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1 Introduction

The paper by H-W. Lenstra ” Factorizing Integers with Elliptic Curves” [3] outlines a method
for finding nontrivial factors of integers. Asymptotically it is only the third fastest integer
factorization algorithm known (beaten by the Quadratic Sieve and the General Number Field
Sieve). Despite this, it is the fastest integer factorization algorithm known whose running
time depends on the size of the smallest prime factor. In particular, although Lenstra’s
method is slightly slower than the fastest algorithms on products of two similarly sized
primes, it will run much quicker when the number in question (however large) has a small
prime factor. It is for this reason that Lenstra’s algorithm is still widely used today. In this
paper I will outline the most basic form of the algorithm. For modern implementations and
performance techniques, refer to [J.

Lenstra’s algorithm is a vast improvement on a previously known integer factorization
algorithm known as Pollard’s p — 1 method. In this paper, I will first cover the basic set
theory, number theory, and group theory required to understand Pollard’s p — 1 method.
Then will discuss fields and elliptic curves and discuss the details of Lenstra’s method.



2 Number Theory and Set Theory

Before we begin our discussion of elementary group theory, there are a couple results from
elementary set theory and number theory that we shall need. Readers familiar with equiva-
lence relations, congruence classes of integers modulo n, divisibility, and the greatest common
divisor may skip ahead to section 3. Equivalence relations are central to the definition of
projective space and finite fields modulo p which are needed for understanding Lenstra’s
algorithm.

Definition 1. A binary relation ~ on a set S is a subset of S x.S. When (a,b) € S we write
a ~b.

Definition 2. An equivalence relation ~ on a set S is a binary relation that satisfies the
following properties:

1) Foralla € S, a ~ a (~ is reflexive).

2) For all a,b € S such that a ~ b, b ~ a (~ is symmetric).

3) For all a,b,c € S such that a ~ b and b ~ ¢, a ~ ¢ (~ is transitive).

Definition 3. For an equivalence relation ~ on a set .S, an equivalence class of ~ is a subset
T C S that satisfies the following properties:

1) Forall a,b €T, a ~b.

2)Forallae Tandbe S—T, a ¢ b.

The main utility of an equivalence relation is that it provides a formal way to partition
a set and to equate different subsets of the set. This is defined and proved formally below.

Definition 4. A partition P of a set S is a collection of subsets of S that satisfies the
following properties:

1) For all a € S, there exists a T € P such that a € T.

2) Foral T, 7" € P, TNT = @.

Proposition 1. For an equivalence relation ~ on a set S, the set of equivalence classes of
~ partition S.

Proof. For any a € S, consider the set T'={b € S: a ~ b}. For any b,c € T, since we have
that a ~ b and a ~ ¢, by symmetry and transitivity we have that b ~ ¢ which shows condition
1 of T being an equivalence class. For any b € T and ¢ € T, suppose that b ~ ¢. Then since
we also have that a ~ b, by transitivity we have that a ~ ¢ which contradicts the fact that
¢ ¢ T. Then our assumption that b ~ ¢ was incorrect and b »¢ ¢ which shows condition 2
of T being an equivalence class. Thus T is an equivalence class which shows condition 1 of
the set of equivalence classes of ~ being a partition. Now let T, 7" be distinct equivalence
classes. If TNT" # & then there exists some a € T,T". If b € T then by condition 1 of the
definition of equivalence classes applied to T, a ~ b. Then by condition 2 of the definition
of equivalence classes applied to 77, b € T'. Since this argument holds for all b € T', we have
that 7" C T” and similar reasoning shows that 7 C T'. Thus, T" = T" which contradicts our
assumption that 7', 7" be distinct. Thus, our assumption that T N7T" # @& was false and we
have shown condition 2 of the set of equivalence classes of ~ being a partition. O



The central relation in elementary number theory is one the equates integers which differ
by an integer multiple of some number n. This relation is an equivalence relation.

Definition 5. For a,b € Z, we say that a|b when there exists some k € Z such that ak = b.
Definition 6. For a,b,n € Z, we say that a = b (mod n) when n|b — a.
Proposition 2. The = (mod n) relation is an equivalence relation.

Proof. Let a,b,c € Z. Note that since n0 = a — a, we have that a = a (mod n) which shows
that the relation is reflexive. Note that if @ = b (mod n) then nk = a —b. Then we also have
that n(—k) = b—a and b = a (mod n) which show that the relation is symmetric. Note that
if @ = b (mod n) and b = ¢ (mod n) then nky = a — b and nky = ¢ — b. Then adding these
equation gives that n(k; + kg) = ¢ — a and a = b (mod n) which shows that the relation is
transitive. [l

The equivalence classes produced by the = (mod n) relation partition the integers into
equivalence classes. What makes this partitioning of the integers special is that for all
a,b,n € Z the equivalence classes of a + b and ab modulo n are both completely determined
by the equivalence classes of a and b modulo n. In particular, this means that we can define
addition and multiplication on the congruence classes themselves.

Definition 7. The set of equivalence classes of = (mod n) on Z are referred to as the
congruence classes modulo n and are denoted by Z/nZ.

Proposition 3. Fora,b € Z, the congruence classes of a+b and ab modulo n are completely
determined by the congruence classes of a and b modulo n.

Proof. Write a = ¢un + r1 and b = gon + r9 where 0 < ri,ry < n — 1. Note that r,
are completely determined by the congruence classes of a and b modulo n. Then a + b =
(g1 + g2)n + (r1 4+ r2) and the congruence class of a + b is completely determined by r; + 7.
Additionally, ab = (q1gan + q172 + q2r1)n + 172 and the congruence class of ab is completely
determined by rq7s. O

Definition 8. For a,b € Z, the greatest common divisor of a and b is the largest k € Z such
that k|a and k|b and is denoted by k = (a,b).

Definition 9. For a,b € Z, we say that a and b are relatively prime when (a,b) = 1.
We will need the following facts later on (whose proof is left to the reader).
Proposition 4. For a,b,n € Z such that n|a and n|b, we also have that n|(a,b).

Proposition 5. For a,n € Z such that (a,n) = 1, there exists an b € Z such that ab =
1 (mod n) (this can be proved by Bezout’s identity).



3 Group theory and Pollard’s p — 1 method

Now that we have reviewed some elementary number theory and set theory, we can begin
to define the algebraic structures that Lenstra’s method relies on. The most basic algebraic
structure that we need is a group which is a set with one binary operation (such as the
integers with addition).

Definition 10. A group is a set GG equipped with a binary operation G x G — G which
satisfies the following properties:

1) For all a,b,c € G, (ab)c = a(bc) = abe (associativity).

2) There exists an e € G such that for all a € G, ea = ae = e (existence of an identity
element).

3) For all @ € G, there exists an a~! € G such that aa™ = a'a = e (existence of
inverses).

Note that the definition of a group does not require that elements commute. When all
elements of a group do commute, the group is called abelian (named after Niels Abel).

Definition 11. A group G is an abelian group when ab = ba for all a,b € G.

The group properties can be strengthened significantly without much additional work.
In particular, it can be easily shown that both the identity element and inverse elements are
unique.

Proposition 6. The identity element of a group is unique.

Proof. Note that if e, e’ are both identity elements then by property 2 the the definition of
a group we have that e = e/ = €. ]

Proposition 7. The inverse element for every element of a group is unique.

Proof. Note that if if b, ¢ € G are both inverses for a € G then by property 3 of the definition
of a group we have that b = be = bac = ec = c. O]

Repeated application of the group law is referred to as exponentiation and can be ex-
tended to negative exponents using inverse elements.

Definition 12. For a group G, an a € GG, and an n € Z, we define

a---a n>1
a®=<e n=>0
al-von! n<—1

This definition of exponentiation retains many of its familiar properties (the proofs of
which are left to the reader).

Proposition 8. For a group G, an a € G, and n,m € Z, a"a™ = a"™™ and (a™)™ = a™™.
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Finally, the inverse of a product of two elements can be computed from the inverses of
the two individual elements.

Proposition 9. For a group G and a,b € G, (ab)™' =b"ta™1.
Proof. Note that (ab)(b~'a™!) = abb~'a™t = aea™ = aa™' = e. O

One of the main theorems in elementary group theory is Lagrange’s theorem. Before we
can state and prove it, we must define subgroups and the order of a group.

Definition 13. H is a subgroup of G when H, G are both groups and H C G.

Definition 14. The cardinality of a group G is referred to as the order of G and is denoted
by [G|.

We are now ready to state and prove Lagrange’s theorem which states if H is a subgroup
of G then |H| divides |G|. The proof consists of partitioning G into equivalence classes of
size |H|.

Theorem 1 (Lagrange’s Theorem). If H is a subgroup of G then |H| divides |G]|.

Proof. Define the relation a ~ b when b = ah for some h € H. I claim that this is an
equivalence relation. Since e € H and a = ae, we have that a ~ a which shows that the
relation is reflexive. If @ ~ b then b = ah for some h € H. Since h™! € H and a = bh7!,
we have that b ~ a which shows that the relation is symmetric. If a ~ b and b ~ ¢, then
b = ah and ¢ = bh' for some h,h' € H. Since hh' € H and ¢ = ahh’, we have that the
relation is transitive. Thus, our relation is, in fact, an equivalence relation which partitions
G into equivalence classes (also known as left cosets). Now suppose that a is a member of
some equivalence class, S, and define the function from S to H, ¢(b) = b~'a. Also define
the function p~!(h) = ah™!. Note that

p(p ' (h)) = ¢(ah™) = (ah™")"'a = (ha™")a = h(a"'a) = he = h

and
e Hp®d) = ¢t (b 7 a) = a(bra) Tt = ala”'D) = (aa”")b = eb = b.

Then since ¢ is a bijection between S and H which shows that |S| = |H|. Then G is
partitioned into equivalence classes of size |H| which shows that |H| must divide |G]. O

Now that we have proved Lagrange’s theorem, we can start applying it to specific groups.
Definition 15. For a group GG and an element a € G,
<a> — { .. ’a_Q’ a_l’ aO, a1’ a2’ e }
is referred to as the subgroup generated by a.

The proof the (a) is a group is left the the reader.
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Definition 16. The order of an element a € (G is defined as either the smallest &£ such that

a* = e or as |(a)].

The proof that these definitions agree is also left the the reader. Then applying Lagrange’s
theorem to (a) and G gives the following result,

Corollary 1. If a € G has finite order, then al® = e.

Proof. Let k = |(a)| be the order of a. By Lagrange’s theorem, k divides |G| and |G| = nk
for some integer n. Then al® = ¢ = (ak)n =e" =e. m

Proposition 3 demonstrates that multiplication of congruence classes modulo n is well
defined. Proposition 5 demonstrates that congruence classes modulo n that are relatively
prime to n have inverses. Then we can define the group (Z/nZ)* consisting of the set of the
congruence classes modulo n that are relatively prime to n.

Definition 17. The multiplicative of integers modulo n is defined as the subset of Z/nZ
consisting of congruence classes that are relatively prime to n under multiplication modulo
n. This group is denoted by (Z/nZ)*.

Showing that (Z/nZ)* satisfies the group properties is left to the reader. Then applying
Corollary 1 to (Z/pZ)* for any prime p gives us Fermat’s little theorem.

Theorem 2 (Fermat’s Little Theorem). For any prime p and integer a not divisible by p,
a’~' =1 (mod p).

Proof. Applying Corollary 1 to (Z/pZ)* gives that a?~! =1 (mod p). ]

We are now in a position to describe Pollard’s p — 1 method [4] for integer factorization.
Suppose that we wish to factor some integer N. We pick some a relatively prime to N and
an integer k that is divisible by many small prime powers. For example, we could choose
k to be least common multiple of {1,2,--- b} for a suitable bound b. Then we compute
a® (mod N) and hope that (a* — 1, N) will be a nontrivial factor of N. Note that since
we are taking the ged of a¥ — 1 and N at the end, our computing a* (mod N) (as opposed
to simply computing a*) is unnecessary but is much faster. The reason for choosing k to
be divisible by many small prime powers is that if k& = pips---p,, then we can compute
a” (mod N) by iteratively exponentiating a to the power p; for each j (which is quick if p; is
small). Additionally, we can take the remainder modulo N after each exponentiation which
keeps the numbers that we are working with small.

The algorithm is works best when N has a prime factor p such that p — 1 is a product of
small primes. In this case, p — 1|k and a does not divide p. If we write k = (p — 1)g, then
by Fermat’s little theorem,

af = a® V1 = (") =19=1 (mod p).

Then p|a® — 1 and p|N. By Proposition 4, p|(a* — 1, N). Then (a* — 1, N) will be a factor
of N. In order for (a* — 1, N) to be a nontrivial factor of N, it cannot be 1 or N itself. It is
impossible for (a® — 1, N) to be 1 since it is divisible by p. In the case that (a* — 1, N) = N,
we have that a® — 1| N which is very unlikely and can be resolved by picking a different a.
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4 Group factorization algorithms

Pollard’s p — 1 algorithm falls under into a larger class of group factorization algorithms
with the group used in Pollard’s p — 1 algorithm is (Z/pZ)*. In such an algorithm, roughly
speaking, you wish to factor an integer N which has a prime factor p. You then take a group
G, dependant on p whose group operation can be computed efficiently without knowledge
of p. For example, in the case of Pollard’s p — 1 algorithm, we could multiply elements of
(Z/pZ)* without knowing p. Then you take some element a € G, (without knowing p), and
an integer k divisible by many small prime powers. If |G,| is a product of small primes, then
|G| will divide k. If we write k = |G,|q, by Corollary 1,

o* = al®rlt = (al6P)T = et = .

Then G, should have the property that a* = e allows you to find an integer m such that p|m
(still without knowing p). Since we also have that p|N, by the property of the ged, p|(m, N).
Then you hope that (m, N) is a nontrivial factor of N.

There are two main issues with this style of algorithm. Firstly, the group G, that you
choose needs to be very special in that you can apply the group operation efficiently without
knowing p. Additionally, G, must have that property that knowing that a* = e allows you
to compute an integer m such that p/m. Finally, the algorithm will fail if |G,| (which is
dependant on p) has a large prime factor. If |G,| has a large prime factor for all prime
factors p of N then the entire algorithm will fail. For example, if p — 1 has a large prime
factor for all prime factors p of N then Pollard’s p — 1 algorithm will fail. In this case you
would have to try a completely different factorization algorithm. For instance, you could
then try Williams’ p 4+ 1 algorithm [5] which will fail when p + 1 has a large prime factor
for all prime factors p of N. Once N gets large, however, it is quite probably that p — 1
and p + 1 always have large prime factors for all prime factors p of N. Thus, this type of
specialized algorithm will not perform well as N gets large.

This is where elliptic curve groups come in. Elliptic curve groups have all of the special
properties required for G,. For Lenstra’s elliptic curve method [3], you repeatedly run the
group factorization algorithm on different random elliptic curve (modulo p) and each time
you choose a new elliptic curve, you will get an elliptic curve group (modulo p) whose order
is quite random. Then it is likely that after some point you will happen to choose an elliptic
curve (modulo p) whose order has no large prime factors and in this case the algebraic group
factorization algorithm will be successful. Essentially, the strength of the elliptic curve
algorithm is that it provides a family of groups with a variety of orders rather than Pollard’s
p — 1 method and William’s p + 1 method which each provide only one group with a fixed
order (either p — 1 or p+1).

5 Elliptic Curve Groups

In order to define elliptic curve groups, we must first outline the definition of an elliptic
curve over a field.



Definition 18. A field is a set F' equipped with two binary operations F' x F' & F and
F x F 5 F which satisfies the following properties:
1) F equipped with addition forms an abelian group F* whose identity is denoted by 0.
2) F — {0} equipped with multiplication forms an abelian group.
3) For all a,b,c € F, (a+ b)c = ac + bc.

We will be defining our elliptic curves in the projective plane over K which essentially
consists of K along with some points ”at infinity.”

Definition 19. The projective plane over a field K is denoted by P?(K) and is defined as
the set of equivalence classes of nonzero triples (z,y, z) € K? where two triples (z,v, z) and
(a',y', 2") are equivalent when there exists a ¢ € K — {0} such that cx =2/, cy = ¢/, cz = 2.

The proof that the stated relation is an equivalence relation is left to the reader. Note
that all points of K can be expressed as (x,y,1) or as (z,y,0). The first set of points
corresponds to the usual plane K2 but the second set of points corresponds to points ”at
infinity.” Informally, for a,b € K, we would like to define E, (k) as the set of solutions to

H(z,y)=2" -y +ax+b=0

but we would like to include solutions in P?(K) rather than just in K?. Then we would like
to extend H(x,y) to a function H(z,y, z) with the following properties:

Definition 20. For a field K and a curve H(z,y) = 0 over K2, a homogenization of H(z,y)
of degree d is a curve H(z,y, z) over P*(K) with the following properties:

1) H(cz,cy,cz) = *H(x,y,z) (H(z,y,z) = 0 is determined within each equivalence
class)

2) H(x,y,1) = H(x,y) (the extension agrees with the original function on K?).

Proposition 10. For a field K and a curve H(z,y) = >, >  aia'y’ = 0 over K* has a
homogenization of degree d, H(x,y,2) =3, > a; jriyl 27 = 0.

Proof. Note that
H(cx,cy,cz) ZZ&Z] cx)(cy) (cz)d —chZawxy 277 = ¢ H(z,y, 2)

and
B = F 1 =S -

which demonstrate that H(z, vy, z) is a homogenization of H(z,y) of degree d. ]

We are now in a position to homogenize H(z,y) and define E, ,(K).



Definition 21. For a field K and a,b € K, let
Hop(z,y) =2 —y* +ar+b=0
and let the set of points of the elliptic curve, E,;, be given by
Eop(K) = {(2,y,2) € P*: Hyp(z,y,2) = 2° — y*2 + axz® + bz = 0}.

Note that the only point in E,;(K) with z = 0 is the point (0, 1,0) which is denoted by
O. Then all other points of E,,(K) are in the form (x,y,1) and E,;(K) consists of the set
of solutions to H(x,y) = 0 in K? along with one point ”at infinity.”

The definition of group law on E,; requires that any line in K? intersects F,; at exactly
3 points. This can be intuitively seen from the fact that the elliptic curve is of degree 3 but
a rigorous proof of this requires that we work in projective space and count intersections
with multiplicity. This is an immediate consequence of Bezout’s theorem from algebraically
geometry which is beyond the scope of this paper but essentially states that curves of degree
dy and dy will intersect dids times. We are now ready to define the group law geometrically.
Note that due to convention, we will denote the group operation by + and inverse elements
by —. Given points P, () € E,;(K), consider the unique line Ly through P and Q. If P = @
then we let L; be the unique tangent line which is only well defined when 4a® + 270* # 0
(it ensures that no equivalent of cusps or self-intersections exist). Thus, in what follows we
shall assume that 4a® 4 270? # 0. Then let R be the third intersection point of L; and let
Ly be the unique line through R and O. Finally, let P + () be the unique intersection point
of Ly and E, ,(K).

Proposition 11. For a field K and a,b € K, O is the identity of the group on E,;(K).

Proof. Consider the case where Q = O (the case where P = O is analogous). In this case
Ly passes through P, O, R and L, passes through R, O, P+ O. Then since lines through two
points are unique, P+ O = P. H

Proposition 12. For a field K and a,b € K, The group on E,,(K) has inverse elements.

Proof. Let O let the third intersection point of the tangent line to O. Then for a point
P e E,j(K), let —P be the third intersection point of the line through O" and P. Then if
we consider P — P, Ly passes through P,—P,O" and L, passes through O', O, P — P. Then
since lines through two points are unique, P — P = O. O]

The proof of associativity is quite involved and shall not be presented here. Thus, we
have that our group on E,;(K) is actually a group. The group law can also be described
algebraically as in [2] as follows. First, let O be the identity element (so that O + P =
P+0O =0 forall P € E,;(K)). Given nonzero P, Q) € E, ,(K), we can write P = (x1,y1, 1)
and Q = (z2,¥2,1) but in what follows we will drop the 1 (and work in K? rather than
P?(K)) for the sake of brevity brevity. Then we let P + @ = O if and only if #; = z5 and
y1 = —yo. Otherwise we let A be the slope of L; which is the line through P = (z1,y;) and



Q = (79, y2). It turns out that A = (yo — y1)/(z2 — x1) if P # Q and A\ = (32% + a)/(2y) if
P = @. Then L; be the line defined by y = A(x — 1) + y;. It turns out that the only other
solution to L, on L; is the point

R = (z3,y3) = (/\2 —x1 — T, NMx3 — 1) + 11).

Then since Lo passes through O and R = (x3,y3), Lo is the vertical line through R = (x3, y3)
and P + Q. Since the definition of E,;(K) is symmetric in y (the only occurrence of y is a
y* term), the other solution ot E,; on Ly is

P+Q = (3537 —ys) = ()\2 —T1 — T, —>\(553 - 561) - yl) = (>\2 — T — T, )\(2551 + X2 — >\2) _yl)'

The full details of why these two definitions of the group law agree is left to the reader.

6 Elliptic Curve Groups over F,

Lenstra’s Algorithm involves elliptic curves defined over the field Z/pZ.

Definition 22. For a prime p, the field of congruence classes modulo p Z/pZ forms a field
under addition and multiplication. This field is denoted by F,,.

Now for a positive integer n, even if n is not prime and Z/nZ is not a field, we can still
discuss P?(Z/nZ) provided that we remember that multiplication is not invertible. Then let
O = (0,1,0) and let V;, be the set of finite points of P?(Z/nZ) along with O.

Definition 23. We define the subset V,, C P*(Z/nZ) by
Vo ={(z,y.1): 2,y € (Z/nZ)} U{O}.

Definition 24. For a point P € V,, and a prime p|n, let P, € P?(F,) be the point obtained
by reducing the coordinates of P modulo p.

Lenstra’s algorithm requires being able to perform a type of ”pseudo-addition” on any
two points of P,Q € V, so that P, + @Q, = (P + @), in the elliptic curve group E(F,) for
all primes p|n. The precise statement of this is that given P,Q € V,,, a € Z/nZ we wish
to either find a nontrivial divisor of n or to find a P + @ € V,, such that for any p|n and
for any b € F,, such that E,,(F,) is an elliptic curve group that contains P, and (),, then
(P+Q), = P,+ Q,. We will now outline the algorithm for computing P + @ but notice the
extreme similarity between this algorithm and the for computing valid addition in E, ,(K).
First we compute dy = (x1 —x2,n) or da(y; +y2,n) efficiently using the Euclidean algorithm.
First note that if either d; or ds are not 1 or n then we have found a nontrivial divisor of n
and can stop. In the case that d; = dy = n then x1 = x5 and y; = —y» and we let P+Q = O.
If d; = 1 then z9 — 21 € (Z/nZ)* and is invertible. Then we can let A = (yo —v1) /(22 — x1).
Otherwise d; = n and dy = 1. Then y; + yo € (Z/nZ)* and is invertible. Then we can let
A= (32 +a)/(y1 + y2). Then, similar to addition in F,,(K), let

P+Q = (N =z — 29, M(221 + 25 — N°) — 1, 1).
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It is straightforward and left to the reader to show that if this procedure is successful, then
for all elliptic curve groups E,;(FF,) where p|n and b € [F,,, we have that P,+Q, = (P+Q),
in Ea,b (]Fp)

Now that we have defined addition on V,,, for integers & > 0, we can define multiplication
as kP = P+ ---+ P so that (kP), = kP, in the elliptic curve group E(F,) for all primes
pln. Remember that it’s possible (and desirable) that our multiple procedure could break
down and instead give us a non-trivial factor of n. Then we can proceed as in Pollard’s
p — 1 algorithm by choosing some k that is divisible by many small prime powers. Then we
compute kP by repeatedly multiplying P by each factor of k. It turns out that kP # O.
Now suppose that the order of E, ;(F,) is divisible by & for some prime p|n. If the algorithm
is successful then by Corollary 1, kP = O which is a contradiction. Thus, in this case, the
algorithm must break down and find a nontrivial factor of n.

When running this algorithm, many different elliptic curves are used and the initial value
of P is chosen arbitrarily for each curve. If for any elliptic curve and any p|n, the order of
E.»(F,) is a product of small primes, then the order of E,;(IF,) is divisible by k& and we will
find a nontrivial factor of n. Hasse’s theorem on elliptic curves states that for an elliptic
curve E,,(F,),

|Eap(Fp) — (p+ 1) <2¢/p.

Thus, the order of E,(IF,) varies between p+1—2,/p and p+1—2,/p which is known as the
Hasse interval. In fact, the order of E,;(FF,) for various curves is known to vary randomly.
Thus, it is quite likely that eventually the chosen curve will happen to have an order which
is the product of small primes.
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