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1 Introduction

Arithmetical functions, as defined by Delany [2], are the functions f(n) that
take positive integers n to complex numbers. A variety of such functions
have useful number-theoretic properties that include (but not limited to):
producing the number of positive divisors of n, the sum of positive divisors
of n, and the sum of squares and four squares.

In this paper, I will summarize the key results shown by Delany that focus
on proving facts about the group of units of a commutative ring of certain
useful arithmetical functions. To that end, this paper will include a brief in-
troduction to terminology and notation, such as basic principles of the ring of
arithmetical functions, the Dirichlet Product, multiplicative functions, and
antimultiplicative functions.

I will then proceed with an algebraic description of the group of units from
the scalars, multiplicative functions, and antimultiplicative functions. From
there, I will provide some details in which those two groups of functions can
be viewed as complementary subspaces of a rational vector space. I will then
use the Bell series of an arithmetical function f and its applications in study-
ing completely multiplicative functions, showing the linear independence of
multiplicative functions, and that there is an uncountable set of linearly in-
dependent of the product of special functions.

To conclude the paper, I will briefly discuss the Mébius function and Mobius
inversion formula and how they can be applied to Fourier series.



2 Definitions and Background Information

To begin, T will define three arithmetical functions with interesting number
theory properties:

7(n) = the number of positive divisors of n
o(n) = the sum of positive divisors of n (Also known as the Euler totient function)

¢(n) = the number of positive integers k < n such that ged(k,n) = 1.

These functions form a commutative ring with unity under pointwise addi-
tion; that is, (f + ¢)(n) = f(n) + g(n) for positive integer n. Additionally,
they satisfy unity under Dirichlet multiplication (or Dirichlet convolution),
for which Apostol[1, Chapter 2] provides a definition and proof of commuta-
tivity and associativity.

Definition 1 If f and g are two arithmetical functions, the Dirichlet Product
s defined to be the arithmetical function j where

jn) = (f*g)(n) =Y f(d)g

dn

Theorem 1 For any arithmetical functions f, g, h, we have

frxg=gxf (commutative law)
(fxg)xh=fx(gxh) (associative law).

Proof. The commutative property is evident from noting that Zd‘n f(d)g(%) =
> apn f(@)g(b). For associativity, let A = gxh and consider fxA = fx(gxh).

Then
(f*A)n) =" fla)A

ad=n

= fla) Y g(b)h(e)

ad=n be=d

= > [(a)g(0)h(o)

abc=n

If one lets B = f * g and consider B * h then (B * h)(n) produces the same
formula. Therefore fxA = Bxh, so Dirichlet multiplication is associative. [
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The Dirichlet product has a multiplicative identity given by an arithmeti-
cal function.

Definition 2

1 1 1 =1
=[] =q, U
n 0 otherwise
1s the identity function, where for all f, I« f = fxI = f
The identity function allows us to formally define an inverse for an arith-

metical function f and even give an explicit formula for it, provided certain
conditions are satisfied.

Theorem 2 Let f be an arithmetical function such that f(1) # 0. There is
a unique arithmnetical inverse {1, called the Dirichlet inverse of f, where

f*f_lzf_l*le.

Forn > 1, f! is given by

1 -1 n
Ay = ) = o My r1g
P = g 0= 7 DG
d<n
Proof. See Apostol[l, p. 30]. ]

Both the Dirichlet product and the inverse formula generalizes nicely for
a prime power, p*, k > 0, and are given by

k k—1

(F =00 = D F00H ). 1709 = 15 D F0F )7 )

In this paper, we will pay particular attention to a subset of arithmetical
functions that are multiplicative.



Definition 3 An arithmetical function f that is multiplicative has the prop-
erties f(1) =1 and f(mn) = f(m)f(n) whenever gcd(m,n) = 1. A multi-
plicative function is uniquely determined by its value on prime powers, i.e.

F@k by =11 @)
i—1

3 Group of Units and Vector Spaces

3.1 Scalars, Multiplicative Functions, and Antimulti-
plicative Functions

The goal now is to show that the group of units for the invertible arith-
metical functions f is the direct sum of three subgroups. First, consid-
er U={f:f(1)#0}, C ={cl:ceR,c#0}, and Uy = {f: f(1) =1}
Clearly, C,U; € U with CnU;, = {I}. If f € U and ¢ = f(1), then
J(eI)* (1 f) (which follows since (¢f)(n) = ¢f(n)) where ¢l € C and 1 f € Uy,
Therefore U = C @ U,.

Next, I will sketch Delany’s [2, p. 87] proof that the multiplicative subgroup
and antimultiplicative subgroup of U will complete the direct sum.

Definition 4 An antimultiplicative function f satisfies the following two
conditions

f(1) =1, f(p") =0 for p* a prime power with k > 0.

Let U,, to be the subgroup of multiplicative functions in U and take the com-
plement of U, in U; to be antimultiplicative. Denote this subgroup by Uj,.
U, is a nonempty subgroup of U; since I € Uy. Additionall, for f,g € Uy
with & > 0, we have that f * g, f~! € Uy using the properties described
in Definition 4 and the generalized formulas for the Dirichlet Product and
inverse.

Given f € Uy, define g to be a multiplicative function and let h = f * g~
For k > 0, h(p*) = I(p¥) = 0, and hence f = g h where g € U,,, and h € Uy.
Therefore, Uy = U, @ U4, and hence, U = C @ U,, ® Uy,.



3.2 Vector Space (Uy, %)

To fully describe (U;), a few more pieces of terminology must be presented.

Definition 5 A group G is called an abelian group, if for every pair of
elements a,b € G, ab = ba holds. [1, p. 129]

Definition 6 An abelien group is divisible if for each g € G and each
positive integer n, there is an v € G such that nx = g.

Definition 7 A divisible abelian group in which x is unique is considered
torsion-free. If an abelian group is a divisible torsion-free group, it can be
viewed as a vector space over the rationals.

The abelian group (U, =) is a divisible torsion-free group, which leads to
our next theorem proved in [2, p. 90].

Theorem 3 For f € Uy, and 7 € Q, let /7 denote the unique g € Uy
such that ¢™ = f™ . Defining scalar multiplication Q x U, — U, by
(q, f) — f'9 makes the group (Uy, *) a vector space over Q.

This theorem leads us to a description of the structure of U,,, and as U =
C @ U, ® Uga, the theorem also provides a description of U/U,,.

To study the linear independence of such groups of multiplicative functions,
we will examine what is known as the Bell Series of an arithmetical function
f. Before doing so, I will define several multiplicative functions as in [2].

™ (n) = Z 1, ™ (pky = Z 1

di-dm=n pk1...pkm:pk‘



4 Bell Series

Definition 8 If f is an arithmetical function and p is a prime number,
then the Bell series of f with respect to p is given by the power series

o0

LX) =>" fph)x*

k=0

Maclaurian series carry over to Bell series, and in particular several geometric
series are useful in proving linear independence:

1
ep(X):1+X+X2+...:ﬁ(Ring of formal power series)
1
Jp(X) =14 p" X +p X2+ = ———
() = 1+ X =
1

The following theorem states the property of Bell series that makes them
such a useful tool for studying multiplicative functions.

Theorem 4  Consider two arithmetical functions f and g and let h = fxg.
Then

h(p") = fp(X)gp(X)
Proof.

O
This result allows for Bell series for I, ¢, 7, ¢, A, etc. to be easily calculated by
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considering them as the product of functions with known Bell series.

If an arithemtical function f is completely multiplicative, then by definition
f(P*) = f(p)¥ and f is determined by its values on the primes. Using Bell
series, we see that f,(X) = W. From this result follows a way of calcu-
lating rational powers of completely multiplicative functions, with the proof

being provided on [2, p. 94].

Proposition 1 If f is completely multiplicative and ¢ € Q, then f9 =
G(Q)f‘ When n = pllcl .. .pfr’

o = (")

i=1

Now, we will be able to make very striking claims about the linear indepen-
dence in U,,.

5 Linear Independence

The following proposition and theorem are the primary results of [2], and
consequently, they will be presented in detail.

5.1 In the Reals

A lemma proven in [2] will be necessary to follow the results about linear
independence.

Lemmal Suppose[[;_, P,(X)™ =1, where P; are nonconstant polynomi-
als, not necessarily distinct, and the m; are integers. If some Py is relatively
prime to all the others, then my = 0.

Additionally, for T[_,(1 — C;X)™™ =1 with C; nonzero constants, if some
Cy 1s different from all the others, then my = 0.

Consider a set W € U; to be a vector space. W is linearly dependent if and
only if there exist distinct functions fi, ..., f, € W and rationals ¢y, /ldots, g,
(not all zero) such that f{* *---* f% = I. By letting N be a positive integer
such that m; = ¢;N are integers, then f{™ %---x f* = I. In U, this can



occur if and only if [[;_,(fi),(X)™ =1 for each prime.

Proposition 2 The functions {e,Ag : o, 3, € R, 5 # 0} are linearly inde-
pendent.
Proof.  Suppose f{" x---x fI"m = [ with m; being integers. Using Bell series,

we see that
T

[Tt - sy =1
i=1
for every prime p. Define C;(p) = p® f3; and consider all C;(p) = C;(p) where
1 # j. Each equation has a solution with no more than one p. Hence, there
are a finite number of solutions altogether, so therefore there is a prime such
that C;(p) are all different. By Lemma 1 then, each m; is zero. O

5.2 Now to C

The results for real-valued «, 5 is a special case, and can be extended to the
complex plane. The main difference in the two cases is that unlike on the
reals, C;(p) = C;(p) does not have at most one solution, since for o, 5 € C it
is possible for p* = ¢“ when p, ¢ are distinct primes. However, as discussed
in [2], by the fundamental theorem of arithmetic, there are most two primes
such that p® = . Using this fact, the generalized of Proposition 2 can be
proven.

Theorem 5  The functions {e,\s : o, B, € C, 5 # 0} are linearly indepen-
dent.

Proof.  For the same C; as in Proposition 2, examine C;(p) = C;(p),i # j.
This equality simplifies to p®i~% = ﬂ—] There are no solutions when o; = «;
since that would imply 87 = ; as well. As stated above, when «; # «; there
are at most two solutions. Therefore, there are at most a finite number of
solutions altogether, so there is one that makes all C;(p). By Lemma 1, all
the exponents m; are zero. ]

To conclude the paper, I will discuss a multiplicative function briefly men-
tioned by Delany, along with its applications to the Zeta function and Fourier
series.



6 Mobius Function

Definition 9 The Mdébius function u(n) is defined by:

1 ifn=1
pu(n) =< (=1)"  if nis the product of r distinct primes

0 otherwise

By using the Dirichlet product, one can find a very useful formula that allows
us to relate the Riemann Zeta function to this multiplicative function.

Theorem 6

L i p(n) ., Re(s)>1
C n=1
(n)

Proof. Consider F(s) = Y 1" <2 and G(s) = > ° gffj) where both f and ¢
are multiplicative. Then both series are absolutely convergent for Re(s) > 1

and F(s)G(s) = D0 hn—s where h is the Dirichlet product of f x gx (see [1,
228]). Take f(n) =1 and g(n) = u(n), then h(n) = I(n) and we obtain:
= u(n
oYM
n
n=1
Noting that ((s) # 0 on Re(s) > 1 completes the proof. O

This relationship between the M6bius function and the Riemann Zeta func-
tion can be used to prove, as in [3, 46], the following definition of the Mdbius
Inversion Formula.

Definition 10 Suppose that f(n) and F'(n) are two multiplicative functions
that satisfy the relationship
=>_ /()

din
Then the Mobius Inversion Formula states that f is given by
n
=Y F(dul
din

and the converse is also true.



6.1 Application to Fourier Series

It is possible to find explicit formulas for the Mobius inversions of Fourier
series [4, 4]. Consider the Fourier expansion of the real-valued function f

where the Fourier coefficients a(n) are arithmetical functions.

Definition 11 Let b be an arithmetical function and f(x) defined as above.
Then the "generalized” Dirichlet product is given by

b o f — Z Z 27rma: — Z 27rina7
m=1 n=1 m,n=1
— f: EOO: ))62m‘lm — zoo:(a % b)(l)627rila:
=1 mn=l =1

(b ® f)(z), therefore, is the Fourier series whose coefficients are given by
the Dirichlet product of @ and b. If we assume a is invertible, then we see
that (a ' ® f)(z) = €™ by the Mobius Inversion Formula. Analogous for-
mulas for sin(27z) and cos(2rx) can be found by considering the real and
imaginary components of f. The application of the Mbius inversion to Fouri-
er series has resulted in numerous applications in physics, including finding
arithmetic Fourier transforms and inverse Lattice problems.

Fourier coefficients that are completely multiplicative offer the best case in
which strong approximations of inversion formulas. Unfortunately, this is
not condition does not happen in general. A rather surprising result is that
completely multiplicative Fourier coefficients occur for (but not only) for the
Bernoulli polynomials. It is useful to consider periodic extensions of these
polynomials, however.
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Definition 12 Let x be any real number and k > 1, and let {z} = x — |z].
Then the [0, 1] periodic extensions to (R) of By(x) are given by the infinite
series

2(=1)*F1(2k)! X cos( 27mx
% . Z

By {(1)} =

2(—1)k 1(2k+ 1)! sin(2mnx)

Bop1 {(2)} = (2 )2k+1 Z n2k+1

n=1

I will conclude by stating one final theorem that defines an explicit formula
for sine and cosine in terms of the Bernoulli periodic extensions and the
Mébius function. The proof of these equalities can be found on [5, 6].

Theorem 7 For every k > and x € R,

cos(2rx) = (=1 27T Z pn B;’;I;[ n)}
sin(2rz) = (_1)k 1(27)%“ =< 11(n) Baj41 {(nz)}

22k + 1)1 2kt

The connection between the Bernoulli polynomials and the Riemann zeta
function is clear. In fact, by setting x = 0, an alternative proof of Theorem
6 can be derived fairly easily.

References

[1] Tom Apostol. Introduction to Analytic Number Theory, Springer-Verlag,
New York, 1976

[2] James E. Delany. Groups of Arithmetical Functions. Mathematics Maga-
zine, 78(2), 83-97, 2005.

[3] Karatsuba A. A. Karatsuba, and S.M. Voronin. The Riemann-Zeta Func-
tion. Walter de Gruyter, Berlin; New York, 1992

[4] Luis M. Navas, Francisco J. Ruiz, Juan L. Varona. The Mébius inversion
formula for Fourier series applied to Bernoulli and Fuler polynomials.
Journal of Appoximation Theory, 163, 22-40, 2011.

11



