Aside from first-order stochastic dominance, Bailey et al. also present second-

order stochastic dominance, which is cited as a ”less demanding criterion” [2]. The
formula for this requires the following:

(5.1) ∀x : SD2[x] =

∫ x

−∞
(Prob[Mean(R) ≤ x]− Prob[Rn∗ ≤ x])dx ≥ 0

(5.2) ∃x : SD2[x] > 0

Figure 1, from [2], demonstrates an example in which the condition for a strategy
stochastically dominating is not met, so the strategy considered is not consistently
better results-wise than a randomly selected one. By contrast, Figure 2 shows an
example of a case in which this domination does occur and the optimal strategy is
considered to provide superior returns to a randomly chosen one.

6. Unique Features of CSCV

The primary driver for the choice of CSCV over K-FCV is inconsistencies be-
tween the sets created by K-FCV and those optimal for calculation of the Sharpe
Ratio (and potentially other performance metrics). As demonstrated by the SR

Confidence Bands defined in Definition 2.7, set size k must be small for ŜR to be
reliable. However, such a condition for K-FCV results in what [2] refers to as a
”’hold-out’ method, which [is] unreliable.” LOOCV results in k = T , where T is
the total size of the sample set. When this is the case, we do not have any reliable
performance metric, as far as has yet been developed. When we consider alter-
native model types, we consider the possibility that it may be possible to develop
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Figure 1. Stochastic dominance.

Figure 2. Stochastic dominance (example 2).

independent models which provide performance estimates based on single points,
which could potentially allow this case. However, the advantages of avoiding this
through a model-free system are later referenced by [3] as another advantage of
CSCV.
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A further advantage posed by CSCV is that it guarantees training and testing
sets to be of the same size, guaranteeing the calculated accuracies of IS and OOS
SRs to be comparable. Furthermore, in a similar realm, CSCV can be said to be
symmetric, in that every testing or training set is also used as the other. This
guarantees that performance decline over training/indicated by backtest, will only
result from overfitting, the problem we’re considering, rather than arbitrary set
discrepancies.

Next, we note that CSCV does not utilize random allocations of subsample
allocation, so respects time-dependence and season-dependent features. We also
have replicability of results, as the logit distribution produced is deterministically
dependent on the inputs, without randomness. Since the construction of the logit
distribution is directly related to how robust a strategy selection procedure is,
we can further state that the OOS performance rankings are consistent between
trials. Finally, as mentioned above, since the PBO is model-free, the user typically
does not need to forecast any parameters. The most important implication of
this and the associated statement that the PBO is similarly non-parametric is
that it provides a baseline of expectation of the potential case of backtesting not
providing OOS performance insight. This thus allows us to specifically seek the
case in which the logit distribution is primarily positive, with marginal coverage of
the negative values, as a representation of positive association between backtesting
and good OOS performance. However, in contrast to this, if model configuration is
determined by a forecasting specification, this must be done with T/2 observations,
where T is the samples provided to CSCV.

7. Accuracy of CSCV Algorithm

As CSCV analyzes an presents a probabilistic parameter, it is difficult to a
priori state the correctness of the algorithm. As such, in an attempt to justify
its proposal, [1] puts forth two methods of assessing whether PBO actually does
serve as an indicator of underperformance of the median of OOS trials by the given
security: Monte Carlo simulations and an application of the Extreme Value Theory.
The former is a purely computational sampling technique, so we primarily consider

the latter. We first recall the above proofs that ŜR go to a Gaussian distribution
asymptotically and that, per Proposition 1, a Gumbel distribution approximates the
maximum IS performance of a strategy between N alternative backtests, given the
Fisher-Tippet-Gnedenko Theorem. We follow the procedure from [1] for empirical
confirmation and extension of these ideas.

We first consider a set of backtests with N = 100, T = 1000, SRn = 0 given

n = 1, ..., N−1, SRN = S̃R > 0. We first select 2 sets of equal size for IS and OOS,
and select a strategy with SRn = 0 when its IS SR exceeds that of the strategy

with SRn = S̃R. Per global constraint of the SR by re-scaling and re-centering,
and |IS| = |OOS|, SR∗OOS =≈ SR−SR∗IS . We use 4 propositions for the estimate
of PBO:

(1) µ of all SRs OOS is null, Me[SROOS ] = 0
(2) For a selected strategy, SRn = 0→ SR∗OOS ≈ −maxN < Me[SROOS ]iifSR∗IS >

0
(3) Selecting SRN = S̃R→ SR∗OOS ≈ S̃R−SR∗IS , E[SR∗OOS ] > Me[SROOS ]iifSR∗IS ∈

(−∞, wS̃R) and E[SR∗OOS ] ≤Me[SROOS ]iifSR∗IS ∈ [2S̃R,∞)
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(4) V [SRIS ] = V [SR] =
1+ 1

2SR
2

T , V [SROOS ] = 0

We want that the maximum IS SR strategy performs below the median of OOS
SR. We determine the specific Gumbel distribution with a variety of statements:
msaN = max({SRn|n = 1, ..., N − 1}) with SRn backtest-estimated during the
nth trial. By the Maximum domain of Attraction of the Gumbel distribution,
maxN ∼ ∧[α, β], α, β normalizing constants, ∧ Gumbel distribution CDF. We
have

(7.1) E[maxN ] = α+ γβ

(7.2) σ[maxN ] =
βπ√

6

With an estimate of σ̂[maxN ], β̂ = σ̂[maxN ]
√
6

π

With this β̂, we estimate Ê[maxN ] with â = Ê[maxN ]− γβ̂
Finally, the probability we target φ = φ1 + φ2:

(7.3) φ1 =

∫ 2S̃R

−∞
N

SR, S̃R, 1 + 1
2 S̃R

2

T

 (1− ∧[max(0, SR), α, β])dSR

(7.4) φ2 =

∫ ∞
2S̃R

N

SR, S̃R, 1 + 1
2 S̃R

2

T

 dSR
Note that the upper bound of 2S̃R is chosen because, above that point, SR∗OOS <
Me[SROOS ]. This is accounted for by phi2, while phi1 accounts for the other special
case above. [1] cites a snippet of Python code which we do not reproduce here, but
we will discuss their results and conclusions.

7.1. Empirical Study of Accuracy of PBO Calculation. Having established
the EVT benchmark, probabilities for both it and the undescribed Monte Carlo
method are laid out in the table below, in comparison to the mean and standard
deviation produced by a series of iterations of CSCV. We note that the MC results
were quite similar to those produced by EVT, so utilizing one or the other serves
as an appropriate point of comparison. In analysis of the data, [1] cites that the
average absolute error between Mean-CSCV and the EVT result is 2.1%, with

standard deviation 2.9%. The maximum absolute error is 9.9%, for S̃R = 3, T =
500, N = 500, with a more conservative estimate given by CSCV: 24.7% instead of
14.8%. The only case of underestimation of PBO by CSCV was with an absolute
error of 0.1%. Total median error was 0.7%, which is small enough in consideration
to state CSCV to be an accurate method of PBO calculation.

8. Conclusion

We first consider that there are a number of potential limitations and misuses
of CSCV, including the fact that, depending on the complexity of certain strate-
gies, symmetry of IS and OOS sets can be problematic, and the fact that the
performance measure utilized is assumed to be equally weighted, and thus does not
necessarily cater to measures dependent on forecasting equations and/or weighting.
In application, there are 5 concerns outlined by the authors:
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Figure 3. CSCV accuracy

(1) Occasionally, it is mathematically sensible for a researcher to remove certain
trials from analysis in order to consider particular factors or such. Due to
the structure of CSCV, this technique cannot here be utilized.

(2) No claims are made regarding backtest correctness, so this is a verification
problem otherwise left to researchers.
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(3) Since financial models often must consider possible structural breaks, those
outside of a provided dataset are often a concern for researchers. Though
those within a dataset are considered by CSCV, no account is taken of true
OOS structural breaks.

(4) Though overfitting is posed as an important problem to battle in strategy
choice, there do indeed exist high PBO strategies that remain skillfull and
effective.

(5) As with any metric, utilizing CSCV as a guide to strategy development or
search will result in misapplication of the probability. PBO is structured
as an evaluation, not an effective objective function.

In conclusion, the works reviewed here have posed general frameworks for deter-
mination of PBO as a generic, symmetric, model-free, non-parametric assessment
of underperformance of a highly fitted model IS when taken OOS. Though consid-
eration of regression overfitting is commonplace in the field, these works are the
first to consider the same concern for backtesting investment simulations. Doing so
is necessary to consider the fact that backtesting provides memory in the process,
which potentially hides problematic consequences. Furthermore, CSCV provides
metrics for performance degredation, probability of loss, and stochastic dominance
by a selected strategy. Ultimately, the hope of this proposal is to encourage con-
sideration and control of both PBO and MinBTL (which implies that a greater
number of trials should demand a higher IS Sharpe Ratio) in reporting of compu-
tation and backtest results among financial engineers, in order to add some degree
of mathematical rigor to strategy choice.
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