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1 Introduction

Any network-like structure can be thought of as a graph. Thus, graphs have
a wide variety of applications.A random walk on a graph can be thought of as
starting at a vertex and stepping across a randomly chosen edge. Applications
include modeling forest fires and there are a lot of algorithmic applications.The
physical concept of a resistance network has deep connection with random walks.
This paper explores some of these connections. Specifically, the concepts of
resistance is related to the access times. The central results of this paper came
from [1].

2 Graphs [3]

A graph G is comprised of two sets: a vertex set V (G) = {g1, . . . , gn} and an
edge set E(G). The edge set consists of two-element subsets (unordered pairs) of
the vertex set, and is usually used to represent connections between these pairs
of vertices. (In a simple graph, the only type considered in this paper, these pairs
of elements must consist of distinct elements, so no edge can connect a vertex
to itself.) This structure can be drawn in a pretty way on a piece of paper that
looks like a network. In such a visual representation, the specific positioning of
the vertices and edges does not matter; only the connections between vertices
do.

Example: The graph consisting of the vertex set {1, 2, 3, 4} and the edge set
{{1, 2}, {1, 4}, {2, 3}, {3, 4}} can be represented as a square:
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Figure 1.
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Or as a sort of hourglass.
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These represent, the same graph.
Graphs arise in many real-world applications. One simple example, often

phrased as a puzzle, is the utility graph. There are three houses in a city, each
of which needs to be connected to the gas, electric, and water utilities, the
situation can be represented with a graph, with vertices corresponding to the
three houses and the three utilities, and edges connecting every house-utility
pair, as below:

1 6 3

2 5 4

Here is another, equally valid picture of the utility graph:

Figure 2. utility graph
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The puzzle associated with the utility graph is to draw it in such a way that
none of its edges cross, but there is a theorem that says it is in fact impossible.

As with many mathematical objects, it is helpful to define functions between
graphs that preserve their fundamental structure. An isomorphism of graphs is
a bijective map between their vertex sets that preserves edge relationships, in
that two vertices are connected by an edge in the first graph if and only if their
images under the isomorphism are connected in the second.

Here is an intuitive way to think about this: given two graphs, if there is
a way to relabel the vertices of one so that the two graphs are equal, they are
isomorphic.

Example: Although these two graphs have different vertex sets, they are
nonetheless isomorphic, with an isomorphism sending 1 to B, 2 to C, 3 to D,
and 4 to A. This relabling turns the first graph into a copy of the second. Note
that there can be multiple isomorphisms between two graphs.
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34

A B

CD

In any graph, the degree of a specific vertex v, denoted d(v), is the number of
edges emanating from that vertex. For example, in the graph on the right
above, the degree of vertex A is 2, whereas that of vertex B is 3. The degree of
a vertex is preserved by isomorphisms, since the images of all vertices
connected to a vertex in the domain graph will be exactly those connected to
its image in the codomain graph.

Lemma 1. ∑
g∈V (G)

d(g) = 2m

where m is the number of edges of the graph.

Proof. In the given sum, each edge will be counted twice: once for each of the
vertices it connects. Every edge’s endpoint will add 1 to the degree of each of
these vertices, and thus add 2 to the total sum. Then the entire sum will be
twice the number of edges.

A graph H(VH , EH) is a subgraph of G(VG, EG) if VH ⊂ VG and
{u, v} ∈ EH ↔ u, v ∈ VH and {u, v} ∈ EG. Intuitively, H is a subgraph of G if
erasing edges, vertices, and all the edges corresponding to a erased vertex
results in H. For example, the square graph in figure 1 is a subgraph of the
utility graph in Figure 2.
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3 Access times

The neighbors of a vertex v, denoted N(v) are the vertices that are connected
to v by an edge. Formally, w is a neighbor of v if {w, v} ∈ E(G).
A walk on a graph is a sequence of vertices in which consecutive pairs are
neighbors. This process can be thought of as “walking” along the edges of a
graph. For example, On the square graph in figure 1, the sequence of vertices
1, 2, 3 is a walk but 1,3,2 is not.
A graph is connected if there is a single walk that visits all the vertices. The
following graph is not connected.
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From now on, all the graphs in the paper will be connected graphs.
A random walk is a walk where the next vertex in the sequence is chosen
uniformly randomly from the neighbors of the current vertex.
Later, I will consider two ways to complicate matters. First, the edges of of G
can be assigned a weight. The walk will go from u to v with probability puv
instead of probability 1

d(u)

Second, a walk can be assigned a cost : define a function f : V × V → R. Start
the cost at 0. Each time the walk goes from u to v, add f({u, v}) to the cost.
Note that f((u, v)) = f((v, u)) is not a requirement.
The access time from u to v, denoted Huv, is the expected number of steps
required to reach vertex u from vertex v.[2] This is like computing the cost of
a random walk with f((u,v))=1 for all (u, v) ∈ V × V . The commute time from
u to v, denoted κuv is the expected number of steps in a random walk starting
at u, passing through v, and then returning back to u. Thus κuv = Huv +Hvu.
Similarly, Huvf will denote the expected cost of a random walk relative to cost
function f, and the commute cost will be defined κuvf = Huvf +Hvuf .
Setting f ≡ 1, Huvf = Huv.

Example Here is a triangle graph:

A B

C
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I will find the access time from A to B. Different access times in the same
graph can be related to each other.From vertex A, the probability of stepping
directly to vertex B is 1

2 and this takes 1 step. However, there is also a
probability of 1

2 of stepping to vertex C. From vertex C, the expected amount
of time to reach B is HCB . Hence, we reach B in 1 step with probability 1

2 and
in 1 +HBC steps with probability frac12. Thus, from these considerations we
get the equation

HAB =
1

2
∗ 1 +

1

2
(1 +HCB)

Intuitively, because this graph is very symmetrical, HAB should be the same
as any other access time. Formally speaking, the graph is symmetrical because
every mapping from V onto V produces an automorphism of the graph. For
example, defining f : V → V by A→ B,B → C, and C → A is an
automorphism. Because automorphisms “relabel” the vertices of the graph,
HAB = Hf(A)f(B) = HBC . By looking at other automorphisms, one can show
that all the access times in this graph are the same. Making this substitution,
we get the equation

HAB =
1

2
∗ 1 +

1

2
(1 +HAB)

Solving this equation results in HAB = 2
The equation I used to express the access time can be generalized to any graph.

Lemma 2. For u 6= v,

Huv = 1 +
∑

w∈N(u)

1

d(u)
∗Huw

Where we take the convention Huu = 0
This system of equations has a unique solution.

Proof. As before, this equation can be obtained by writing the Huv in terms of
the other access times in the graph.
For each w ∈ N(u),there is a 1

d(u) chance of stepping from u to w. Stepping

from u to w takes 1 step. From w,the amount of time to reach v is Hwv. Thus,
there is a 1

d(u) probability of the commute time being 1 +Hwu. Thus we get

the equation

Huv =
∑

w∈N(u)

1

d(u)
∗ (Huw + 1) = 1 +

∑
w∈N(u)

1

d(u)
∗Huw

There are n(n− 1) ordered pairs {u, v} with u 6= v. Thus we have n(n− 1)
equations in n(n− 1) variables. If we include the equations Huu = 0 we get n2

equations in n2 variables.
I claim this system of equations has a unique solution. The equation under
Lemma 2 can be rewritten as

5



Huv −
∑

w∈N(u)

1

d(u)
∗Huw = 1

Using matrix notation, all these equations can be written as

AH = v

where H is a n2 long vector holding all the Huv’s, A is the coefficient matrix,
and v is the corresponding vector of zeroes and 1’s. Proving that the vector H
is unique is equivalent to proving that the only solution to AH=0 is 0. The
statement AH=0 is equivalent to the equations

Huv −
∑

w∈N(u)

1

d(u)
∗Hwu = 0

if v 6= u

Huu = 0

Let Huv be the largest access time; Huv ≥ Hxy : (x, y) ∈ V × V . If AH=0,
Huv is the average of d(u) terms. Keep in mind that it is possible that one of
these terms is zero.

Huv =
1

d(u)

∑
w∈N(u)

Hwu

If some Hwv < Huv then Hwv > Huv for some other w ∈ N(u) because Huv is
the average of these d(u) numbers.However, Hwv > Huv would contradict that
Huv is the maximum access time, so for all w ∈ N(u), Hwv ≥ Huv. Because we
also have Hwv ≤ Huv, Hwv = Huv = max(x,y)∈V xVHxy for every neighbor w
of u.
We could repeat this calculation for every element in N(u) to show that for
every vertex within two steps of u, Hwv = max(x,y)∈V xVHxy. Because our
graph is connected, we could repeat to show that for all w ∈ V ,
Hwv = max(x,y)∈V xVHxy. Because Hvv = 0, max(x,y)∈V xVHxy = 0.
Using a similar argument, we can show min(x,y)∈V xVHxy = 0. Thus every
Huv is zero. Thus the coefficient matrix A is invertible, So the system of
equations AH=v has a unique solution.

Now I will generalize the situation in the previous example to a graph with n
vertices. A graph where each vertex is connected to every other vertex is
called a complete graph or a clique. It is denoted Kn The triangle graph used
in the previous example is the complete graph on 3 vertices. Here is the
complete graph on 6 vertices:
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Because complete graphs are very symmetric Huw = Hyx where u 6= w and
x 6= y are any vertices in V. This can be proven using automorphisms as in the
previous example.
Thus, using this symmetry and the equation in Lemma 2, we get

Huv = 1 +
∑

w∈N(u)

1

d(u)
∗Huw = 1 +

∑
w∈N(u)

1

n− 1
∗Huv

= 1 +
∑

w∈N(u),w 6=v

1

n− 1
∗Huv + 0 ∗ 1

n− 1
= 1 +

n− 2

n− 1
Huv

Solving this equation results in Huv = n− 1
Another illustrative example is a random walk on a path graph: if {v1 . . . vn} is
the edge set, the edge set is {{vi, vi+1} : 1 ≤ i ≤ n− 1}}. Figure 3 is the path
graph on three vertices.

Figure 3.
u w v

The access time between the two vertices on the end is Ω(n2). A lollipop graph
is complete graph on n/2 vertices attached to a path with n/2 vertices. The
access time between the end vertex of the path and a vertex in the clique is
Ω(n3)[1]. Notice that a lollipop graph on n verices can be constructed from a
path on n vertices. This example shows that adding more vertices to a graph
doesn’t necessarily decrease the access time.

4 Electrical Resistance on Graphs

Resistance networks from physics turns out to be a really useful concept in
studying random walks. In this section I will define the electrical resistance
rules we have from physics.

Resistance Define a function r : E → R. r({uv}), which I will denote ruv is
the resistance of that edge. For graphs with unweighted edges, I will use the
function r ≡ 1.
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Current The source of current will be the nodes of the graph. At each node
a function S : V → R is defined. The current emanating from a vertex will be
denoted Sv. The total current injected and removed from the nodes must sum
to zero. Physically, this implies charge can’t build up in the graph.
Now we want to define current and voltage so that they satisfy the circuit laws
from physics. Current is a function I : V × V → R and similarly voltage is a
function φ : V × V → R. I will denote I({u, v}) by Iuv and φuv analogously.
Here are the physical laws that govern resistance circuits.

Kirchhoff’s First Law
∑
w∈N(v) Iuw = Su

Ohm’s Law φuv = ruvIuv

Kirchhoff’s Second Law If v1, v2 . . . vn, v1 is a sequence of vertices starting
and ending at v1,

∑n−1
i=1 φvivi+1 + φvnv1 = 0

Note that Ohm’s law and Kirchhoff’s second law imply that Iuv = −Ivu and
φuv = −φvu.
Now the goal is to show that given functions S and r the current along each
edge can be uniquely defined. By Ohm’s law, this will also uniquely determine
the voltages. In the following analysis, I will assume Iuv = −Ivu and
φuv = −φvu. Note that this cuts the number of variables by half. For each
vertex, by Kirchhoff’s first law we have the equation

∑
w∈N(v) Iuw = Su. This

results in |V | equations.

Claim Any |V | − 1 of these equations are linearly independent.

Proof. I will denote Lu =
∑
w∈N(v) Iuw. The variable Iuw appears only in the

equations corresponding to u and w. Assume that
∑
avLv = 0 for some

constants avnot all zero. Take Lu to be one of the variables in this expression
with nonzero coefficient. Then for all w ∈ N(u), aw = av because Iuv must
cancel Ivu. We can repeat this analysis for the neighbors of u. Because the
graph is connected, this extends to the whole graph. Thus if we want∑
avLv = 0, we must use all |V | of the equations. Thus, |V | − 1 of the

equations are linearly independent.

I will get more equations via Kirchhoff’s second law. To get these equations,
build the graph inductively: at step 0 start with a spanning tree, a connected
subgraph of G that contains no cycles. Such a tree will contain |V | − 1 edges.
Define E0 as the set of edges in this subgraph.
At step n, add an edge in E − En−1 to get the next subgraph. The edge just
added to the graph is part of some cyclic subgraph; otherwise this edge would
have been part of the spanning tree in step 0. Call this cycle C(n) and the new
edge {v1n, v2n}. Let v1, v2 . . . vn, vn+1 = v1 be the vertices of the C(n) cycle.
Thus by Kirchoff’s second law we have the equation

∑n
i=1 φvivi+1

= 0. Define
En to be the edges in this current subgraph.
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The process stops once E has been exhausted. Since the initial tree had
|V | − 1 edges, there are |E| − |V |+ 1 edges added. Every additional edge
resulted in another equation, we received |E| − |V |+ 1 equations from this
process. At every step, a new equation is added to the system of equations.
Further, this new equation involves the variable corresponding to the edge just
added; φv1nv2n . This variable did not appear in any of the previous equations;
thus the equation at step k is linearly independent from the equations gotten
from steps 1 through k-1.

Claim Further, any equation obtained via Kirchhoff’s first law is
independent of the ones obtained via his second law.

Proof. This will be a proof by contradiction. If C is some cyclic subgraph and
v1, v2 . . . vn, vn+1 = v1 its vertices, then define PC =

∑n
i=1 φvivi+1

. In the first
law, all currents flow out of a vertex, while equations derived from the second
law involve a one voltage drop starting at v and another ending at v. Looking
at cycles passing through u, each involves the expression φuw1 − φuw2 where
the w’s are neighbors of u. If

∑
aiPCi = Lu then for each w ∈ N(u), the

coefficient of φuw is
∑
i:w∈Ci

ai and this coefficient must be larger than zero.If
ak is the coefficient of φuw1, −ak is the coefficient of some other neighbor of u.
Thus

∑
w∈N(u)

∑
i:w∈Ci

ai = 0. This contradicts
∑
i:w∈Ci

ai > 0. A similar
calculation shows that a linear combination of Lu’s cannot be written as a
linear combination of PCi’s.

Note that I did not necessarily assume that the PCi’s were the specific
equations I obtained when inductively constructing the graph; the Ci’s could
be any cycles. This implies also that any PC can not be written as a linear
combination involving Lu’s.
There are |V | − 1 equations from Kirchhoff’s first law and |E| − |V |+ 1 from
Kirchhoff’s second law in |E| variables. These equations are linearly
independent so the solution to them is unique. However, the |E| − |V |+ 1
equations obtained from Kirchhoff’s first law clearly do not represent every
possible cycle in the graph. However, for any cycle, PC can not be written as a
linear combination involving Lu’s. Because the set of |E| equations spans the
solution space, it follows that any PC can be written as a linear combination of
the equations for the |E| − |V |+ 1 cycles considered in the inductive
construction of the graph. Because PCi = 0 for these cycles, PC = 0 for all
other cycles.
Now the effective resistance between two vertices can be defined by Ohm’s law:
If Iuv units of current flow from u to v and no other vertices produce or absorb
current the effective resistance is defined via Ruv = φuv

Iuv
. The usual rules of

computing effective resistance can be derived from these considerations.

Resistors in sequence
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Figure 4.

Uq

R1

R2

Imagine that u and v are attached to a larger graph. Assume Sw = 0, so the
net current moving through this component of the graph is equal to IT by
Kirchoff’s law. We know φuv = φuw + φwv so RuvIT = RuwIT +RwvIT so
Ruv = Ruw +Rwv

Parallel Resistors

Figure 5.

Uq R1 R2

Once again, by Kirchoff’s first law, IT = I1 + Ie2, where I1 and I2 are the
currents flowing through the resistors 1 and 2 and IT is the total current
through the battery. Using Ohm’s law, this equation becomes
VT

RT
= V1

R1
+ V2

Redge2
. Since resistor 1 and resistor 2 together form a loop and

resistor 1 and the rest of the circuit form a loop, VT = V1 + V2. Thus
VT

RT
= VT

R + VT

R2
, which implies 1

RT
= 1

R1
+ 1

Redge2
. This law can be extended to

n resistors in parallel.

5 Electrical Resistance and Access Times[1]

We will use the laws mentioned in the previous section to find relationships
between access times and resistance.

Theorem 1. κuv = 2mRuv

Proof. For the graph G, set Iw = d(w) for v ∈ V − v and Iv = d(v)− 2m.
Define φuv to be the potential between u and v in this case. For u 6= v By
Kirchoff’s first law:

d(u) =
∑

w∈N(u)

Iwu

By Kirchoff’s second law, Ohm’s law, and that ruw = 1:∑
w∈N(u)

φuv − φuw =
∑

w∈N(u)

φuw =
∑

w∈N(u)

Iuwruw =
∑

w∈N(u)

Iuw ∗ 1 = d(u)
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Further, φvv = 0 Thus, we have the equation d(u) =
∑
w∈N(u) φuw − φwv

Simplifying, d(u) =
∑
w∈N(u) φuv − φwv = d(u)φuv −

∑
w∈N(u) φwv This is

equivalent to

φuv = 1 +
1

d(u)

∑
w∈N(u)

φwv

Notice that substituting φuv = Huv results in the equation for access times!
(Compare with Lemma 2). Thus φuv = Huv.
Now consider the reverse process. The circuit will run backwards; 2m-d(v)
units of current will come out of v and d(u) units of current will be absorbed
at all the other vertices. Since the potential between u and v in the forward
process is φuv, the potential between u and v in the reverse process is −φuv.
Equivalently, the potential between v and u in the reverse process is φuv.
Now we can superimpose these two processes. One process is 2m-d(v) units of
current coming out of v and d(u) units of current absorbed at all the other
vertices; and the second process is 2m-d(u) units of current absorbed by u and
d(v) units of current coming out of all other vertices. Superimposing these two
networks results in a graph with 2m units of current are injected into v, 2m
units of current removed from u, and at all other nodes the flow of charge
cancels out. Thus, φuv + φvu = 2mRvu

The following is another nice interpretation of the quantity Ruv. It can be
shown that in a unweighted random walk between u and v, the expected
number of times crossing every edge is the same. I will not show this
here.Since there are m edges, the expected number of times that an arbitrary
edge is crossed is 2Ruv.
The idea behind the previous proof can be generalized to looking at graphs
with non uniform resistance and costs assigned to edges.

Theorem 2. Consider a graph with nonuniform resistances on the edges. The
transition probabilities between two neighboring nodes u and v will be defined by

puv =
1/ruv∑

winN(u) 1/ruw

. Set F =
∑
{u,v}∈E

f(xy)+f(yx)
rxy

. Then the commute cost is FRuv.

Proof. First, expressing Huv in terms of other access times, there is a puw
chance that the walk will transition from u to w and this transition will incur
f(uw) cost. Thus,these considerations result in the equation
Huvf =

∑
w∈N(v) puw(Huw + f(uw)). The reasoning used to obtain these

equations is the same to Lemma 2.
Now I will denote 1∑

w∈N(u) 1/ruw
by RTu. To give this quantity a physical

interpretation, consider V-{u} and the edges between these vertices as a single
component in a circuit connected to u. The edges connecting to u are parallel
resistors in the circuit, so RTu is the effective resistance between u and the
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rest of the graph. Note that puv = RTu/ruv. This expression also has a nice
physical interpretation; puv is the proportion of the total resistance between u
and the rest of the graph contributed by ruv.
Similar to the proof of the previous theorem, inject Su =

∑
v∈N(u) f(uv)/ruv

into every vertex of the graph and remove F current from vertex v. By
Kirchhoff’s first law and Ohm’s law,
Su = Inet =

∑
w∈N(u)

φuw

ruw
=

∑
w∈N(u)

φuv−φwv
ruw

=

φuv
∑
w∈N(u) 1/ruw +

∑
w∈N(u) φwv/ruw = φuv

RTu
+
∑
w∈N(u) φwv/ruw

Multiplying this equation by RTu results in

SuRTu = φuv +
∑

w∈N(u)

RTuφwv/ruw = φuv +
∑

w∈N(u)

φwvpuw

By the definition of the value of Su at the beginning of the proof
SuRTu =

∑
w∈N(v) puwf(uw). Rearranging terms, the equation is

φuvf =
∑
w∈N(v) puw(φuw + f(uw)). Once again, substituting Huv = φuv

solves the system of equations. As before, when running this circuit
backwards, the voltage drop between v and u is Huvf . In this situation,
F − Sv current comes out of node v and Sx current is removed from every
other node x. In the forward process for Hvu, d(v) units of current are injected
into all vertices in V-{u} and F − Su units of are removed from u.
Superimposing these two processes results in F units of current emanating
from v and then being removed from u. Thus κuvf = Huvf +Hvuf = FRuv

In the above construction, the transition probabilities were defined in terms of
the resistances. It is possible to define the resistances in terms of the desired
transition probabilities, but I will not show that here.

6 Conclusion

This paper discussed access time between two vertices in a graph. The
methods and results of this paper could be extended to find specific
expressions for finding the commute times between a vertex and an edge.
To summarize, two main results were discussed in this paper. First, in an
unweighted random walk, the commute time can be written in terms of the
resistances: κuv = 2mRuv. Second, in a weighted random walk with costs
assigned to the edges the commute time between u and v is FRuv where

F =
∑
{u,v}∈E

f(xy)+f(yx)
rxy

.
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