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1 Introduction

The Lévy curve, or Lévy dragon, is a recursive fractal with some very interesting properties,
as shown in Scott Bailey, Theodore Kim, and Robert S. Strichartz’s paper “Inside the Lévy
Dragon” [1]. It was named for Paul Lévy in the early 20th century, [1, p. 689] and is still
one of the more recognizable fractals. While its construction may seem simple at first, we
will find it is more interesting and complicated than one might expect.

We will begin by constructing the curve itself and a useful approximation using triangles.
Next we will apply these to discover and investigate many of the interesting shapes found
within the Lévy curve. We will end with an overview of the similarities and di↵erences
between the Lévy curve and the closely related dragon curve, including a brief discussion of
how we might apply the ideas in Sections 2 and 3 to the dragon curve.

2 Constructing the Lévy Curve

2.1 Usual Construction

The Lévy curve is usually constructed with lines. We begin with a single straight line, and
for each successive step we replace each line with an angle of ⇡/2. [2, p. 46] The first few
steps of this are shown in Figure 2. The Lévy curve D is the curve formed when this process
is repeated infinitely, or when m ! 1. We can show that the Lévy curve has infinite length.
If we let the length of the original line segment be 1, then the length of a given segment in
the mth step is 2�m/2 and there are 2m such lines. We see that

lim
m!1

2�m/2 · 2m = lim
m!1

2m/2 = 1.

(a) m = 0 (b) m = 1 (c) m = 2 (d) m = 3

(e) m = 4 (f) m = 5 (g) m = 6 (h) m = 10

Figure 2: Usual Lévy curve construction

Later on we will be discussing the interior of D. However, a curve cannot have an interior
by the standard definition. We will let D0 be the set of all points x such that for all " > 0,
there exists an M such that the disk of radius " about x contains a point in Dm for m > M .
More intuitively, D0 is the set of points that are arbitrarily close to D. We will redefine the
interior of D as the interior of D0.
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2.2 A Convenient Approximation

Figure 3: The Lévy curve is made up of two identical but smaller curves

We will approximate the Lévy curve by taking advantage of the its self-similarity. Note
in Figure 3 that one curve D is made by combining two curves under the transformations F

1

and F
2

. Both F
1

and F
2

scale D down by 1/
p
2, and F

1

rotates D by ⇡/4 while F
2

rotates
D by �⇡/4. Symbolically we can write [1, p. 690]

D = F
1

D [ F
2

D. (1)

If we take the area of D (meaning the area of its interior) to be 1, then the areas of F
1

D
and F

1

D must each be (1/
p
2)2 = 1/2. Since 2 · 1/2 = 1, we see that the interiors of F

1

D
and F

2

D must not overlap, even though the curves obviously intersect. [1, p. 690]
Thus we can recursively generate an approximation of the Lévy curve. We will let D

0

be
some arbitrary shape. Then we will define

Dm = F
1

Dm�1

[ F
2

Dm�1

. (2)

D
0

can be any shape (see Figure 4) since as m ! 1, the size of the shape will become
very small and insignificant. However, for the purposes of this paper, we will find it useful
to use a right isosceles triangle T . The details of this are shown in Figure 5. It is important
to remember that our approximations are just that: approximations. However, by [1, pg.
692], these approximations should be accurate for length scales greater than 2�m/2.

There is another way to interpret this. We start out with T (refer to Figure 5). To get to
D

1

, instead of scaling and rotating, we can picture dividing T down the center to create two

(a) m = 2 (b) m = 4 (c) m = 8 (d) m = 18

Figure 4: Constructing Lévy curve approximations from circles
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(a) m = 0 (b) m = 1 (c) m = 2

(d) m = 3 (e) m = 4 (f) m = 5

(g) m = 6 (h) m = 7 (i) m = 20

Figure 5: Constructing Lévy curve approximations from T

smaller right triangles. Note that these are similar to T , since they have the same angles,
and are scaled down by 1/

p
2, since what was a side length is now the hypotenuse. Then

we reflect each of these triangles across their respective hypotenuses and finally arrive at
D

1

. Next we continue by performing the same process on each of the triangles in Dm to get
Dm+1

. By this method, it is easy to see that Area (Dm) = Area(T ) for all m � 0. However,
it is important to note that Area (Dm) does not necessarily equal Area(D) since Dm is only
an approximation of D.

2.3 Tesselating

The reason we chose T above is because of its ability to tesselate over R2 as seen in Figure
6. We will call this pattern G and write (g refers to a specific position in G), [1, p. 691]

[

g2G

gT = R2. (3)

Proposition 1. Dm tesselates by the process G over R2

, or [1, p. 691]
[

g2G

gDm = R2. (4)
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Figure 6: Tesselating T

Proof. We will prove this inductively using the interpretation at the end of the previous
section.

For the base case, D
0

= T , so we know it tesselates (see Figure 6).
We will assume that Dm tesselates by G, and prove that Dm+1

tesselates by G. We know
that Dm is made up of triangles similar to T , which therefore must tesselate as shown in
Figure 6. To get Dm+1

, we begin by dividing each triangle down the center (the red lines in
Figure 7). Next we would need to reflect each smaller triangle across its hypotenuse. As can
be seen in the figure, this essentially means each triangle will switch places with its neighbor
along its hypotenuse. Thus in Dm+1

, no two triangles overlap. As shown in the previous
section, the areas of Dm and Dm+1

are equal, thus Dm+1

tesselates and covers R2.

Figure 7: Proving Dm+1 tesselates. The red lines divide the triangles in Figure 6 in half.

It is di�cult to show these tesselations since the Lévy curves cross each other, but the
interactions between four curve approximations are shown in Figure 8. This arrangement
is also somtimes called Lévy’s Tapestry [2, p. 47]. Figure 21 in Appendix B contains a
tesselation of D

20

curve approximations as well.

(a) m = 0 (b) m = 4 (c) m = 8 (d) m = 14

Figure 8: Four interacting Lévy curve approximations
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3 The Interior of a Lévy Curve

3.1 Finding the Interior

Now we can use our approximations to find regions in the interior of D.

Proposition 2. The interior of a triangle T 0
in Dm is contained in D if the 15 triangles

shown in Figure 9 (including T 0
) are contained in Dm. Note that these are all the triangles

which share at least one boundary point with the center triangle. [1, p. 692]

Proof. [1, p. 692] For D, each triangle in Dm will be replaced by Lévy curves. In the
figure, the Lévy curve made from T 0 (the shaded triangle) is shown in red. Notice how it
is completely contained in the fifteen triangles (this could be shown using the method to
construct approximations at the end of Section 2.2). Also notice that it intersects T 0. If
we replace any of the other fourteen triangles with its corresponding Lévy curve, the curve
will also intersect T 0. However, if we replace any other similarly tesselated triangle with its
corresponding Lévy curve, the curve will not intersect T 0 (except possibly on the boundary).

Recall Proposition 1, so tesselations of Lévy curves cover R2. Thus, since all tesselated
Lévy curves which could intersect the interior of shaded triangle do so, the interior of central
triangle must be contained in D.

Figure 9: The fifteen triangles bordering the center shaded triangle, T 0
, with a Lévy curve made from the

shaded triangle in the background.

We will say triagles satisfying this property forDm are in (Dm)
int. We will use an example

to illustrate how this works. The first nonempty (Dm)
int is at m = 14. [1, p. 693]. Figure 10

(a) shows this region (highlighted in green and later blue, see caption). As m increases, the
region gets larger until m = 16, where it reaches its maximum size. We can compare its size
to that of m = 27 (which is reasonably close to D at this scale). We know from Proposition
2 that this region is contained in D. These images suggest that the boundary of this region
(for m � 16) is the boundary of a region in D. This leads us to the Border Algorithm.
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(a) D14 (b) D15 (c) D16

(d) D17 (e) D18 (f) D27

(g) The red border outlines the magnified portion

Figure 10: Applying Proposition 2 to a portion of Dm. The blue and green represent triangles in (Dm)

int

and the green specifically reprents those triangles not in (Dm�1)
int

.
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Figure 11: The fifteen triangles bordering the center shaded triangle (T 0
), and the three control triangles.

Border Algorithm. Let T 0
be a triangle such that T 0 ⇢ (Dm)

int

but T 0 6⇢ (Dm�1

)int. For

each side Sj of T 0
there is a control triangle T 0

j (see Figure 11) such that: [1, p. 695]

• If T 0
j 6⇢ Dm, then Sj belongs to the boundary of a figure in D.

• If T 0
j ⇢ Dm, then Sj does not belong to the boundary of a figure in D (excluding

endpoints).

Proof. [1, pp. 695-697] First we will assume T 0
j 6⇢ Dm (it does not matter whether T 0 6⇢

(Dm�1

)int). Dm+1

is depicted in Figure 12b, where only blue trianges are in Dm+1

. Thus we
can visually see that for Dm+1

, Sj will have a new triangle (or for S
3

, two new triangles)
that is both closer than T 0

j and not in Dm+1

. Since the conditions for Sj for both Dm and
Dm+1

are identical, we can infer by induction that for any disk centered on the side there
will always be an M such that the disk contains a point not in Dm when m > M . This disk
must also contain a point in Dm since it must contain a point in T 0. Thus the point is a
boundary point.

(a) Dm (b) Dm+1

Figure 12: Red triangles correspond to T 0
1, T

0
2, and T 0

3 in Dm and their correspnding triangles in Dm+1.

Blue triangles correspond to those bordering T 0
in Dm and their corresponding triangles in Dm+1. Figure

12b is made by following the process at the end of Section 2.2.
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Next we will assume T 0
j ⇢ Dm (in Figure 12 both the blue triangles and the red triangles

corresponding to Tj are in Dm and Dm+1

). We see that T 00
3

, as defined in Figure 12a, must
be in D by Proposition 2. Thus, since S

3

(excluding endpoints) is surrounded by T 0 and T 00
3

,
which are both in D, it cannot belong to the boundary of D. Note that this means as we
increase m, (Dm)

int can only “grow” along the short sides of triangles.
Finally we will assume T 0

j ⇢ Dm and look at S
1

and T
1

, and S
2

and T
2

. Since these cases
are symmetrical, we only need to look at S

1

and T
1

. This time we must go to Dm+1

. Again
we see that T 00

1

, as defined in Figure 12b, must be in D, by Proposition 2. Thus, since S
1

(excluding endpoints) is surrounded by T 0 and T 00
1

, which are both in D, it cannot belong to
the boundary of D.

3.2 Shapes in the Interior

We define a shape as the largest open connected set for a section in the interior of D and
its boundary. By generating Dm for large m, Bailey, Kim, and Strichartz were able to find
sixteen distinct shapes (not including reflections) in the Lévy curve. [1, p. 697] However,
they have not disproved the possibility of other shapes.

Figure 13: The sixteen distinct shapes found in D. [1, p.696]
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Conjecture 1. Every shape in D is similar to those seen in Figure 13. [1, p. 697]

We can observe many of these shapes in Figures 22 and 23 in Appendix B. From Figure 13
we see that there are both shapes with a finite number of sides and shapes with an infinite
number of sides. The shapes with an infinite number of sides have “legs”, which are the
pointed parts where the infinite number of sides are clustered. We can see the formation
of one such leg in Figure 14. In this figure, note that from D

24

on, each step adds on four
triangles: three on the tip of the leg, and one on the edge of the addition from the previous
step. This process will continue on, and an approximation of the leg of D can be seen in
D

33

. Furthermore, all legs will grow this way. [1, p. 697]

(a) D22 (b) D23 (c) D24

(d) D25 (e) D26 (f) D33

Figure 14: The formation of a leg. The blue and green represent triangles in (Dm)

int
and the green

specifically reprents those triangles not in (Dm�1)
int

.

The shapes depicted in Figure 13 each have anywhere from zero to four legs. There is
only one four-legged shape, which we will call a “baby dragon”. The baby dragon can also
be seen in the white space in “loops” in the Lévy curve (see Figure 1). The baby dragon
also appears to have an interesting relationship to the other shapes in D. [1, p. 697]

Conjecture 2. Every shape in D can be made by cutting the baby dragon with a finite

number of half-planes. [1, p. 697]

We can use either of these conjectures to prove that the boundary of any shape in D is
finite. We only need to prove that the boundary of a leg is finite. Say the boundary of a leg
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of a specific shape in Dm is B, and the boundary of this leg in Dm+1

is B + b. It follows
from Figure 14 that the boundary of this leg in Dm+2

is B + b + 1p
2

b, and the boundary of

this leg in Dm+n is B + b
Pn�1

0

2�n/2. Thus this leg in D will have length

B + b
1X

0

2�n/2 = B + b
1X

0

✓
1p
2

◆n

which is a convergent geometric series. There is a rigorous proof that the boundary of any
shape in D is finite (so it does not rely on conjectures) in [1, p. 699].

(a) D28 (b) D29

(c) D32 (d) D34

Figure 15: Interacting F1 (black) and F2 (red)
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3.3 Combining Two Curves

Recall from Equation (1) and Figure 3 that a Lévy curve can be broken down into two
smaller Lévy curves. It is interesting to look at how these curves interact to form shapes in
D.

Conjecture 3. If S is a shape in D, and Sint
overlaps both F

1

and F
2

(see Equation (1),

then F
1

and F
2

each contain an infinite number of shapes in S. [1, p. 701]

We can see examples of this in Figure 15. One thing to remember is due to Proposition
1, none of these infinite shapes overlap. From this figure we can see that there are multiple
ways to form a specific shape. Take for example, the baby dragon in Figure 15d. We see
that there are other smaller baby dragons in Figure 15d, but they are made up of completely
di↵erent shapes. However, Bailey, Kim, and Strichartz assert that the number of possible
ways to make a given shape is bounded since each is stemmed from a specific configuration
of triangles for some Dm. [1, p. 702] It is also interesting to look for shapes in Figure 21 in
Appendix B as di↵erent color combinations will form di↵erent shapes.

4 The Dragon Curve

Figure 16: A dragon curve

The dragon curve (as shown in Figure 16) is very similar to the Lévy curve, but has very
di↵erent properties. While its construction is usually described as the result of repeatedly
folding a strip of paper [2, p. 49], we will find it easier to think abount it by modifying
Equation 2. While F

1

is still a rotation by ⇡/4, F
2

is a rotation by 3⇡/4. If we denote these
changes with asterisks, we can write

D⇤
m = F

1

D⇤
m�1

[ F ⇤
2

D⇤
m�1

. (5)

Alternatively, we can use the method at the end of Section 2.2. Instead of reflecting both
triangles across their hypotenuses, we only reflect evey other one. The result is shown in
Figure 17. Again, this is only an approximation because the dragon curve is also originally
constructed by taking taking the limit of curves.

12



(a) m = 0 (b) m = 1 (c) m = 2

(d) m = 3 (e) m = 4 (f) m = 5

(g) m = 6 (h) m = 7 (i) m = 20

Figure 17: Constructing dragon curve approximations from T

The first thing to notice are visual di↵erences between the dragon and Lévy curves. It
is interesting that both fractals can be broken up into similar components which connect to
neighboring components at a single point. In the Lévy curve the largest such component is
the portion along the top flat edge of the curve and the rounded portion underneath. There
are copies to either side rotated by ⇡/4 and scaled down by a factor of

p
2. In the dragon

curve these components are the solid S-shaped portions. Again, we notice that the various
components are rotated by multiples of ⇡/4 and scaled by multiples of

p
2.

Next we can use Equation 5 to divide the dragon curve in half as previously done in
Figure 3. The result is shown in Figure 18. Notice that the largest of the components

Figure 18: Dividing the dragon curve in half
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described above contain both sections of F
1

D and F
2

D in the Lévy curve, and F
1

D⇤ and
F ⇤
2

D⇤ in the dragon curve. Note also that the F
1

D⇤ does not cross F ⇤
2

D⇤ in the dragon
curve, unlike their counterparts in the Lévy curve (both curves may achieve a point more
than once, but they will not cross at this point). Since F

1

D⇤ and F ⇤
2

D⇤ are also dragon
curves, we can carry this on inductively and conclude that the dragon curve does not cross
itself anywhere, unlike the Lévy curve.

However, Figure 17 is unsatisfying. We see that no two triangles in Figure 17 share a
side, so Proposition 2 cannot apply if D⇤ has an interior. However, this problem is solved if
we replace the triangles with squares, as shown in Figure 19.

(a) m = 0 (b) m = 1 (c) m = 2

(d) m = 3 (e) m = 4 (f) m = 5

(g) m = 6 (h) m = 7 (i) m = 20

Figure 19: Constructing dragon curve approximations from squares

From this we might suspect that the dragon curve tesselates similarly to the Lévy curve.
In fact, it does, as seen in Figure 20. It tesselates in the same pattern as squares (in the figure
the squares would be rotated by ⇡/4). We could logically create an analogue to Proposition
2 to find the interior of D⇤, but instead of the fifteen bordering triangles, we would use the
nine bordering squares. The interior of the dragon curve ends up being the large solid shapes
seen in Figure 16.
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Figure 20: Tesselating the dragon curve

5 Concluding Remarks

At first glance curves such as these seem somewhat interesting and pretty, but it is not until
we look a little farther that we find that there are more to them than meets the eye. With
some carefully chosen approximations, we can study the interiors of these curves and find
that they contain many interesting patterns and shapes, despite their simple construction.

This paper also only focused on two specific fractal curves. There are many other ex-
amples of fractals, from the simple (and related) Koch curve, to the complex and intricate
Mandelbrot fractal. There are fractals that look like plants, and plants that look like fractals.
We have only scratched the surface of this fascinating and beautiful area of mathematics.

A Java Code

The following is the dominant method I used to create Lévy dragons. The code uses the
DrawingPanel class made by Marty Stepp, formerly of the UW CSE department. Each
dragon begins at point (x1,y1) and ends at point (x2,y2), has degree (m above) deg, and
uses Graphics object g.

public static void levy(double x1 , double y1 , double x2 , double y2 ,

int deg , Graphics g) {

double midx = x1 + ((y2 - y1) + (x2 - x1)) / 2;

double midy = y1 + ((y2 - y1) - (x2 - x1)) / 2;

if (deg < 1) {

Polygon poly = new Polygon (); // Creates a triangle

poly.addPoint ((int) x1 ,(int) y1); // with vertices at

poly.addPoint ((int) midx ,(int) midy); // the given points
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poly.addPoint ((int) x2 ,(int) y2); //

g.fillPolygon(poly); //

} else {

levy(x1, y1, midx , midy , deg - 1, g); // Creates two new Levy

levy(midx , midy , x2, y2 , deg - 1, g); // curves on these lines

}

}

It is a recursive method, which reflects the self similarity of the curve. This means, when
the program has to draw a Lévy cuve, it breakes it up into two smaller curves of degree deg

- 1 and draws those instead. It repeats this process until deg = 0 when it draws a triangle.
I also wrote methods which called this one to tesselate Lévy curves and to zoom in on

areas of a single curve.
Another interesting thing to note is that to change from a Lévy curve to a dragon curve

one only has to change the last line of text in the code to

levy(x2, y2, midx , midy , deg - 1, g);

B Selected Images

Figure 21: Tesselations of D20. Each curve is about as wide as the figure is tall.
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Figure 22: A close up portion of D. The dark part at the upper left is the region in Figure 10.

Figure 23: A close up portion of D. The center line of the image is at the center line of the curve.
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