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Overview

Despite seeming like more of a physical science topic, the field of fluid dy-
namics is so ingrained with mathematics, that one of its outstanding questions,
“Are there solutions to the Navier-Stokes Equations, and are they unique?”
was named one of the Millennial prize problems. Thus, as is very evident, ques-
tions in fluid dynamics is as much a mathematical question as they are physical
ones. However, for many of the question in fluid dynamics it is still not known
whether solutions exist or not and despite that fact, numerical evaluation, even
with some error, are still extremely valuable information to know when engi-
neering planes, boats, and much more, or even in striving to reduce the drag on
a triathlete or cyclist to give them an advantage over their competitors. Since
this information can be so valuable, and with the advent of faster and faster
computational machinery, much research in the mathematics of fluid dynam-
ics is conducted using computer simulations to give approximate solutions to
the aforementioned equation, or like in this paper, computational solutions to
two dimensional statistical equilibrium problems. In order to solve this prob-
lem Turkington and Whitaker impose conditions on determining functions of
the system in order to derive a couple simplifying results which they later use
to prove both normal convergence for a system with specific, special, initial
condition and the weak convergence of the general initial state of the system.
After proving convergence they lay out the process for which the algorithm was
numerically implemented to both maximize entropy and calculate sheer layers.
Finally, they give specific plots that illustrated their points and expand on what
those plots mean.
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Key Terms

Statistical Equilibrium Problems-Problems, usually in statistical mechanics
and mathematical physics which often refer to systems made up of a large
number of, ideally independent, bodies which may or may not interact with
each other. The equilibrium refers to the system being in its most probable
macrostate based on the total number of microstates corresponding to that
specific macrostate.
Vorticity Dynamics-The study of the movement of regions of fluid for which
the primary competent of motion is rotation about an axis. Often the study of
the pseudo vector field

ω = 5× ~u

called the vorticity of the system in which ~u is the flow velocity.
Entropy-A measure of the multiplicity of the system, defined as

S(Ω) = kBoltz ln Ω

in which kboltz is Boltzmann’s constant, and Ω is the multiplicity, or simply the
number of microstates of a system corresponding to a given macrostate. For
example roll two ordinary dice, D1 and D2 and sum the numbers you get. For
a macrostate of D1 +D2 = 7 the multiplicity is Ω = 6 since there are 6 different
possible ways to roll two dice and have their sum be 7. For larger and larger
N, the multiplicity extraordinarily larger for the moderate values of macro state
compared to the extremes, so much so that the second law of Thermodynamics
is that Entropy tends to increase, or simply systems like to be in the state with
the highest multiplicity because it is so much more probable.
Maximum Entropy State-Given the definition of Entropy above it is evident
that the Maximum entropy states corresponds to the macrostate with the high-
est multiplicity.
Reynolds Number-Introduced by George Gabriel Stokes, the Reynolds num-
ber is a number used to predict similar flow pasterns in different fluid flow
situations.
Shear Layer-a region of flow defined by a significant velocity gradient. Two
common types include Boundary shear layers which arise from fluid passing over
a solid boundary, and Free shear layers.
Free Shear Layer-In contrast to a boundary shear layers, Free shear layers
occur without a sold object, but rather arise from structures within the fluid
flow, for example between free flow and the wake of an object, but not the object
itself.
Objective Function-It is either a loss function (to be minimized) or its nega-
tive, called a gain function (to be maximized) which associates events, or values
to a real number corresponding to the cost or reward of that event.
Constrain Function-Simply a function which defines the parameters for which
to optimize the objective function on.
Enstrophy-A potential density directly related to the Kinetic energy of the
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fluid. Defined as the integral square of the vorticity

E(ω) ≡ 1

2

∫
S

ω2dS.

A similar definition exists in terms of flow velocity.
Bifurcation-Simply a division into two parts. With respect to mathematics, it
refers to when a small change in parameters results in an evident change in the
behavior of the output.
Roll-up Phenomenon-The rolling up of a fluid as it flows past a surface, often
interpreted as turbulence, and often a low pressure zone.
Rate of Convergence-Simply characterized as the speed at which a convergent
sequence approaches its limit. Defined as

µ = lim
k→∞

|xk+1 − L|
|xk − L|

.

For 0 ≤ µ ≤ 1 the sequence is said to converge sub-linearly, and for µ > 1 we
say the sequence converges super-linearly.
Conjugate Functions-Defined as

f∗(y) = sup
x∈domf

(yT − f(x))

has the property that f∗ is closed and convex even if f is not.
Stream function-Used to find the volumetric flux through a line connecting
two points by finding the difference in the value of the Stream function between
these two points. It is defined as

ψ =

∫ P

A

(udy − v dx)

where we define u and v as follows

u = +
∂ψ

∂y
and v = −∂ψ

∂x
.

For this specific application we have

ψ(x) = Gω(x) =

∫
D

g(x, x′)ω(x′)dx′

in which G is the Green operator and g(x, x′) is the corresponding Green func-
tion.
Green Function-An integral kernel, much like the Poisson kernel, that is used
to solve differential equations of the form L[u(x)] = f(x) in which L is a linear
differential operator. The solutions are of the form

u(x) =

∫
G(x, s)f(s)ds.
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High points

Turkington and Whitaker begin with a discussion on Vorticity dynamic in
which convert the Euler equations in terms of velocity and pressure fields,

∂v

∂t
+ v · 5v +5p = 0, 5 · v = 0

into one equation in terms of vorticity ω given by

∂ω

∂t
+ v · 5ω = 0.

Finally, since the vorticity ω is related to the stream function by ω = − 4 ψ
they simply applied Green’s operator to solve the system

ψ(x) = Gω(x) =

∫
D

g(x, x′)ω(x′)dx′.

Turkington and Whitaker then outline one of the guiding principle from which
they proceed. They lay out the Maximum entropy Principle which states that
any system will tend towards it state of maximum entropy, a consequence of ba-
sic probability and thermodynamics. However, in order to answer this question
by maximizing the Entropy S(p), they acknowledge specific constraint imposed
upon the system. The two major constraints imposed on the system are that
the energy,

E(p) =
1

2

∫
D

ω̄Gω̄dx,

is constant and the enstrophy,

F (p; f) =

∫
D

dx

∫
l

f(y)p(x, dy),

is independent of the particular macrostate for which the system finds itself. In
a more symbolic and concise form, simply that

S(p)→ max subject to E(p) = E0, and F (p; f) = F0(f).

Shortly after defining and deriving terms, Turkington and Whitaker mention
that both these constraints can be derived from the initial vorticity field ω0.
Then, they begin to explain their process for maximizing the entropy based on
different somewhat simplifying implication of the constraints they imposed on
the original problem. First off, Turkington and Whitaker are able to conclude
that the mean flow in equilibrium for this problem satisfies semi-linear elliptic
equation,

−4 ψ̄ = Φ′(ψ̄ with Φ(s) = −β−1 log

∫
l

exp(−α(y)− βys)p0(dy).

In which α(y) and β are completely determined by the constraints on E(p) and
F (p; f) through an eigenvalue eigenvector problem and thus are also completely
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determined by the initial vorticity field ω0. However, the equations described
above imply that the statistical equilibrium problem can possibly have multi-
ple solutions each with bifurcating solution branches, making a direct solution
extremely difficult. However, the Maximum entropy principle as they initially
stated it admits various extensions under the constrained imposed on it, each
of which corresponds to a symmetry in the domain geometry and flow config-
uration. Now, since there are apparent symmetries there must also be corre-
sponding conserved quantities. Note though, since this paper aimed to answer
question about sheer layers, they focus on the conserved quantity associated
with those structures. Hence, they state that the x1 component of linear im-
pulse,

M =

∫
D

x2ωdx

is in fact that conserved quantity allowing for the simplifying substitution

M(ρ) = M0.

After exploring the advantages they receive by imposing the condition that
E(p) = E0 and F (p; f) = F0(f) Turkington and Whitaker then proceed to ex-
plore some of the other implications that these constraints impose on the system.
The first of which is that since they are hold E(p) constant, there is a range of
values [Emin, Emax] such that their previous approximations are feasible. They
proceed find what these values are by through simple optimization processes
than with can be applied to the entropy. For example, to find Emax they solved
the constrained maximization problem

E(ω)→ max subject to C(ω) = C0, 0 ≤ ω ≤ λ

thus giving them definitive upper and lower bounds on the Energy and En-
strophy of the system. From this, they know that the energy of the system
in its most common macrostate ρhom, and thus maximum entropy is given by
Emin < E(ρhom) < Emax. From this they outline some characteristics that
the system holds in the real world, but that may not necessarily hold in more
complex geometries.

After these comparisons the authors begin their exposition of the iterative
algorithm they use to find computational solution to the originally stated prob-
lem. Their iterative step generates the vorticity field step ωk+1 from the previous
step ωk by solving the optimization problem obtained by linearizing the energy
function, ∫

D

ωGωkdx→ max over C(ω) = C0, 0 ≤ ω ≤ λ.

Which is designed to be globally convergent, meaning that it converges for any
initial vorticity field, ω0. This can be concluded from the inequality

E(ωk+1)− E(ωk) ≥ E(ωk+1 − ωk).
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Following this exposition, the authors begin their section regarding the a nu-
merical iterative algorithm to an approximate solution of the maximum entropy
problem initially stated. They use the work of the previous section to help define
the iterative step, however for this problem, they iterate over the macrostates,
ρ in such that the total Entropy is maximized,

S(ρ)→ max subject to C(ρ) = C0, E(ρk) + 〈E′(ρk), ρ− ρk〉 ≥ E0

which we know converge whenever the initial macrostate ρ0 satisfies the condi-
tions

C(ρ0) = C0 and E(ρ0) ≥ E0.

Curiously, we also find that the solutions satisfy the Kuhn-Tucker Conditions,

S′(ρk+1) = αk+1C ′(ρk) + βk+1E′(ρk),

βk+1 ≤ 0,

βk+1[E(ρk) + 〈E′(ρk), ρk+1 − ρk〉 − E0] = 0

where αk+1, βk+1 ∈ R serve as a natural extension of the Lagrange multipli-
ers for inequality constrained problems. In addition we learn that the solution
triplet generated, (ρk+1, αk+1, βk+1), is determined completely by those con-
dition when combined with the initial constraints on the problem. Finally,
Turkington and Whitaker begin their discussion on the convergence properties
of the iterative algorithm they just defined, including a proof of convergence
of their numerical iterative algorithm, the details of which can be found in the
following section. Additionally, they found that their algorithm converged at a
linear rate to an isolated, but not unique solution. An astoundingly fast rate
of convergence in computational methods. After proving the convergence of
the algorithm, they expound upon the numerical implementation of the itera-
tive algorithm. In their numerical implementation of the iterative algorithm,
in order to reduce the computational burden, they simply ignore the inequality
constraint on β and the problem becomes a system of nonlinear equations(

∂

∂α
,
∂

∂β
,
∂

∂γ

)∫
D

s∗(αγ + βλψ̄k(x) + γλx2)dx = (C0, E0 + Ek,M0)

in which we see our invariant M0 coming into play. This equation is then solved
using a Damped Newton method with dampening factor of 2−m, where m is
taken to be the smallest nonnegative integer for which the residual is decreased
in the Euclidean norm, to ensure convergence. They also define the stopping
criterion they used to get their rate of convergence as

||ρk+1 − ρk||
||ρk||

,
||Sk+1 − Sk||
||Sk||

,
||Ek+1 − E0||
||E0||

≤ 5× 10−3.

Finally, they touch vaguely upon the typical number of iteration for the algo-
rithm’s computation of shear layers to converge, as well as the specification and
justification for the typical grid size and number of points to evaluate the model
based on rate of convergence and on accuracy of solution.
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Key Proof

Convergence of Iterative Algorithm to a Solution of Maximum En-
tropy Problem

Turkington and Whitaker first expand both the energy function and entropy
function to second order

S(ρ+ δρ) ≤ S(ρ) + 〈S′(ρ), δρ〉 − 2||δρ||2,

E(ρ+ δρ) = E(ρ) + 〈E′(ρ), δρ〉+ 2E(δρ).

Along with the initial Kuhn-Tucker condition, they derived the fact that

S(ρk+1)− S(ρk)− 2||ρk+1 − ρk||2 ≥ 〈S′(ρk+1), ρk+1 − ρk〉

〈S′(ρk+1), ρk+1 − ρk〉 = βk+1〈E′(ρk), ρk+1 − ρk〉

βk+1〈E′(ρk), ρk+1 − ρk〉 = βk+1[E0 − E(ρk)]

and hence they have that

S(ρk+1)− S(ρk)− 2||ρk+1 − ρk||2 ≥ βk+1[E0 − E(ρk)].

Now, they point out that the terms involving αk+1 vanish because C is a linear
functional, and that by the convexity of E we know that,

E(ρk) ≥ E(ρk+1) + 〈E′(ρk−1), ρk − ρk−1〉 ≥ E0.

Hence, they derived the inequality

S(ρk+1)− S(ρk) ≥ 2||ρk+1 − ρk||2 + |βk+1|[E(ρk)− E0]

which is true for all k and arbitrarily admissible ρ0. Thus, it is evident that the
entropy increases with each iteration, which in combination with the fact that
by definition, the entropy is bounded, Turkington and Whitaker conclude that
the algorithm must converge to a finite value. Now, they proceed to prove that
the limit is actually a solution to the stated problem. From the monotonicity of
S(ρk) it must be that ρk+1−ρk → 0 in L2 and hence the sequence ρk must then
also converge to a limit ρ∗. Now, since we know that ρk → ρ∗ in L2 as k →∞
it is relatively trivial to see from the previous sections that both corresponding
multipliers, αk and βk must converge to α∗ and β∗ respectively. Therefore, the
triplet (ρ∗, α∗, β∗) solves the equation for statistical equilibrium

S′(ρ∗) = α∗C ′(ρ∗) + β∗E′(ρ∗).

They then go on to show that under weakened constraints, C(ρ∗) = C0, and
E(ρ∗) ≥ E0 that

C(ρ+ εη) = C0,

E(ρk) + 〈E′(ρk), ρ+ εη − ρk〉 ≥ E(ρ∗) + 〈E′(ρ∗), ρ− ρ∗〉 − εk + ε
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and hence that

E(ρk) + 〈E′(ρk), ρ+ εη − ρk〉 ≥ E0 − εk + ε.

Therefore, by defining Σ∗ to be the set of critical points ρ∗ of the maximum
entropy problem, they have shown that by taking k →∞

distG(ρk,Σ∗) := inf
ρ∗∈Σ∗

||ρk − ρ∗|| → 0

where the G norm is defined as

||ρ2
G =

∫
D

ρGρdx.

Hence, they show that the previously defined iterative algorithm is globally
convergent to a solution of the Maximum Entropy Problem.
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