
TOP-DOWN DECISION TREE INDUCERS

Lev Dubinets

A decision tree is a tree where each internal node specifies a test on an attribute of

the data in question and each edge between a parent and a child represents a decision or

outcome based on that test. Leaf nodes, sometimes called terminal nodes, contain classes or

labels of the data. Tests are encoded as numerical or categorical rules such as “X > 5” or “X

is ‘female’”. A decision tree can also be thought of as an apparatus that accepts as a set of

input values and follows decision rules to get to a leaf of the tree, which corresponds to an

output value. As such, a decision tree is a classifier. Decision trees are a widely used

technique in statistical learning, where they are constructed to fit an existing set of data,

and then used to predict outcomes on new data. This paper is about one of the most

common ways to grow a decision tree based on a dataset, called “Top-Down Induction” [1].

We start with 𝑁 labeled “training records” of the form (𝑿, 𝑌) where 𝑿 is a 𝑘-

dimensional vector of features describing the data we have, and 𝑌 is a label we give this

record. For example, our data may be characteristics about humans and our label may be

their shoe size, so an example dataset could look like this:

Gender Height Shoe Size

F 70 10

M 64 10.5

M 68 9

… … …
Figure 1: An example set of labeled records. In this case 𝑿 is a 2-dimensional vector of (𝑔𝑒𝑛𝑑𝑒𝑟, ℎ𝑒𝑖𝑔ℎ𝑡) and 𝑌 is 𝑠ℎ𝑜𝑒 𝑠𝑖𝑧𝑒.

Each component of 𝑿 is called an “input variable”, 𝑌 is called the “dependent

variable” or “target variable”, and each row in such a table is called a “training example”.

Although this is not necessary in decision tree learning, we will simplify our decision rules

for now by restricting them to have binary outcomes. This means that a given decision will

split the remaining dataset into exactly two portions. Suppose we have two input variables,

so that 𝑿 = (𝑋1, 𝑋2). Further, let’s assume there is an interesting value of 𝑋1 that we can

split the dataset around, and three interesting values of 𝑋2. Then, an example partitioning

of our space of (𝑋1, 𝑋2) values is depicted in the left side of Figure 2, and a decision tree

corresponding to such a partitioning is shown in the right side of the figure. Given an

unlabeled vector 𝑿 = (𝑋1, 𝑋2), we first test whether 𝑋1 > 𝑎. Then, if that turns out to be true,

we test whether 𝑋2 > 𝑑. This allows us to classify 𝑿 into the region 𝑅4 or the region 𝑅5. If we

initially had that 𝑋1 ≤ 𝑎, then we will test 𝑋2 against 𝑐 and then against 𝑏, which allows us

to further classify 𝑿 into one of the regions 𝑅1, 𝑅2, or 𝑅3.

Next, we let 𝑌 take on a single constant value for each of the regions 𝑅1, . . , 𝑅5. Let 𝑌𝑖

be the value we choose for 𝑌 for the region 𝑅𝑖, and let 𝐼𝑖(𝑿) be an indicator function that

equals 1 when 𝑿 ∈ 𝑅𝑖. This allows us to obtain a model that can predict 𝑌 based on 𝑿:

Ŷ(𝑿) = ∑ 𝑌𝑖 × 𝐼𝑖(𝑿)

5

𝑖=1

Obtaining such a model is the ultimate goal of training a decision tree. This

particular model is represented in Figure 2 as a partition of 2D space and as a decision tree.

Figure 2: On the left is a partition of a 2D space into five regions, on the right is a decision tree capable of classifying a point into
one of the five regions.

 We can also interpret this decision tree as being represented by a set of lines in the

2D plane, namely the lines drawn in the left side of Figure 2. In the higher-dimensional

case, when there are more than two input variables, a decision tree would correspond to a

set of hyperplanes that divide the space [4]. In the case that an input variable is categorical

rather than continuous, we can assign each category (such as “male” or “female”) a unique

discrete value and then split between those unique values. Each resulting region

corresponds to an output of the classifier. In practice, the result of the classification is

usually output alongside a vector of probabilities indicating the likelihood of the target

variable having each of the possible classification values.

 The most basic process of training a decision tree on a dataset involves these three

elements: the selection of attribute splits in the tree, the decision of when to stop splitting a

node and mark it terminal, and the assignment of a label to each terminal node. Some

algorithms add a fourth element, called pruning. There are many different ways of

implementing splitting criteria, stopping criteria, and pruning methods. Splitting criteria

are algorithmic rules that decide which input variable to split the dataset around next. In

the preceding example, we could have chosen to test 𝑋2 > 𝑑 at the root instead of testing

𝑋1 > 𝑎. However, this may have resulted in a more complicated decision tree. Stopping

criteria are rules that determine when to stop splitting the dataset and instead output a

classification. Stopping criteria are actually optional, but in their absence a trained tree

would have a separate region for each training record. As this is undesirable, stopping

criteria are used as a method of deciding when to stop growing the tree. Lastly, pruning

methods are ways to reduce the size and complexity of an already trained tree by combining

or removing rules that do not significantly increase classification accuracy. All three of

these things directly affect the complexity of a tree, which can be measured according to

various metrics such as tree height, tree width, and number of nodes. It is desirable to train

trees that are not overly complex, and such a preference is backed primarily by Occam’s

Razor and the fact that simpler trees require less storage. However, it has been shown that

for some measures of tree complexity, training an optimal tree is an NP-complete problem

or is otherwise computationally inefficient [2]. As a result, many decision tree training

algorithms use heuristics for splitting criteria and we consider them greedy algorithms.

 We now begin a description of several splitting criteria. In particular, we will discuss

splitting criteria that only consider the values of a single input variable. Such criteria are

called univariate splitting criteria. For a given dataset of training records D of the form

(𝑿, 𝑌), we let 𝑇𝑖 be a test on a record that considers the attribute 𝑋𝑖 and has n outcomes

𝑂1, 𝑂2, … , 𝑂𝑛. An example of such a test would be 𝑋1 > 𝑎 which has two outcomes. Many

different tests could exist for each input attribute. A given test will split the dataset D into

𝑛 different subsets 𝐷1, 𝐷2, … , 𝐷𝑛. The following is a generic tree training algorithm.

Algorithm: TrainTree

Input: D, a dataset of training records of the form (X,Y).

Output: Root node R of trained decision tree

1) Create a root node R

2) If a stopping criterion has been reached then label R with the most

common value of 𝑌 in 𝐷 and output R

3) For each input variable 𝑋𝑖 in X

a. Find the test 𝑇𝑖 whose partition 𝐷1, 𝐷2, … , 𝐷𝑛 performs best

according to the chosen splitting metric.

b. Record this test and the value of the splitting metric

4) Let 𝑇𝑖 be the best test according to the splitting metric, let 𝑉 be the

value of the splitting metric, and let 𝐷1, 𝐷2, … , 𝐷𝑛 be the partition.

5) If 𝑉 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

a. Label R with the most common value of 𝑌 in 𝐷 and output R

6) Label R with 𝑇𝑖 and make a child node 𝐶𝑖 of R for each outcome 𝑂𝑖 of 𝑇𝑖.

7) For each outcome Oi of 𝑇𝑖

a. Create a new child node 𝐶𝑖 of R, and label the edge 𝑂𝑖

b. Set С𝑖 = TrainTree(𝐷𝑖)

8) Output R

Before we consider any individual splitting criterion, we need to define the notion of an

impurity function, which is a start to understanding how well a given split organizes the

dataset.

An impurity function of a probability distribution 𝑃 is a function 𝜙: 𝑃 → ℝ that satisfies

a few constraints:

1) 𝜙 attains its maximum if and only if 𝑃 is a uniform distribution.

2) 𝜙 attains its minimum if and only if some 𝑝𝑗 = 1 for some 𝑝𝑗 ∈ 𝑃

3) 𝜙 is symmetric about the components of 𝑃

4) 𝜙(𝑃) ≥ 0 for all 𝑃

The application to decision trees arises from the fact that at each node, when

considering a split on a given attribute we have a probability distribution 𝑃 with a

component 𝑝𝑗 for each class 𝑗 of the target variable 𝑌. Hence we see that a split on an

attribute it most impure if 𝑃 is uniform, and is pure if some 𝑝𝑗 = 1, meaning all records that

past this split are definitely of class 𝑗. Once we have an impurity function, we can define an

impurity measure of a dataset D node 𝑛 as so:

If there are 𝑘 possible values 𝑦1, 𝑦2, … , 𝑦𝑘 of the target variable 𝑌, and 𝜎 is the selection

operator from relational algebra then the probability distribution of 𝑆 over the attribute 𝑌 is

𝑃𝑌(𝐷) = (
|𝜎𝑌=𝑦1

(𝐷)|

|𝐷|
,
|𝜎𝑌=𝑦2

(𝐷)|

|𝐷|
, … ,

|𝜎𝑌=𝑦𝑘
(𝐷)|

|𝐷|
)

𝜎φ(𝐷) = 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑋 ∈ 𝐷 𝑠. 𝑡. 𝑡ℎ𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝜑 ℎ𝑜𝑙𝑑𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑋

And the impurity measure of a dataset D is denoted as

𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦𝑌(𝐷) = 𝜙(𝑃𝑌(𝐷))

Lastly, we define the goodness-of-split (or change in purity) with respect to an input

variable 𝑋𝑖 that has 𝑚 possible values 𝑣1, . . 𝑣𝑚 and a dataset 𝐷 as Δ𝑖(𝑋𝑖, 𝐷)

Δ𝑖𝑌(𝑋𝑖, 𝐷) = 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦𝑌(𝐷) − ∑
|𝜎𝑋𝑖=𝑣𝑗

(𝐷)|

|𝐷|
𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦𝑌(𝜎𝑋𝑖=𝑣𝑗

(𝐷))

𝑚

𝑗=1

Impurity based splitting criteria use an impurity function 𝜙 plugged into the general

goodness-of-split equation defined above.

Information Gain

 Information gain is a splitting criterion that comes from information theory. It uses

information entropy as the impurity function. Instead of the usual definition of information

entropy as a function of a discrete random variable, we use a very similar definition of

information entropy as a function of a probability distribution. This allows us to use it as

our impurity function. Given a probability distribution 𝑃 = (𝑝1, 𝑝2, . . , 𝑝𝑛), where 𝑝𝑖 is the

probability that a point is in the subset 𝐷𝑖 of a dataset 𝐷, we define the entropy 𝐻:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) = − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑛

𝑖=1

 Plugging in 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 as our function 𝜙 gives us 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑌(𝑋𝑖, 𝐷):

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑌(𝑋𝑖, 𝐷) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑌(𝐷)) − ∑
|𝜎𝑋𝑖=𝑣𝑗

(𝐷)|

|𝐷|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑃𝑌(𝜎𝑋𝑖=𝑣𝑗

(𝐷)))

𝑚

𝑗=1

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑌(𝑋𝑖, 𝐷) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐵𝑒𝑓𝑜𝑟𝑒𝑆𝑝𝑙𝑖𝑡 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐴𝑓𝑡𝑒𝑟𝑆𝑝𝑙𝑖𝑡

 We can also define information gain as a function of conditional entropy. Suppose 𝑃

and 𝑄 are two distributions with 𝑛 and 𝑚 elements, respectively. The outcomes of the splits

on 𝑃 and 𝑄 form a table 𝑇 where the entry 𝑇𝑖𝑗 contains the number of records in the dataset

that survive both the 𝑃𝑖 split and the 𝑄𝑗 split. We let 𝑝𝑖𝑗 =
𝑇𝑖𝑗

|𝐷|
.

 Then conditional entropy is the entropy of a record surviving the split 𝑄 given that it

survived 𝑃 as follows. We restrict the 𝑄 distribution to the column of 𝑇 that contains the

result of the split on 𝑃, and then average over all possible splits on 𝑃.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑄|𝑃) = − ∑ 𝑝𝑖

𝑖

∑
𝑝𝑖𝑗

𝑝𝑖
log2 (

𝑝𝑖𝑗

𝑝𝑖
)

𝑗

= − ∑ 𝑝𝑖𝑗 log2 (
𝑝𝑖𝑗

𝑝𝑖
)

𝑖,𝑗

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃|𝑄) = − ∑ 𝑞𝑗

𝑗

∑
𝑝𝑖𝑗

𝑞𝑖
log2 (

𝑝𝑖𝑗

𝑞𝑗
)

𝑖

= − ∑ 𝑝𝑖𝑗 log2(
𝑝𝑖𝑗

𝑞𝑖
)

𝑖,𝑗

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑌(𝑋𝑖, 𝐷) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑌(𝐷)) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑌(𝐷)|𝑃𝑋𝑖
(𝐷))

 Plugging in the definition for conditional entropy into the above immediately yields

the equation for information gain presented earlier. We can now prove an interesting

property of information gain, showing that when using this splitting criterion we cannot

make negative progress in classifying data under our target attribute.

 PROPOSITION 1: Information Gain is non-negative.

 PROOF: This follows pretty easily from Jensen’s inequality since – 𝑙𝑜𝑔(𝑥) is convex.

Jensen’s inequality states that 𝜑(𝐸[𝑋]) ≤ 𝐸[𝜑(𝑋)], where 𝑋 is a random variable, 𝐸 is

the expectation, and 𝜑 is a convex function.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑄) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑄|𝑃) = − ∑ 𝑞𝑗 log2(𝑞𝑗)

𝑗

+ ∑ 𝑝𝑖𝑗 log2 (
𝑝𝑖𝑗

𝑝𝑖
)

𝑖,𝑗

 (1)

= ∑ 𝑝𝑖𝑗 log2 (
𝑝𝑖𝑗

𝑝𝑖
)

𝑖,𝑗

− ∑ log2(𝑞𝑗)(∑ 𝑝𝑖𝑗)

𝑖𝑗

 (2)

= ∑ 𝑝𝑖𝑗 log2 (
𝑝𝑖𝑗

𝑝𝑖
)

𝑖,𝑗

− ∑ pi,j log2(𝑞𝑗)

𝑖,𝑗

 (3)

= ∑ 𝑝𝑖𝑗 log2 (
𝑝𝑖𝑗

𝑝𝑖
)

𝑖,𝑗

− ∑ pi,j log2(𝑞𝑗)

𝑖,𝑗

 (4)

= ∑ 𝑝𝑖𝑗log2(
𝑝𝑖𝑗

𝑝𝑖𝑞𝑗
)

𝑖,𝑗

 (5)

= − ∑ 𝑝𝑖𝑗log2(
𝑝𝑖𝑞𝑗

𝑝𝑖𝑗
)

𝑖,𝑗

 (6)

≥ − log2(∑ 𝑝𝑖𝑗 (
𝑝𝑖𝑞𝑗

𝑝𝑖𝑗
)

𝑖,𝑗

) (𝑏𝑦 𝐽𝑒𝑛𝑠𝑒𝑛′𝑠 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦) (7)

= − log2(∑ 𝑝𝑖𝑞𝑗)

𝑖,𝑗

 (8)

= − log2(∑ 𝑝𝑖(∑ 𝑞𝑗)) (∑ 𝑝

𝑝∈𝑃

= 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑃)

𝑗𝑖

 (9)

= − log2(∑ 𝑝𝑖)

𝑖

= − log2(1) = 0 (10)

 Letting 𝑃 = 𝑃𝑋𝑖
(𝐷) and 𝑄 = 𝑃𝑌(𝐷) we get that splitting a dataset 𝐷 on an input

variable 𝑋𝑖 yields non-negative information gain with respect to a target variable 𝑌.

The result of this proof seems to say that splitting on any variable should not make

the model any worse, since information gain is non-negative. However, this is not entirely

true because over fitting may occur.

PROPOSITION 2: Information Gain is symmetric, meaning that if we switch the split

variable and target variable, we still get the same amount of information gain.

Expressed in our notation as:

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑌(𝑋, 𝐷) = 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑋(𝑌, 𝐷)

 PROOF:

In step (5) of the proof of Proposition 1 we showed that

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑄) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑄|𝑃) = ∑ 𝑝𝑖𝑗log2(
𝑝𝑖𝑗

𝑝𝑖𝑞𝑗
)

𝑖,𝑗

 (1)

Since this expression is symmetric around 𝑝𝑖 and 𝑞𝑗 it follows that

 ∑ 𝑝𝑖𝑗log2 (
𝑝𝑖𝑗

𝑝𝑖𝑞𝑗
)

𝑖,𝑗

= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃|𝑄) (2)

Letting 𝑃 = 𝑃𝑋(𝐷) and 𝑄 = 𝑃𝑌(𝐷) we immediately obtain

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑌(𝑋, 𝐷) = 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑋(𝑌, 𝐷) (3)

One issue with using information gain as a splitting criterion is that it is biased

towards tests that have many outcomes [9]. For example, suppose we are building a

decision tree on a dataset of customers, to be able to predict some form of customer behavior

in the future. If one of the input attributes is something unique to each customer, such as a

credit card number, phone number, social security number, or any other form of ID, then

the information gain for such an attribute will be very high. As a result, a test on this

attribute may be placed near the root of the tree. However, testing on such attributes will

not extend well to records outside of the training set, which in this case are new customers,

since their unique identifiers will not be an outcome of the test.

Gain Ratio

As a result, Quinlan proposes a related splitting criterion, called Gain Ratio or

Uncertainty Coefficient [9]. This serves to normalize information gain on an attribute

Xi relative how much entropy this attribute has.

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜𝑌(𝑋𝑖, 𝐷) =
𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑌(𝑋𝑖, 𝐷)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑃𝑋𝑖
(𝐷))

 We can clearly see that in the preceding example with customer data, the

denominator will be very large. Since the identifiers are unique, the denominator would be

on the order of the number of customers in the dataset, whereas the numerator is at most

the number of possible values for 𝑌. However, it must be noted that if 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑃𝑋𝑖
(𝐷)) is

very small, then this gain ratio will be large but 𝑋𝑖 may still not be the best attribute to

split on. Quinlan suggests the following procedure when using gain ratio as the criterion:

(1) Calculate information gain for all attributes, and compute the average information

gain.

(2) Calculate gain ratio for all attributes whose information gain is greater or equal to

the average information gain, and select the attribute with the largest gain ratio.

Quinlan claims that this gain ratio criterion tends to perform better than the plain

information gain criterion, creating smaller decision trees. He also notes that it may tend to

favor attributes that create unevenly sized splits where some subset 𝐷𝑖 of 𝐷 in the resulting

partition is much smaller than the other subsets.

Gini Index

 The Gini Index is another function that can be used as an impurity function. It is a

variation of the Gini Coefficient, which is used in economics to measure the dispersion of

wealth in a population [10]. It was introduced as an impurity measure for decision tree

learning by Breiman in 1984. It is given by this equation

𝐺𝑖𝑛𝑖(𝑃) = ∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑛

𝑖=1

= 1 − ∑(𝑝𝑖)2

𝑛

𝑖=1

𝑤ℎ𝑒𝑟𝑒 𝑃 = (𝑝1, … , 𝑝𝑛).

 𝐺𝑖𝑛𝑖(𝐷) will be zero if some 𝑝𝑖 = 1 and it since each 𝑝𝑖 < 1, it will be maximized if all

𝑝𝑖 are equal. Hence we see that the Gini Index is a suitable impurity function.

Remembering that in our definition of 𝑃𝑌(𝐷), 𝑝𝑖 =
|𝜎𝑌=𝑦𝑖

𝐷|

|𝐷|
, the Gini Index measures the

expected error if we randomly choose a single record and use it’s value of Y as the predictor,

which can be seen by looking at the second formulation of the Gini Index, 1 − ∑ (𝑝𝑖)2𝑛
𝑖=1 .

This can be interpreted as a difference between the norms of the vectors (1, … ,1) and 𝑃𝑦(𝐷).

Also, in the first formulation, ∑ 𝑝𝑖(1 − 𝑝𝑖)𝑛
𝑖=1 , it is simply the sum of 𝑛 variances of 𝑛

Bernoulli random variables, corresponding to each component of the probability

distribution 𝑃𝑌(𝐷). [5]

 We define the goodness-of-split due to the Gini Index similar to what we did with

information gain, by simply plugging in 𝜙(𝐷) = 𝐺𝑖𝑛𝑖𝑌(𝐷) to obtain

𝐺𝑖𝑛𝑖𝐺𝑎𝑖𝑛𝑌(𝑋𝑖, 𝐷) = 𝐺𝑖𝑛𝑖(𝑃𝑦(𝐷)) − ∑
|𝜎𝑋𝑖=𝑣𝑗

(𝐷)|

|𝐷|
𝐺𝑖𝑛𝑖 (𝑃𝑌(𝜎𝑋𝑖=𝑣𝑗

(𝐷)))

𝑚

𝑗=1

 It turns out that the Gini Index and information entropy are very related concepts.

Figure 3 shows that they graphically look similar:

Figure 3: Entropy and Gini Index graphed for two different values of J, which is the total number of classes of the target variable
[8].

 In fact, in 1967 Havrda and Charvat defined a generalization of Shannon entropy

that they called 𝛼-entropy [5].

𝐻𝛼(𝑃) =
1

1 − 𝛼
∑ 𝑝𝑖

𝛼 − 1

𝑛

𝑖

 For 𝛼 = 2, the Havdra-Charvat entropy immediately yields the Gini Index, and for

𝛼 = 1, Havdra and Charvat specifically defined 𝐻1(𝑃) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) = − ∑ 𝑝𝑖 log(𝑝𝑖)𝑛
𝑖 ,

yielding the Shannon entropy.

Misclassification Rate

 Given a probability distribution 𝑃 we define the misclassification rate to be

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑃) = 1 − max
𝑗

𝑝𝑗

𝑤ℎ𝑒𝑟𝑒 𝑃 = (𝑝1, … , 𝑝𝑛)

 Again, it is easy to see that 𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is indeed an impurity function. It is

maximized when 𝑃 is uniform and it is zero when some 𝑝𝑗 = 1. We then define

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛 by plugging in 𝜙(𝑃) = 𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑃) into the goodness-of-split

equation.

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛𝑌(𝑋𝑖, 𝐷)

= 𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑃𝑌(𝐷)) − ∑
|𝜎𝑋𝑖=𝑣𝑗

(𝐷)|

|𝐷|
𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑃𝑌(𝜎𝑋𝑖=𝑣𝑗

(𝐷)))

𝑚

𝑗=1

An interesting fact is that the Gini Index and the Misclassification Rate have the

same maximum. Given that 𝑃 has 𝑛 elements, meaning that there are 𝑛 possible values of

the target variable, the maximum Misclassification Rate is 1 −
1

𝑛
 and the maximum Gini

Index is 1 − 𝑛 ∗ (
1

𝑛
)

2
= 1 −

1

𝑛
.

Figure 4: Gini Index and Misclassification Rate plotted in the case when the target variable has 2 possible values. [4]

 Since the Gini Index and Entropy impurity functions are both differentiable, they

are preferred over the Misclassification Rate, which is not [4]. Differentiability helps with

numerical optimization techniques.

Other Splitting Criteria

 There are many other splitting criteria that one can use, and a good overview of

these is in chapter 9 of the Data Mining and Knowledge Discovery Handbook [3]. While we

have only considered univariate splitting criteria, this book has a brief description of

multivariate splitting criteria as well.

Stopping Criteria

 Stopping criteria are usually not as complicated as splitting criteria. Common

stopping criteria include:

 Tree depth exceeds a predetermined threshold

 Goodness-of-split is below a predetermined threshold

 Each terminal node has less than some predetermined number of records

Generally stopping criteria are used as a heuristic to prevent over fitting. Over

fitting is when a decision tree begins to learn noise in the dataset rather than structural

relationships present in the data. An over-fit model still performs very well in classifying

the dataset it was trained on, but would not generalize well to new data, just like the

example with credit card numbers or other unique identifiers. If we did not use stopping

criteria, the algorithm would continue growing the tree until each terminal node would

correspond to exactly one record.

Approximation Algorithms

 As mentioned, Rivest and Hyafil proved in 1976 that training an optimal decision

tree is an NP-complete problem. In their formulation of the problem, the cost of a tree is the

sum of the number of tests that must be performed to reach a terminal node for each of the

records in the dataset. It must be noted that when considering the decision tree problem, it

is no longer a machine learning task, in the sense that we only care about classifying the

existing dataset correctly, and don’t worry about performance on new data.

The decision tree problem 𝐷𝑇(𝑤) is to determine whether there exists a decision tree

that correctly classifies a given dataset with cost less than or equal to 𝑤. Also, in Hyafil’s

formulation of the problem, the tree is a binary decision tree and the distribution 𝑃𝑌(𝐷) is

uniform. Heeringa and Adler showed that obtaining a (1 + 𝜖)-approximation to the decision

tree problem is an NP-hard task [6]. They also gave a (1 + ln(N))-approximation algorithm,

where 𝑁 is the number of records in the dataset. Chakaravarthy et al. built on this analysis

to show some interesting results [6]. First, they named the aforementioned decision tree

problem 2-𝑈𝐷𝑇, where the 2 stands binary decision trees and the 𝑈 stands for uniform

distribution, and improved on Heeringa’s result, showing that a (2 − 𝜖)-approximation for

2-𝑈𝐷𝑇 is NP-hard. They then showed an 𝑂(log(𝑁))-approximation algorithm for the 2-𝐷𝑇

problem, which is the same problem but without the requirement that 𝑃𝑌(𝐷) be uniform.

Both Heeringa and Chakaravarthy extend the problem slightly to give weights to

performing each test, which means that the cost is now a weighted sum. Chakaravarthy et

al. also show a connection between Ramsey numbers and the 𝐾-𝑈𝐷𝑇 problem. Lastly, Gupta

et al. showed that the optimal decision tree problem is a special case of the adaptive

travelling salesman problem [7].

Conclusion

 We have studied a general method of growing a decision tree using a greedy

algorithm, with interesting analyses of several splitting criteria that can be used with this

algorithm. A brief discussion of approximation algorithms for the NP-complete decision tree

problem shows that decision trees play a role in the fundamentals of theoretical computer

science.

References

[1] Quinlan, J. R. "Induction of Decision Trees." Machine Learning 1.1 (1986): 81-106. Web.

[2] Hyafil, Laurent, and Ronald L. Rivest. "Constructing Optimal Binary Decision Trees Is

NP-complete." Information Processing Letters 5.1 (1976): 15-17. Web.

[3] Maimon, Oded, and Lior Rokach. Data Mining and Knowledge Discovery Handbook.

New York: Springer, 2005. Chapter 9. http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

[4] Hastie, Trevor, Robert Tibshirani, and J. H. Friedman. "9.2 Tree-Based Methods." The

Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York:

Springer, 2009. N. pag. Print.

[5] Gras, Régis, and Pascale Kuntz. "Reduction of Redundant Rules in Statistical

Implicative Analysis." Studies in Classification, Data Analysis, and Knowledge

Organization. Selected Contributions in Data Analysis and Classification (2007): 367-76.

Web.

[6] Chakaravarthy, Venkatesan T., Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi,

and Mukesh Mohania. "Decision Trees for Entity Identification." Proceedings of the

Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems - PODS '07 (2007): n. pag. Web.

[7] Gupta, Anupam, Viswanath Nagarajan, and R. Ravi. "Approximation Algorithms for

Optimal Decision Trees and Adaptive TSP Problems." Automata, Languages and

Programming Lecture Notes in Computer Science (2010): 690-701. Web.

[8] Jugal Kalita, Decision and Regression Tree Learning. Slides. Used for figure 3.

http://www.cs.uccs.edu/~jkalita/work/cs586/2013/DecisionTrees.pdf

[9] Quinlan, J. R. "Section 2.2.2." C4.5: Programs for Machine Learning. San Mateo, CA:

Morgan Kaufmann, 1993. N. pag. Print.

[10] González Abril, Luis, et al. "The similarity between the square of the coefficient of

variation and the Gini index of a general random variable." Revista de métodos

cuantitativos para la economía y la empresa 10 (2010): 5-18.

http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
http://www.cs.uccs.edu/~jkalita/work/cs586/2013/DecisionTrees.pdf

