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1 Introduction

Arithmetical functions, as de�ned by Delany [2], are the functions f(n) that
take positive integers n to complex numbers. A variety of such functions
have useful number-theoretic properties that include (but not limited to):
producing the number of positive divisors of n, the sum of positive divisors
of n, and the sum of squares and four squares.

In this paper, I will summarize the key results shown by Delany that focus
on proving facts about the group of units of a commutative ring of certain
useful arithmetical functions. To that end, this paper will include a brief in-
troduction to terminology and notation, such as basic principles of the ring of
arithmetical functions, the Dirichlet Product, multiplicative functions, and
antimultiplicative functions.

I will then proceed with an algebraic description of the group of units from
the scalars, multiplicative functions, and antimultiplicative functions. From
there, I will provide some details in which those two groups of functions can
be viewed as complementary subspaces of a rational vector space. I will then
use the Bell series of an arithmetical function f and its applications in study-
ing completely multiplicative functions, showing the linear independence of
multiplicative functions, and that there is an uncountable set of linearly in-
dependent of the product of special functions.

To conclude the paper, I will brie
y discuss the M�obius function and M�obius
inversion formula and how they can be applied to Fourier series.
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2 De�nitions and Background Information

To begin, I will de�ne three arithmetical functions with interesting number
theory properties:

�(n) = the number of positive divisors of n

�(n) = the sum of positive divisors of n (Also known as the Euler totient function)

�(n) = the number of positive integers k � n such that gcd(k; n) = 1:

These functions form a commutative ring with unity under pointwise addi-
tion; that is, (f + g)(n) = f(n) + g(n) for positive integer n. Additionally,
they satisfy unity under Dirichlet multiplication (or Dirichlet convolution),
for which Apostol[1, Chapter 2] provides a de�nition and proof of commuta-
tivity and associativity.

De�nition 1 If f and g are two arithmetical functions, the Dirichlet Product
is de�ned to be the arithmetical function j where

j(n) = (f � g)(n) =
X
djn

f(d)g(
n

d
)

Theorem 1 For any arithmetical functions f; g; h, we have

f � g = g � f (commutative law)

(f � g) � h = f � (g � h) (associative law):

Proof. The commutative property is evident from noting that
P

djn f(d)g(
n
d
) =P

ab=n f(a)g(b). For associativity, let A = g�h and consider f �A = f �(g�h).
Then

(f � A)(n) =
X
ad=n

f(a)A(d)

=
X
ad=n

f(a)
X
bc=d

g(b)h(c)

=
X
abc=n

f(a)g(b)h(c)

If one lets B = f � g and consider B � h then (B � h)(n) produces the same
formula. Therefore f�A = B�h, so Dirichlet multiplication is associative.

2



The Dirichlet product has a multiplicative identity given by an arithmeti-
cal function.

De�nition 2

I(n) =

�
1

n

�
=

(
1 if n = 1

0 otherwise

is the identity function, where for all f, I � f = f � I = f

The identity function allows us to formally de�ne an inverse for an arith-
metical function f and even give an explicit formula for it, provided certain
conditions are satis�ed.

Theorem 2 Let f be an arithmetical function such that f(1) 6= 0. There is
a unique arithmnetical inverse f�1, called the Dirichlet inverse of f , where

f � f�1 = f�1 � f = I:

For n > 1, f�1 is given by

f�1(1) =
1

f(1)
; f�1(n) =

�1

f(1)

X
djn
d<n

f(
n

d
)f�1(d)

Proof. See Apostol[1, p. 30].

Both the Dirichlet product and the inverse formula generalizes nicely for
a prime power, pk; k > 0, and are given by

(f � g)(pk) =
kX

i=0

f(pi)g(pk�i); f�1(pk) =
�1

f(1)

k�1X
i=0

f(pk�i)f�1(pi)

In this paper, we will pay particular attention to a subset of arithmetical
functions that are multiplicative.
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De�nition 3 An arithmetical function f that is multiplicative has the prop-
erties f(1) = 1 and f(mn) = f(m)f(n) whenever gcd(m;n) = 1. A multi-
plicative function is uniquely determined by its value on prime powers, i.e.

f(pk11 � � � pkrr ) =
rY

i=1

f(pkii )

3 Group of Units and Vector Spaces

3.1 Scalars, Multiplicative Functions, and Antimulti-

plicative Functions

The goal now is to show that the group of units for the invertible arith-
metical functions f is the direct sum of three subgroups. First, consid-
er U = ff : f(1) 6= 0g, C = fcI : c 2 <; c 6= 0g, and U1 = ff : f(1) = 1g.
Clearly, C;U1 � U with C \ U1 = fIg : If f 2 U and c = f(1), then
f(cI)�(1

c
f) (which follows since (cf)(n) = cf(n)) where cI 2 C and 1

c
f 2 U1.

Therefore U = C � U1.

Next, I will sketch Delany's [2, p. 87] proof that the multiplicative subgroup
and antimultiplicative subgroup of U will complete the direct sum.

De�nition 4 An antimultiplicative function f satis�es the following two
conditions

f(1) = 1; f(pk) = 0 for pk a prime power with k > 0:

Let Um to be the subgroup of multiplicative functions in U and take the com-
plement of Um in U1 to be antimultiplicative. Denote this subgroup by UA.
UA is a nonempty subgroup of U1 since I 2 UA: Additionall, for f; g 2 UA

with k > 0, we have that f � g; f�1 2 UA using the properties described
in De�nition 4 and the generalized formulas for the Dirichlet Product and
inverse.

Given f 2 U1, de�ne g to be a multiplicative function and let h = f � g�1.
For k > 0; h(pk) = I(pk) = 0, and hence f = g �h where g 2 Um and h 2 UA.
Therefore, U1 = Um � UA, and hence, U = C � Um � UA.
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3.2 Vector Space (U1; �)

To fully describe (U1), a few more pieces of terminology must be presented.

De�nition 5 A group G is called an abelian group, if for every pair of
elements a; b 2 G, ab = ba holds. [1, p. 129]

De�nition 6 An abelien group is divisible if for each g 2 G and each
positive integer n, there is an x 2 G such that nx = g.

De�nition 7 A divisible abelian group in which x is unique is considered
torsion-free. If an abelian group is a divisible torsion-free group, it can be
viewed as a vector space over the rationals.

The abelian group (U1; �) is a divisible torsion-free group, which leads to
our next theorem proved in [2, p. 90].

Theorem 3 For f 2 U1, and
m
n
2 Q, let f (m=n) denote the unique g 2 U1

such that g(n) = f (m). De�ning scalar multiplication Q � U1 ! U1 by
(q; f)! f (q) makes the group (U1; �) a vector space over Q.

This theorem leads us to a description of the structure of Um, and as U =
C � Um � UA, the theorem also provides a description of U=Um.

To study the linear independence of such groups of multiplicative functions,
we will examine what is known as the Bell Series of an arithmetical function
f. Before doing so, I will de�ne several multiplicative functions as in [2].

�(m)(n) =
X

d1���dm=n

1; �(m)(pk) =
X

pk1 ���pkm=pk

1

�(m)(pk) = �(�m)(pk); �(�m)(pk) = �(m)(pk)
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4 Bell Series

De�nition 8 If f is an arithmetical function and p is a prime number,
then the Bell series of f with respect to p is given by the power series

fp(X) =
1X
k=0

f(pk)Xk

Maclaurian series carry over to Bell series, and in particular several geometric
series are useful in proving linear independence:

�p(X) = 1 +X +X2 + : : : =
1

1�X
(Ring of formal power series)

(�a)p(X) = 1 + p�X + p2�X2 + : : : =
1

1� p�X

�p(X) = 1�X +X2 � : : : =
1

1 +X
(Liouville �)

The following theorem states the property of Bell series that makes them
such a useful tool for studying multiplicative functions.

Theorem 4 Consider two arithmetical functions f and g and let h = f �g:
Then

h(pn) = fp(X)gp(X)

Proof.

fp(X)gp(X) =

 
1X
i=0

f(pi)X
i

! 
1X
k=0

g(pk)X
k

!

=
1X
k=0

 
kX

i=0

f(pi)g(pk�i)

!
Xk

=
1X
k=0

(f � g)(pk)Xk = (f � g)p(X)

This result allows for Bell series for I; �; �; �; �; etc: to be easily calculated by
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considering them as the product of functions with known Bell series.
If an arithemtical function f is completely multiplicative, then by de�nition
f(pk) = f(p)k and f is determined by its values on the primes. Using Bell
series, we see that fp(X) = 1

1�f(p)X
. From this result follows a way of calcu-

lating rational powers of completely multiplicative functions, with the proof
being provided on [2, p. 94].

Proposition 1 If f is completely multiplicative and q 2 Q, then f (q) =
�(q)f . When n = pk11 � � � pkrr ,

f (q)(n) = f(n)
rY

i=1

�
q + ki � 1

ki

�

Now, we will be able to make very striking claims about the linear indepen-
dence in Um.

5 Linear Independence

The following proposition and theorem are the primary results of [2], and
consequently, they will be presented in detail.

5.1 In the Reals

A lemma proven in [2] will be necessary to follow the results about linear
independence.

Lemma 1 Suppose
Qr

i=1 Pi(X)mi = 1, where Pi are nonconstant polynomi-
als, not necessarily distinct, and the mi are integers. If some Pk is relatively
prime to all the others, then mk = 0:
Additionally, for

Qr
i=1(1� CiX)�mi = 1 with Ci nonzero constants, if some

Ck is di�erent from all the others, then mk = 0.

Consider a set W 2 U1 to be a vector space. W is linearly dependent if and
only if there exist distinct functions f1; : : : ; fr 2 W and rationals q1; =ldots; qr
(not all zero) such that f q11 � � � � � f qrr = I. By letting N be a positive integer
such that mi = qiN are integers, then fm1

1 � � � � � fmr
r = I. In Um this can
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occur if and only if
Qr

i=1(fi)p(X)mi = 1 for each prime.

Proposition 2 The functions f���� : �; �;2 R; � 6= 0g are linearly inde-
pendent.
Proof. Suppose fm1

1 �� � ��fmr
r = I with mi being integers. Using Bell series,

we see that
rY

i=1

(1� p�i�iX)�mi = 1

for every prime p. De�ne Ci(p) = p�i�i and consider all Ci(p) = Cj(p) where
i 6= j. Each equation has a solution with no more than one p. Hence, there
are a �nite number of solutions altogether, so therefore there is a prime such
that Ci(p) are all di�erent. By Lemma 1 then, each mi is zero.

5.2 Now to C

The results for real-valued �; � is a special case, and can be extended to the
complex plane. The main di�erence in the two cases is that unlike on the
reals, Ci(p) = Ci(p) does not have at most one solution, since for �; � 2 C it
is possible for p� = q� when p; q are distinct primes. However, as discussed
in [2], by the fundamental theorem of arithmetic, there are most two primes
such that p� = �. Using this fact, the generalized of Proposition 2 can be
proven.

Theorem 5 The functions f���� : �; �;2 C; � 6= 0g are linearly indepen-
dent.

Proof. For the same Ci as in Proposition 2, examine Ci(p) = Cj(p); i 6= j.

This equality simpli�es to p�i��i =
�j
�i
. There are no solutions when �i = �j

since that would imply �i = �j as well. As stated above, when �i 6= �j there
are at most two solutions. Therefore, there are at most a �nite number of
solutions altogether, so there is one that makes all Ci(p). By Lemma 1, all
the exponents mi are zero.

To conclude the paper, I will discuss a multiplicative function brie
y men-
tioned by Delany, along with its applications to the Zeta function and Fourier
series.
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6 M�obius Function

De�nition 9 The M�obius function �(n) is de�ned by:

�(n) =

8><
>:
1 if n = 1

(�1)r if n is the product of r distinct primes

0 otherwise

By using the Dirichlet product, one can �nd a very useful formula that allows
us to relate the Riemann Zeta function to this multiplicative function.

Theorem 6

1

�(s)
=

1X
n=1

�(n)

ns
; Re(s) > 1

Proof. Consider F (s) =
P1

1
f(n)
ns

and G(s) =
P1

1
g(n)
ns

where both f and g
are multiplicative. Then both series are absolutely convergent for Re(s) > 1

and F (s)G(s) =
P1

1
h(n)
ns

where h is the Dirichlet product of f � g� (see [1,
228]). Take f(n) = 1 and g(n) = �(n), then h(n) = I(n) and we obtain:

�(s)
1X
n=1

�(n)

ns
= 1

Noting that �(s) 6= 0 on Re(s) > 1 completes the proof.

This relationship between the M�obius function and the Riemann Zeta func-
tion can be used to prove, as in [3, 46], the following de�nition of the M�obius
Inversion Formula.

De�nition 10 Suppose that f(n) and F (n) are two multiplicative functions
that satisfy the relationship

F (n) =
X
djn

f(d):

Then the M�obius Inversion Formula states that f is given by

f(n) =
X
djn

F (d)�(
n

d
)

and the converse is also true.
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6.1 Application to Fourier Series

It is possible to �nd explicit formulas for the M�obius inversions of Fourier
series [4, 4]. Consider the Fourier expansion of the real-valued function f

f(x) =
1X
n=1

a(n)e2�inx

where the Fourier coe�cients a(n) are arithmetical functions.

De�nition 11 Let b be an arithmetical function and f(x) de�ned as above.
Then the "generalized" Dirichlet product is given by

(b� f)(x) =
1X

m=1

b(m)
1X
n=1

a(n)e2�inx =
1X

m;n=1

a(n)b(m)e2�inx

=
1X
l=1

(
1X

mn=l

a(n)b(n))e2�ilx =
1X
l=1

(a � b)(l)e2�ilx

(b � f)(x), therefore, is the Fourier series whose coe�cients are given by
the Dirichlet product of a and b. If we assume a is invertible, then we see
that (a�1 � f)(x) = e2�ix by the M�obius Inversion Formula. Analogous for-
mulas for sin(2�x) and cos(2�x) can be found by considering the real and
imaginary components of f . The application of the Mbius inversion to Fouri-
er series has resulted in numerous applications in physics, including �nding
arithmetic Fourier transforms and inverse Lattice problems.

Fourier coe�cients that are completely multiplicative o�er the best case in
which strong approximations of inversion formulas. Unfortunately, this is
not condition does not happen in general. A rather surprising result is that
completely multiplicative Fourier coe�cients occur for (but not only) for the
Bernoulli polynomials. It is useful to consider periodic extensions of these
polynomials, however.
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De�nition 12 Let x be any real number and k � 1, and let fxg = x�bxc.
Then the [0; 1] periodic extensions to (R) of Bk(x) are given by the in�nite
series

B2k f(x)g =
2(�1)k�1(2k)!

(2�)2k

1X
n=1

cos(2�nx)

n2k
;

B2k+1 f(x)g =
2(�1)k�1(2k + 1)!

(2�)2k+1

1X
n=1

sin(2�nx)

n2k+1
:

I will conclude by stating one �nal theorem that de�nes an explicit formula
for sine and cosine in terms of the Bernoulli periodic extensions and the
M�obius function. The proof of these equalities can be found on [5, 6].

Theorem 7 For every k � and x 2 R,

cos(2�x) =
(�1)k�1(2�)2k

2(2k)!

1X
n=1

�(n)B2k f(nx)g

n2k

sin(2�x) =
(�1)k�1(2�)2k+1

2(2k + 1)!

1X
n=1

�(n)B2k+1 f(nx)g

n2k+1

The connection between the Bernoulli polynomials and the Riemann zeta
function is clear. In fact, by setting x = 0, an alternative proof of Theorem
6 can be derived fairly easily.
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