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1 Introduction

In their paper “A Bit of Tropical Geometry” [1], Erwan Brugallé and Kristin
Shaw present an elementary introduction to the theory of tropical geometry in
the plane. The authors explicitly state that they intend the paper to be accessi-
ble to first-year students of mathematics.

Tropical geometry arises from the study of an algebra over the real num-
bers in which the usual product is replaced with the sum and the usual sum is
replaced with the maximum. Polynomials defined using these operations are
convex and piecewise linear functions. Tropical algebraic curves can be associ-
ated to tropical polynomials in two variables and, because of the combinatorial
simplicity of tropical polynomials, are much easier to study and understand
than classical algebraic curves.

In fact, most concepts from classical algebraic geometry have tropical ana-
logues. This would be little more than a neat mathematical coincidence if it
were not also the case that classical objects (lines, polynomials, and curves)
can be transformed into tropical objects while preserving many of those char-
acteristics, and vice versa. Constructing classical algebraic curves with given
properties is much more difficult than constructing a tropical curve with the
desired properties and then transferring it into the classical world.

The paper [1] introduces tropical algebra, tropical algebraic curves in the
plane, the intersection theory thereof, and the “patchworking” process that
turns tropical curves into classical ones. It closes with some sketches of current
directions in tropical research. This paper roughly follows that trajectory, paus-
ing to reproduce the proof of a tropical analogue to Bézout’s theorem (which is
itself a result in the intersection theory of classical algebraic curves).

A note on nomenclature: “tropical geometry” was initially known as “max-
plus geometry”. The current name was bestowed upon the subject by a group
of French computer-science researchers in honor of their colleague Imre Simon,
who did work on max-plus geometry (as it was known at the time) in Brazil.
The name has little to do with the subject itself and much more to do with the
French perspective on Brazil.



2 Tropical algebra

Tropical geometry by nature requires a good deal of algebraic definitions be-
fore any sort of forward mathematical motion can happen. Throughout these
definitions and the rest of this paper, tropical algebraic expressions and oper-
ations are distinguished from their classical counterparts by enclosing them in
quotes, like this: “x 4- yz”. This is the convention used throughout [1].

2.1 The tropical semi-field

A semi-field is a field without additive inverses. None of our development of
tropical geometry requires advanced algebraic machinery, but the semi-field
rules are important and we present them here for later use.

Definition 1. A semi-field is a set S equipped with two binary operations X
(multiplication) and + (addition), obeying the following rules:

1. The operations are closed: For every pair a, b of elements of S, both a x b
and a + b are members of S.

2. The operations are associative: For every a,b,c € S, the equations (a X
byxc=ax (bxc)and (a+b)+c=a+ (b+c)hold.

3. Each operation has an identity element: there exists an element e of S such
that a x e = a for all elements a of S, and there exists an element 0 of S
such that a + o = a for all elements a of S.

4. The operations commute: For all a,b in S, the equations a X b = b x a and
a+b="b+ahold.

5. There exist multiplicative inverses: for every element a of S aside from o,
there exists an element a~! € S such thata x a=! =e.

6. Multiplication distributes over addition: for all a4,b,cin S, a x (b+¢) =
axb+axec.

Tropical algebra takes place in one particular instance of the above.

Definition 2. The tropical semi-field, denoted by T, is the set of tropical numbers
R U {—co} equipped with the commutative operations “a + b” = max(a, b) and
“a xb” = "ab” = a+ b for any pair a, b of tropical numbers. The tropical sum
of —oo and any tropical number x is x, and the tropical product of —co and any
tropical number is —oo.

The reader is encouraged to verify that the semi-field rules hold in T. Trop-
ical multiplication “a x b” may be denoted “ab”. Integer exponents denote
repeated multiplication, so “a*” = “aaaa”, and the familiar sigma notation for
finite sums works as one would expect:

3
“ Zaj =ag+ay+a+az”.
j=0



Semi-fields, like many other algebraic structures, can be found in the real
number system: the set R>( of nonnegative reals forms a semi-field under its
usual addition and multiplication. Suggestively, R> is exactly the preimage
of T under the map x — logx if we define log(0) = —oo. This will be fur-
ther explored in Section 5. Though both Ry and T are semi-fields, they are
algebraically very different. Rather obviously, we can turn R>( into a field by
adding elements defined to be the unique additive inverses of their nonnega-
tive counterparts. These are the familiar negative real numbers. Suppose we
do the same with T by introducing a symbol — and defining “a + —a” = —oo,
we have a problem. Observe that addition in T is idempotent, unlike real ad-
dition: “a+a” = a. Hence, “(a +a) + —~a” = “a+ —a” = —co. However,
“a+ (a+—a)” ="a+ (—o0)” = a. Evidently, introducing additive inverses to
T does away with associativity, and we have actually worsened the algebraic
situation! Thus T is really a semi-field, unlike R>.

2.2 Tropical polynomials

As in classical algebraic geometry, the main objects of study in tropical geome-
try are polynomials and the geometric locations of their roots. Of course, trop-
ical polynomials (and their roots) are markedly different from their classical
counterparts.

Definition 3. A tropical polynomial of degree d is a function p : T — T of the

form
d

p(t) =" Y ait"” = maxt_ (it + a;),
i=0

where the coefficients a; are real numbers and d is a natural number.

Classically, a real polynomial g(x) has a root at some point xo when g(x) =
0. In tropical algebra, this translates to finding a xq for a tropical polynomial
p(x) such that p(xg) = —co. Since there are no additive inverses in T, this
does not really work: the only polynomial that would have a zero in this sense
would be the constant function p(x) = —oo.

However, we can look to the fundamental theorem of algebra and find a
more generalizable notion of “root”, namely that of factorability. A polyno-
mial p(x) has a root at xy when it can be factored into p(x) = (x — xo)g(x),
where ¢(x) is another polynomial with no root at xg. In tropical geometry, this
definition makes sense, albeit with a plus in the factored term because of the
absence of tropical negatives.

Definition 4. A point xo € T is a tropical root of order at least k of a tropi-
cal polynomial p(x) if there exists another tropical polynomial g(x) such that
p(x) = “(x + x0)*q(x)” for some k. The largest k for which this is possible is
the multiplicity of the root xo.
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Figure 1: Plots of some tropical polynomials. The axes are scaled oddly, espe-
cially in (c), and I'm unsure how to convince Mathematica to not do that.

Geometrically, the roots of a tropical polynomial are exactly the points at
which the graph has corners. The multiplicity of a root is the difference be-
tween the slopes of the two segments meeting at the root’s corresponding cor-
ner. Several plots of tropical polynomials may be found in Figure 1.

If the geometric argument is not compelling, note that with this definition
of root the tropical numbers are algebraically closed. The proof of the following
proposition is left as an exercise to the reader in [1].

Proposition 1. A tropical polynomial of degree d has exactly d roots when counting
with multiplicities.

3 Tropical curves

3.1 Definitions

Real algebraic curves in the plane are the zero sets of polynomials in two vari-
ables. In the tropics, we can define a similar notion. First, some book-keeping:
we need to add another variable to our polynomials.

Definition 5. A tropical polynomial of degree d in two variables is a function
p(x,y) of the form

p(x,y) ="Y ax'y"” = rr}.f]aX(ix +jy +aij),
i,j ’.
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Figure 2: Contour plots of some tropical polynomials in two variables.

where i and j are integers ranging from 0 to d that satisfy i 4+ j < d in each term
of the polynomial.

Like polynomials in one variable, tropical polynomials in two variables are
convex piecewise linear functions. The curve defined by a tropical polynomial
in two variables is the set of points in R? at which the polynomial has ”cor-
ners”.

Definition 6. Let P(x,y) = “ Yij ui/jxiyj " be a tropical polynomial. The tropical
curve C defined by P(x, ) is the set of points (xo, ¥o) in IR? such that there exist
pairs (i, j) # (k, j) satistying P(xo, yo) = a; + ixo + jyo = ax,; + kxo + lyo.

Several contour plots of tropical polynomials in two variables may be found
in Figure 2. Their associated tropical curves are the thick white lines at which
the contours meet in angles. From the figure it should be clear that tropical
curves always consist of a finite number of line segments (or rays), which we



will call edges, meeting in points which we call vertices. Brugallé and Shaw give
a detailed discussion of this in [1].

The weight of an edge of a tropical curve is roughly analogous to the mul-
tiplicity of a root of a tropical polynomial in one variable.

Definition 7. The weight w, of an edge e is the maximum of the greatest com-
mon divisors of the numbers |i — k| and |j — | for all pairs (7, /) and (k, j) that
correspond to the edge. Formally,

w, = max(ged(|i — k[ 1])),

where

M, = {(i,}), (k1) : ¥xo € e, P(x0,Y0) = a;,j + ixo + jyo = ax; + kxo + lyo} -

3.2 Dual subdivisions

If this talk of edges and vertices sounds vaguely graph-theoretic, that’s because
it is. While tropical curves have unbounded edges and hence are not obviously
graphs in any familiar sense, we can produce planar graphs known as dual
subdivisions that aid in our study of curves.

Suppose we have a tropical polynomial p(x, y) of degree d with coefficients
a;j. It defines a curve C in R%. At each point of C, at least two monomials
of p(x,y) are equal to one another and greater than the other monomials of
p(x,y). All the points (i,j) € Z? such that a;; # —oo are contained in the
triangle A, with vertices (0,0), (0,d), and (d, OS. For simplicity, we suppose
throughout the remainder of this text that all our polynomials have agg, 4,40,
and ag 4 not equal to —co.

Definition 8. Given a finite set of points A in R?, the convex hull of A is the
unique convex polygon with vertices in A that also contains A.

Therefore, the triangle A; is the convex hull of the points (7,j) at which
Cl,‘l]‘ 75 —00.
Definition 9. Suppose we have a curve C defined by a tropical polynomial

p(x,y). The dual triangle associated to a vertex v = (xo, o) of C, denoted A, is
the convex hull of the points (i, j) € Z? at which p(xo,y9) = a;,; = ixo + jyo-

The convex piecewise linearity of p(x,y) implies that the set of A, for all
vertices v of C forms a subdivision of A;.

Definition 10. The dual subdivision of a curve C defined by a polynomial p(x, y)
of degree d is the union of the triangles A, for each vertex v of C.



4 Tropical intersection theory

In classical geometry, Bézout’s theorem states that two algebraic curves in the
plane of degrees di and dj, respectively, intersect in exactly d;d, points. This is
a projective theorem: two parallel lines do not intersect in IR?, but they do inter-
sect “at infinity”. In tropical geometry, if we define notions of intersection and
multiplicity carefully, we can get an analogous theorem for the intersections of
tropical curves.

The analogue for tropical curves is the following theorem, attributed to B.
Strumfels. Note that, as in classical algebraic geometry, the union C; U Cy of
two tropical curves C; and C, defined by polynomials p;(x,y) and pa(x,y) is
itself a tropical curve defined by the polynomial q(x,y) = “p1(x, y)p2(x,y)".

Theorem 1. Let Cy and Cy be two tropical curves of degrees dy and dy, respectively,
intersecting in a finite number of points away from the vertices of the two curves. Then
the sum of the tropical multiplicities of all points in the intersection of Cq and Cy is
equal to dydy.

Proof. Let s be the sum of the multiplicities of the points in the intersection.
Consider the dual subdivision of the tropical curve C; U C;. The polygons of
the subdivision fall into three (distinct, because intersections occur away from
vertices) categories: those dual to a vertex of C; having total area %d%, those
dual to a vertex of C, having total area 143, and those dual to an intersection
point of C; and C,. Since the curve C; U C; is of degree dq + dp, the sums of
the areas of these polygons is equal to th area of Ay, | 4,, which is 3 (d; + d5)?.

Therefore ) ) )
di+dy)*—ds—d
S:(1+ 2)2 1 zzdldz. O

5 Moving between tropical and classical geometry

5.1 Dequantization

Classical curves can be degenerated into tropical curves using a process known
as Maslow dequantization. Brugallé and Shaw sum it up nicely in [1] when
they write that “tropical geometry is the image of classical geometry under the loga-
rithm with base +c0.”

Let us return to the notion of semi-field, and the example of R>¢. If we take
t > 0, the logarithm of base ¢ provides a bijection between the sets R and T.
We can define a semi-field structure on T with this bijection and the existing
structure on R>o with the operations “ 4; ” and “ x; ”, defined by

“x4ry” =log (' +#) and “x x;y” =logi (') = x +y.

If we take t — oo these operations are exactly the familiar tropical addition
and multiplication!

We can dequantize curves by applying a sort of componentwise logarithm of
base t to their points, mapping (x,y) — (log, |x|,1og, |y|).



5.2 Patchworking

Planar algebraic curves of low degree are relatively well-understood objects.
In degree two, they are the conics, in degree three they are the cubics, and so
on. These curves consist of bounded and unbounded connected components
in the plane which are arranged in a certain way, i.e. sometimes two connected
components will be contained in one another and sometimes they will not. The
question of arrangement is a topological one.

Two curves have the same arrangement if their connected components are
nested within one another in the same way.

David Hilbert’s 16th problem, delivered among his other 23 famous prob-
lems to the International Congress in Mathematics at Paris in 1900, asks math-
ematicians to establish all possible arrangements of real algebraic curves. This
problem has been solved for conics since antiquity, and at Hilbert’s time was
completely solved for curves of degree up to 4.

Many of the modern advances in this problem happened before the intro-
duction of tropical geometry, but Oleg Viro’s powerful method of patchwork-
ing turns out to have a natural expression in the tropics.

Patchworking was developed by Viro in order to construct algebraic curves
of a given degree and arrangement. The procedure is largely combinatorial,
and proceeds in four steps. First, produce a tropical curve. Then, with some
constraints, erase some of its edges. What remains is still piecewise linear and
is known as a real tropical curve. The configuration of the real tropical curve
corresponds to the configuration of a real algebraic curve.

Theorem 2. Given any real tropical curve of degree d, there exists a real algebraic
curve of degree d with the same arrangement.

This is a powerful tool. While real tropical curves of a given arrangement
require some experience to construct, their construction is a purely discrete,
combinatorial process which is much simpler than the world of real algebraic
curves.
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