Conformal if and only if Complex Differentiable

Theorem 1. Suppose $f=u+i v$ is a complex valued function that is defined in a neighborhood of a point z_{0} and real differentiable at z_{0}. Suppose that

$$
\operatorname{det}\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]\left(z_{0}\right) \neq 0
$$

Then f is complex differentiable at z_{0} if and only if f is conformal at z_{0}
Proof. The proof is a consequence of the following lemma and the characterization of complex differentiability by the Cauchy-Riemann equations.

Lemma 1. The real matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $\operatorname{det} A \neq 0$. preserves angles and orienation if and only if $b=-c, d=a$.

Proof. If $A=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, then we can consider A to be a complex number $a+i b$. Matrix multiplication $A\left[\begin{array}{l}x \\ y\end{array}\right]$ can be interpreted as $(a+i b)(x+i y)$. If $a+i b=r e^{i t}$, this is scaling by r and rotating to the left by angle t. This multiplication preserves angles between pairs of vectors and the relative orientation.

Next suppose A preserves angles and orientation. Then $\left[\begin{array}{l}a \\ c\end{array}\right]$ and $\left[\begin{array}{l}b \\ d\end{array}\right]$ are orthogonal $a b+c d=0$. Also $\left[\begin{array}{l}a+b \\ c+d\end{array}\right]$ and $\left[\begin{array}{l}b-a \\ d-c\end{array}\right]$ are orthogonal. So $b^{2}-a^{2}+d^{2}-c^{2}=0$. By manipulating these equations we can show that $c= \pm b$ and $d=-\frac{a c}{b}=\mp a$. We have to choose $c=-b, d=a$ to preserve relative orientations (interpreted as complex numbers we want $b+i d=i(a+i c)$, rotate to the left, not right).

