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1 Introduction

A subset S of positive integers is said to have positive upper density if

lim sup
N→∞

|S ∩ [0, N ]|
N

> 0.

An intriguing fact, first conjectured by Erdös and Turàn [3] in 1936 and proven by
Szemerédi [12] in 1975, is that every subset S of positive integers with positive upper
density contains arbitrarily long arithmetic progressions.1 It is surprising that such
a simple condition on the density of a set of integers is enough to guarantee such
lockstep regularity. This fact can be equivalently phrased in terms of finite sets, and
doing so will turn out to be more useful.

Theorem 1.1 (Szemerédi’s theorem). Given an integer k ≥ 0 and a density 0 <
δ ≤ 1, there is an integer NSZ(k, δ) such that for every N ≥ NSZ(k, δ), every set
A ⊂ {1, ..., N} of density |A|/N ≥ δ contains an arithmetic progression of length k.

By investigating this and related questions, Erdös and Turàn originally hoped to find
a good explicit bound for NSZ(k, δ) [7]. If NSZ(k, δ) ≤ 2ckδ

−1
where ck is a constant

depending on k, this would imply the following remarkable theorem, recently proven
by Ben Green and Terence Tao in 2007 [7].

Theorem 1.2. The prime numbers contain infinitely many arithmetic progressions
of length k, for all positive integers k.

In fact, mathematicians have yet to find a bound nearly as good as NSZ(k, δ) ≤
2ckδ

−1
. Green and Tao do not need the explicit bound for their proof of arbitrarily

long arithmetic progressions in the primes, although Szemerédi’s theorem nonethe-
less plays a fundamental role.

Szemerédi’s theorem becomes non-trivial to prove when k ≥ 3. (For k = 1 or
k = 2, just take N ≥ NSZ(k, δ) = dk/δe, and observe that every subset of {1, ..., N}
of density at least δ must contain at least k elements.) Progress was first made
by Roth [9] in 1953, by proving the case where k = 3, using methods from Fourier
analysis. The general case was finally proven in 1975 by Szemerédi [13], by way
of an intricate combinatorial argument. Since then other proofs have been given.
The one which has garnered the most attention is that of Furstenberg [4] in 1977,
who famously drew upon the methods of ergodic theory to make his argument. The
ergodic theory proof has led to a greater level of interaction between the disciplines
of ergodic theory, number theory, and combinatorics, which continues to this day
[2][8]. Another proof worth mentioning is that of Gowers [6] in 1998, which extends
the Fourier analysis approach of Roth to the general case and which achieved the

best known bound so far: NSZ(k, δ) ≤ 22
δ−ck

.

1By the length of an arithmetic progression, we mean the number of terms in the sequence.
Warning: this is not a claim that S contains an infinite arithmetic progression.
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Terence Tao views Furstenberg’s ergodic theory argument as the simplest in
the sense that deep results from ergodic theory allow for a relatively short proof.
On the other hand, the argument suffers for the same reason, requiring the reader
to have a knowledge of ergodic theory to understand the proof. Tao’s quantitative
ergodic theory proof [14] of Szemerédi’s theorem takes Furstenberg’s argument as its
inspiration. However, the more abstract setting of a measure preserving probability
system is replaced by the Hilbert space L2(ZN ) of functions f : ZN → C, where ZN
denotes the cyclic group of integers in addition modulo N . As a consequence, the
arguments are more elementary, making for a proof which, with the exception of a
few basic results, is self-contained and which is accessible to a broader audience.

Tao observes in [14] that all the proofs of Szemerédi’s theorem are achieved by
establishing a kind of dichotomy between randomness and structure. He gives the
following heuristic outline for their construction.

1. Given a set A, establish some proxy for A (e.g. a set of maps defined on A).

2. Define a concept of randomness and concept of structure in the proxy for A.

3. Establish a structure theorem which splits the proxy into random and struc-
tured components.

4. Establish a type of generalized Von Neumann theorem to eliminate the ran-
dom component and a type of structured recurrence theorem to extract the
structured component.2

Among the more fascinating aspects of Tao’s quantitative ergodic theory proof is
his way of approaching steps 2 and 3, to establish a dichotomy between randomness
and structure. The notion of randomness in subsets of L2(ZN ) is quantified by
Gowers uniformity norms, first introduced in [6]. Functions lacking quasiperiodic
structure will have small Gowers uniformity norms. Structure on the other hand
is quantified by uniform almost periodicity norms. Once these norms have been
introduced, the structure theorem is proven via an intricate energy incrementation
argument.

This paper presents some of the key ideas and methods used in Tao’s quanti-
tative ergodic theory proof [14].3 Pursuing the heuristic outline above, this paper
is organized as follows: Section §2 gives a brief introduction to some of the main
concepts from Tao’s paper, including the the Hilbert space of functions L2(ZN ),
which serves as a proxy for the set of integers {1, ..., N}, and Szemerédi’s theorem
is rephrased as a finitary ergodic theory problem. Next presented are Tao’s ver-
sions of the structure theorem, generalized Von Neumann theorem, and structured

2These names come from their respective ergodic theory analogs, the Von Neumann mean ergodic
theorem and the Poincaré recurrence theorem respectively. We do not discuss these theorems in
this paper. For more information about these theorems, see [2].

3From this point forward, the results we present can be assumed to have come from [14] unless
indicated otherwise.
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recurrence theorem which form the backbone of the argument. It is shown how
they fit together to prove Szemerédi’s theorem. Section §3 formally defines Gowers
uniformity norms and uniform almost periodicity norms and explains their duel re-
lationship. Tao suggests the possibility of an alternative proof for the generalized
Von Neumann theorem, which uses properties of uniform almost periodicity norms,
and we work out the details of this proof in §4. Section §5 presents some of the
details of Tao’s energy incrementation argument for proving the structure theorem.

2 Overview of the proof

2.1 The ZN → C setting: definitions and notation for Tao’s proof

Let ZN := Z/NZ denote the cyclic group of integers modulo N . For the purposes of
proving theorem 1.1, we are interested in the subsets of ZN of density δ. However,
following the outline given in the introduction, we will not examine these sets directly
but instead via a proxy for ZN . For describing this proxy Tao draws on ideas and
notation from probability theory and ergodic theory.

Notation 2.1. If S is a finite set, and f is a (real or complex valued) function
defined on S, then the expected value of f on S is denoted in several different ways.

1

|S|
∑
x∈S

f(x) =: Ex∈Sf(x) = ESf =

∫
x∈S

f(x) =

∫
S
f.

We will also denote the indicator, or characteristic, function by

1A(x) :=

{
1 x ∈ A
0 x /∈ A

,

where 1A is defined on S and A ⊂ S.

As a general rule, the integral notation for the expected value is favored if it is
desirable to emphasize expected value as being a kind of measure4 or when it is
easier on the eyes. We now define formally the proxy to be used for ZN .

Definition 2.1 (The L2(ZN ) Hilbert space). By L2(ZN ) we denote the vector space
of functions f : ZN → C, equipped with inner product

〈f, g〉 :=

∫
ZN

fg (1)

and induced norm

||f ||L2 := 〈f, f〉1/2 =

(∫
ZN
|f |2

)1/2

. (2)

4The concept of measure generalizes ideas such as integration, probability, and other ways to
assign a size to a set. It is not needed to understand what is discussed in this paper.
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Although we will not prove it here, it is not too difficult to show that L2(ZN ) is
truly a normed vector space over the complex numbers. In fact, L2(ZN ) is even
better. We record the following properties of L2(ZN ).

1. L2(ZN ) is a vector space over C.

2. The inner product 〈·, ·〉 is linear in each argument (bilinearity) and satisfies

〈f, g〉 = 〈g, f〉 and 〈f, f〉 ≥ 0

for all f, g ∈ L2(ZN ).

3. ||f ||L2 = 0 if and only if f = 0.

4. Both the Cauchy-Schwartz and the Triangle inequalities hold

|〈f, g〉| ≤ ||f ||L2 ||g||L2 and ||f + g||L2 ≤ ||f ||L2 + ||g||L2 .

5. L2(ZN ) is complete. That is, all Cauchy sequences in L2(ZN ) converge.

6. L2(ZN ) is separable. That is, L2(ZN ) contains a subset which is countable and
dense.5.

More generally, any space equipped with norm and induced inner product that
satisfies the above six properties is known as a Hilbert space [11].

When discussing L2(ZN ), we will almost always want to take N to be prime,
and we adopt the convention that

Notation 2.2. N is a large prime number.

The purpose for this comes from the following basic fact from number theory.

Proposition 2.1. If N is prime and nonzero integer n < N , then the map m 7→
mn(modN) takes ZN bijectively to itself. [8]

This additional multiplicative structure will prove useful in at least several of the
arguments to follow.

We establish two other pieces of notation.

Notation 2.3. For each f ∈ ZN , the supremum norm will be denoted by

||f ||L∞ := sup
x∈ZN

|f(x)|

Notation 2.4. We write f = Op1,...,pm(g) if |f(x)| ≤ αg(x) for some fixed α, possibly
depending on parameters p1, ..., pm.

5For an analogue in real vector space Rn, consider the subset of rational points Qn which is
countable and dense in Rn
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Lastly we adopt the following curious notion of boundedness.

Definition 2.2 (boundedness). We say that a function f : ZN → C is bounded if
||f ||L∞ ≤ 1.

This definition of boundedness is in fact the natural one to adopt for the purpose of
interpreting sizes of functions in L2(ZN ) probabilistically (since probabilities never
exceed 1). For example, the expected value of the indicator function 1A over ZN ,
where A ⊂ ZN , is precisely the probability of picking an element of A at random
from ZN .

2.2 Rephrasing Szemerédi’s theorem as a quantitative ergodic the-
ory problem

Suppose we have a subset A ⊂ ZN and we are looking for an arithmetic progression
x, x + r, ..., x + (k − 1)r ∈ A. The natural way to transfer this query to the proxy
L2(ZN ) is to look for periodic behavior in the indicator function 1A ∈ L2(ZN ). That
is, we want an x, r, and k such that 1A(x) = 1A(x+r) = · · · = 1A(x+(k−1)r) = 1.
With this motivation we define the shift map.

Definition 2.3 (Shift map). For each integer n, the shift map Tn : L2(ZN ) →
L2(ZN ), is defined by

Tn(f)(x) := f(x+ n), x ∈ ZN .

The shift map enjoys some nice properties. Two of them, which are easy to see from
its definition, are that it distributes over addition and multiplication.

Tnf + Tng = Tn(f + g), (Tnf)(Tng) = Tn(fg) for f, g ∈ L2(ZN )

Another property which the shift map has in L2(ZN ) is that it preserves expectation.
In particular,

Proposition 2.2. If f ∈ L2(ZN ), then

EZN f = EZNT
nf

for any n ∈ Z.

This result follows quickly from the observation that, under addition modulo N ,
shifting the arguments of f by n simply permutes the terms of the sum, and does
not change the expected value.

Saying that A contains an arithmetic progression of length k is the same as
saying that the product 1A(x)T r1A(x)T 2r1A(x) · · ·T (k−1)r1A(x) does not equal zero
for some x and some r. This motivates the following restatement of Szemerédi’s
theorem in terms of shift maps.
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Theorem 2.1 (Finitary ergodic theory statement of Szemerédi’s theorem). For any
integer k ≥ 1, any large prime integer N ≥ 1, any 0 < δ ≤ 1, and any non-negative
bounded function f : ZN → R+ with ∫

ZN
f ≥ δ (3)

we have

Er∈ZN
∫
ZN

k−1∏
j=0

T jrf ≥ c(k, δ) (4)

for some c(k, δ) > 0.

Proof theorem 2.1 implies theorem 1.1. Fix k, δ and let N ≥ 0 be a large integer
to be chosen later. Suppose A ⊂ {1, ..., N} such that |A| ≥ δN . By Bertrand’s
postulate6 there is a prime number N ′ ∈ [kN, 2kN ]. Define A′ to be the image of
A under the inclusion map from {1, ..., N} to ZN ′ (i.e. we have the set equality
A′ = A, but A′ is equipped with the operation of addition modulo N ′.) Observe
that

∫
ZN′

1A′ = |A′|/N ′ ≥ δ/2k. Thus, by theorem 2.1,

Er∈ZN
∫
ZN

k−1∏
j=0

T jr1A′ ≥ c(k, δ/2k) (5)

Note that the product
∏k−1
j=0 T

jr1A′(x) is equal to 1 if all the shifts x, x− r, ..., x−
(k−1)r are contained in A′ and the product is equal to 0 otherwise. Thus, expanding
the the expectation operators, we get

|{(x, r)|x, x+ r, ..., x+ (k − 1)r ∈ A′}| ≥ c(k, δ/2k)(N ′)2 ≥ c(k, δ/2k)k2N2

It is clear that the number of points of the form (x, 0) in the set on the left is exactly
|A′| (we have one point for each x ∈ A′). Thus we get the inequality

|{(x, r)|r 6= 0, and x, x+ r, ..., x+ (k − 1)r ∈ A′}| ≥ c(k, δ/2k)k2N2 − |A′|

≥ c(k, δ/2k)k2N2 −N
If we choose N > 1/c(k, δ/2k)k2, then the left hand side of the above inequality
will be positive, and we conclude that there is a progression x, x+ r, ..., x+ (k− 1)r
in A′. We are not quite done, since this is a progression in addition modulo N ′.
However, since x ∈ A′, we have 0 < x ≤ N and since x + r ∈ A′, we have −N ≤
r ≤ N . Since N ′ > kN , under ordinary integer addition the arithmetic progression
x, x + r, ..., x + (k − 1)r is contained in the {1, ..., N ′}, and by the equality of the
sets A and A′, the arithmetic progression is contained in A, as desired.

Remark 2.1. Theorem 2.1 is in fact equivalent to theorem 1.1. According to Tao,
the reverse implication can be proven easily from some work by Varnavides [15].

6For any positive integer n, there is a prime between n and 2n. (See [14])
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2.3 The dichotomy of randomness and structure

As mentioned in the introduction, finding a way to quantify appropriate notions of
randomness and structure in subsets of ZN is an important part of Tao’s quantitative
ergodic theory proof. Randomness is quantified by Gowers uniformity norms || · ||Ud ,
d ∈ Z+, first described in [6]. In particular, functions which exhibit a lack of periodic
(i.e. random) behavior will have small Gowers uniformity norms.

Structure, on the other hand, is quantified by uniform almost periodicity norms.
These norms are defined on the space of uniform almost periodic functions, Tao’s
own innovation, and act as a kind of duel to Gowers uniformity norms. As a heuristic,
Tao describes a uniform almost periodic function f : ZN → C of order k−2 as being
a function which behaves like

F (x) :=
1

J

J∑
j=1

cje
2πiPj(x)/N , (6)

where x ∈ ZN , cj ∈ C is a constant with |cj | ≤ 1, and Pj is a polynomial of order
at most k − 2 with coefficients in ZN . In keeping with Tao’s terminology, such a
function shall be referred to informally as a quasiperiodic periodic function of order
k − 2. Gowers uniform functions and uniform almost periodic functions are, in a
sense, orthogonal in L2(ZN ).

Defining formally both the Gowers uniformity norms and the uniform almost
periodicity norms takes a somewhat lengthy setup. For this reason, we postpone this
discussion and choose to first describe the three theorems which form the backbone
of Tao’s argument.7 In doing so, we will not need to understand all the properties
of the Gowers uniformity and uniform almost periodicity norms. We will however
then have better motivation for defining each norm formally in §3.

2.4 Three important subtheorems

Here we look at Tao’s proof from a birds eye point of view, describing the three
major subtheorems which together imply theorem 2.1. The first of these theorems
says that the random (i.e. Gowers uniform) error, which will arise when estimating
(4), is of negligible size.

Theorem 2.2 (Generalized Von Neumann theorem). If k ≥ 2 and λ0, ..., λk−1 are
distinct elements of ZN , then for any bounded functions f0, ..., fk−1 : ZN → C, we
have ∣∣∣∣∣∣Er∈ZN

∫
ZN

k−1∏
j=0

T λjrfj

∣∣∣∣∣∣ ≤ min
0≤j≤k−1

||fj ||Uk−1 . (7)

7This is also the same order of exposition as given by Tao in [14].
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Of the three theorems in this section, the proof of theorem 2.2 is the easiest. Tao’s
proof relies on some basic facts about Gowers uniformity norms, and he uses induc-
tion on k. Tao mentions that it is also possible to give a proof of the theorem using
certain properties of the uniform almost periodicity norms. We work out the details
of this alternative proof in §4.

Next we state theorems 2.3 and 2.4, which are in some ways complementary.
The statements of each theorem may be confusing due to the number of parameters
floating about to keep track of. For this reason we have compiled a list of the main
actors in each theorem.

1. k and δ – respectively, the length of an arithmetic progression and the density
of a subset of ZN .

2. fU⊥ – an “anti-Gowers uniform” function. That is, if a function fU has a
small Gowers uniformity norm than we have the orthogonality condition that
〈fU , fU⊥〉 is small.

3. fUAP – a uniform almost periodic function.

4. d – the “order” of uniform almost periodicity of fUAP (to be defined in the
next section). Eventually we want d = k − 2. However, the theorem is stated
for a general d for purposes of induction.

5. M – a control on the size of a uniform almost periodic function, which prevents
it from blowing up to infinity.

6. N1 and µ – two (somewhat contrived) parameters to be used in the inductive
proof of theorem 2.3. Ultimately, we want N1 = N − 1 and µ = 1.

7. F (x) – a real-valued function to control the size of the “random error” which
arises when computing (4).

The first theorem states that if we are working with a “Gowers anti-uniform”
function fU⊥ – in this case, a function which is close to a uniform almost periodic
function – then we can place an estimate on a kind of average value on the products
of shifts of fU⊥ , quite similar to (4).

Theorem 2.3 (Almost periodic functions are recurrent theorem). Suppose d ≥
0 and k ≥ 1 are integers, and fU⊥, fUAP are real-valued, non-negative, bounded
functions satisfying

||fU⊥ − fUAP ||L2 ≤
δ2

1024k
(8)∫

ZN
fU⊥ ≥ δ (9)

||fUAP ||UAP d < M (10)
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for some 0 < δ,M <∞. Then for all µ ∈ ZN and N1 > 0, we have

E0<r<N1

∫
ZN

k−1∏
j=0

TµjrfU⊥ ≥ c0(d, k, δ,M)

for some c0(d, k, δ,M) > 0.

The next theorem says that we can split any real valued non-negative function
f into a random (Gowers uniform) part and structured (Gowers anti-uniform) part.

Theorem 2.4 (Structure theorem). Suppose k ≥ 3 and f is a real-valued, non-
negative function which obeys

∫
ZN f ≥ δ. Pick an arbitrary function F : ZN → R+.

Then we can find positive number M = Ok,δ(1), function fU bounded, and functions
fU⊥ and fUAP non-negative and bounded, such that we may split

f = fU + fU⊥

and (8),(9), and (10) hold true for d = k − 2 and moreover

||fU ||Uk−1 ≤
1

F (M)
(11)

Theorem 2.4 – the structure theorem – is the easier than theorem 2.3 (which is
not to say easy). Both of the theorems invoke an energy incrementation argument,
which in each case reduces the proof to a matter of proving a dichotomy. Section
§4 gives a definition for energy, states some results about energy, and describes its
relationship to the Gowers uniform and uniform almost periodic functions. With this
setup, the detailed proof of theorem 2.3, via the energy incrementation argument is
then presented.

We conclude this section by giving the proof that the three theorems in this
section prove theorem 2.1.

Proof theorems 2.2,2.3,2.4 imply theorem 2.1. Choose integer k ≥ 1, large prime
number N ≥ 1, real number 0 < δ ≤ 1, and non-negative bounded function f :
ZN → R+. Let F : R+ → R+ be a function to be chosen later. We have already
discussed the trivial cases of k = 1 and k = 2 in the introduction, so in this
proof we can take k ≥ 3. By the Structure Theorem (theorem 2.4) we can find an
M = Ok,δ(1), a bounded function f , and bounded non-negative functions fU⊥ and
fUAP such that f = fU⊥ + fUAP and estimates (8), (9), (10), and (11) hold. For
the calculation to follow, it is useful to define the set Sk to be the set of all maps
s : {0, ..., k − 1} → {fU⊥ , fU} and the set S−k := Sk − {s0(j) := fU⊥}. We have

Er∈ZN

∫
ZN

k−1∏
j=0

T jrf = Er∈ZN

∫
ZN

k−1∏
j=0

(T jrfU⊥ + T jrfUAP )
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= Er∈ZN

∫
ZN

∑
s∈Sk

k−1∏
j=0

T jrs(j) =
∑
s∈Sk

Er∈ZN

∫
ZN

k−1∏
j=0

T jrs(j)

= Er∈ZN

∫
ZN

k−1∏
j=0

T jrfU⊥ +
∑
s∈S−k

Er∈ZN

∫
ZN

k−1∏
j=0

T jrs(j) (12)

Taking N1 = N , µ = 1, and d = k − 2 in theorem 2.3, we have the estimate

Er∈ZN
∫
ZN

k−1∏
j=0

T jrfU⊥ ≥ c0(k − 2, k, δ,M)

By the generalized Von Neumann theorem (theorem 2.2) and the estimate (11) for
||fU ||Uk−1 in theorem 2.3, we also have

Er∈ZN

∫
ZN

k−1∏
j=0

T jrs(j) ≤ min{||fU⊥ ||Uk−1 , ||fU ||Uk−1} ≤
1

F (M)

(We were able to drop the | · | signs in the above estimate because each of the s(j)
equals either fU or fU⊥ which are non-negative and real.) Note that there are 2k−1
elements in S−k , so comparing these estimates with (13) yields

Er∈ZN

∫
ZN

k−1∏
j=0

T jrf ≥ c0(k − 2, k, δ,M)− 2k − 1

F (M)
(13)

We are free to choose the value of F (M) large enough that the right side of (13)
is positive. Since M = Ok,δ(1), the right side of the (13) is equal to some positive
quantity depending only on k and δ, which is what we needed to show.

3 Being precise about norms

Here we present the formal definitions of the Gowers uniformity norms and the
uniform almost periodicity norms.

3.1 Gowers uniformity norms

The purpose of the Gowers uniformity norms is to quantify the notion of randomness
in functions on ZN . Functions which have small Gowers uniformity norms will
exhibit a lack of periodic behavior behavior. The precise definition is as follows.

Definition 3.1 (Gowers uniformity norms). Let f : ZN → C be a function. The
dth Gowers uniformity norm ||f ||Ud is defined recursively for integers d ≥ 0 by

||f ||U0 := EZN f

11



and

||f ||Ud :=
(
Eh∈ZN ||fT

hf ||2d−1

Ud−1

)1/2d
.

The 0th and 1st Gowers uniformity norms are not true norms. However, for most
of the arguments we will be taking d = k − 1. Since we have already dealt with the
simple cases of k = 1 and k = 2, we will not have to worry about this issue in most
of the arguments to follow.

There are two useful interpretations suggested by Tao to understand the Gowers
uniformity norms. As a heuristic, we can think of all of the Gowers uniformity
norms as behaving something like the modulus of the average value of f over ZN .
Indeed, the following equality looks quite similar similar to the preceding definition.

|
∫
ZN

f |2 = Eh∈ZN
∫
ZN

fT hf

Written in another way, (
∫
ZN f)× (

∫
ZN f) = Eh∈ZN

∫
x∈ZN f(x)f(x+ h) so certainly

this equality holds true. The first Gowers uniformity norm of f is of course exactly
given by |EZN f |.

Another useful way of thinking about the Gowers uniformity norm comes from
finite Fourier series. The Fourier series of a function f : ZN → C is given by

f(x) =
N∑
n=1

ane
2πix/N , an =

∫
y∈ZN

f(y)e−2πiyn/N

(Note that in the finite setting, questions about the convergence of Fourier series
disappear. For more information, see [11]). Tao observes that the second Gowers
uniformity norm is precisely equal to the l4 norm of the Fourier coefficients of f .

||f ||U2 =

(
N∑
n=1

|an|4
)1/4

In other words, a small second Gowers uniformity norm corresponds to the state of
having to small harmonics.

We conclude our discussion of the Gower’s uniformity norms with several exam-
ples.

Example 3.1. If f(x) = c is a constant function, then ||f ||Ud = |c| for all d ≥ 1.
This follows easily by induction. For the base case, we have

||f ||U1 =

(∫
h∈ZN

||cT hc||U0

)1/2

=

(∫
h∈ZN

|||c|2||U0

)1/2

=

(∫
h∈ZN

|c|2
)1/2

= |c|

For the inductive step, we have

||f ||Ud =

(∫
h∈ZN

||cT hc||2d−1

Ud−1

)1/2d

=

(∫
h∈ZN

|cc|2d−1

)1/2d

= |c|,

using above the shift invariance of the constant c and the inductive hypothesis.
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Example 3.2. A simple example of a quasiperiodic function, discussed in the next
section, is given by

W (x) := e2πiP (x)/N

where P (x) is a monic polynomial. If P is of degree m, then we have

||W ||Ud = 1, d > m.

To prove this, we argue by induction on m. For the base case, if m = 0, then
P (x) = 1 and W (x) = e2πi/N is constant. Thus, for d > 0, we have ||W (x)||Ud = 1,
by the result in example 3.1. For the induction step, suppose P (x) is a monic
polynomial of order m. We have

(WT hW )(x) = e2πi(P (x)−P (x+h))/N

Observe that P (x)−P (x+h) is a polynomial of order m−1, since the highest order
terms cancel. Then by the induction hypotheses,

||WT hW ||Ud−1 = 1

for all d > m. From this, it follows that

||W ||Ud = EZN ||WT hW ||2d−1

Ud−1 = EZN 1 = 1

as claimed.

3.2 Uniform almost periodicity norms

The purpose of the uniform almost periodicity norms is to quantify the appropriate
notion of structure for proving theorem 1.1. In particular, the UAP k−2 quantify
how closely a function behaves like (6), a quasiperiodic function of order k − 2.
To motivate the definition, we make the following observation. The shifts of the
function F (x), described by (6), take the form

TnF (x) =
1

J

J∑
j=1

cje
2πiPj(x+n)/N = E1≤j≤J(cn,jgj), n ∈ ZN , (14)

where cn,j(x) = e2πi(Pj(x+n)−Pj(x))/N and gj(x) = e2πiPj(x)/N . Since Pj(x) is a
polynomial of degree d, the polynomial Pj(x+ n)− Pj(x) is of degree d− 1, which
means that cn,j(x) is a quasiperiodic function of order d − 1, with modulus 1.8 In
short, every shift TnF may be written as a linear combination of the functions gj ,
quasiperiodic of order d, with the coefficients cn,j taken to be quasiperiodic functions
of one degree less. The appropriate generalization of functions of form (14), which

8Compare with example 3.2
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we shall define, is the space of UAP d functions, equipped with norm || · ||UAP d . Each
UAP d function F : ZN → C will have the special property that its shifts take the
form

TnF =
M

|H|
∑
h∈H

cn,h(x)gh(x) = ME(cn,hgh), n ∈ ZN ,

where M > 0, H is some finite, non-empty set, h is a random variable taking values
in H and each cn,h is a UAP d−1 function with ||cn,h||UAP d−1 ≤ 1 and each gh is a
bounded function.

We are now ready to launch into the formal definition of the space of UAP d

functions. To do so, we need introduce the concept of a Banach algebra.

Definition 3.2 (Banach algebra). A vector subspace A of functions f : ZN → C,
equipped with norm || · ||A, is a Banach algebra if the following three properties are
satisfied.

1. f ∈ A for all f ∈ A (closed under conjugation).

2. fg ∈ A for all f, g ∈ A (closed under pointwise product).

3. ||fg||A ≤ ||f ||A||g||A for all f, g ∈ A.

We moreover say that the A is a shift invariant Banach algebra if ||Tnf ||A = ||f ||A
for all f ∈ A and all n. We say that A is a scale invariant Banach algebra if
||fλ||A = ||f ||A for all f ∈ A and λ ∈ ZN−{0}, where fλ is defined by fλ(x) = f(λx).

Definition 3.3 (The UAP [A] Banach algebra). Given a shift-invariant Banach
algebra A, we define the Banach algebra UAP [A] to be the set of all functions
F : ZN → C whose shifts take the form

TnF (x) =
M

|H|
∑
h∈H

cn,h(x)gh(x) = ME(cn,hgh), n ∈ ZN , (15)

where M ≥ 0, H is some finite, non-empty set, h is a random variable taking values
in H, c := {cn,h}n∈ZN ,h∈H is a collection of functions in A satisfying ||cn,h||A ≤ 1,
and g := {gh}h∈H is a collection of bounded functions. The norm ||F ||UAP [A] is
defined to the infimum of all such M for which there exists a representation of form
(15).

It is important to note that a space satisfying the properties given by definition 3.3
really is a Banach space. Moreover we can “compose” UAP Banach algebras to
form new higher order UAP Banach algebras,

UAP d[A] := UAP [UAP [...UAP [A]...]]︸ ︷︷ ︸
d times

.

Tao justifies these facts by proving the following proposition.
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Proposition 3.1. Let A be a shift invariant Banach algebra. The space UAP [A]
has the following properties.

1. The space UAP [A] is also a shift invariant Banach algebra.

2. The space A is contained in UAP [A].

3. For all f ∈ A, we have ||f ||A ≥ ||f ||UAP [A].

4. If A is a scale invariant Banach algebra, then so is UAP [A].

This finally leads us to the definition of the space of uniform almost periodic func-
tions of order d.

Definition 3.4 (UAP d Banach algebra). Let K denote the Banach algebra of all
constant functions c : ZN → C, with norm defined to be the modulus |c|. The UAP d

Banach space is defined recursively by setting UAP 0 := K and setting UAP d :=
UAP [UAP d−1].

We conclude this section by noting that it is not very restrictive to require
that functions be contained in a UAP d Banach algebra. In fact, every function
f : ZN → C is contained in UAP 1 and, by proposition 3.1, the same function is
contained in every higher order Banach algebra UAP d, with d ≥ 1. In particular,
like the Gowers uniformity norms, the space of UAP d functions with its associated
norm has an interpretation which comes from finite Fourier series. Tao proves the
following proposition.

Proposition 3.2. Let F : ZN → C be a function. Then F ∈ UAP 1, and its norm
satisfies

||F ||UAP d =

N∑
n=1

|an|, an =

∫
y∈ZN

F (y)e−2πiyn/N .

In other words, the UAP 1 norm is precisely equal to the l1 norm of the Fourier
coefficients of F .

3.3 The relationship between Gowers uniform and uniform almost
periodic functions

We are now ready to explain our claim that Gowers uniform functions are, in a sense,
orthogonal to uniform almost periodic functions. Recall that the inner product of
two functions in L2(ZN ) is defined by 〈g, h〉 :=

∫
ZN gh. If f is a Gowers uniform

function and F is a uniform almost periodic function, one cannot say in general
that 〈f, F 〉 = 0, since the term “Gowers uniform” is fuzzy, just indicating that the
Gowers uniformity norm of a function is “small”. However, Tao does prove the
following proposition, which is almost as good.
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Proposition 3.3 (Uniformity is orthogonal to almost periodicity). Given any func-
tions f, F with F ∈ UAP k−2 for some k ≥ 2, we have

|〈f, F 〉| ≤ ||f ||Uk−1 ||F ||UAPk−2 .

In other words, whenever ||f ||Uk−1 is small, 〈f, F 〉 is close to zero, which is to say
that f is “almost” orthogonal to F .
The next result is a partial converse to proposition 3.2. We state it as a lemma,
because it plays a needed role in Tao’s proof of Szemerédi’s theorem.

Lemma 3.1 (Lack of Gowers Uniformity implies correlation with a UAP function).
For a bounded function f and some k ≥ 3 and ε > 0, suppose that ||f ||Uk−1 ≥ ε.
Then there exists a bounded function F ∈ UAP k−2 with ||F ||UAPk−2 ≤ 1 such that

|〈f, F 〉| ≥ ε2k−1
.

This says intuitively that if a function lacks Gowers uniformity (of degree k−1), even
by a small amount, then it is not completely orthogonal to the space of UAP k−2

functions.

4 An alternative proof of the generalized Von Neumann
theorem using UAP norms

To prove theorem 2.2, Tao gives an inductive argument which has the advantage of
being simple and elegant, relying on little more than the Cauchy-Schwarz inequal-
ity. However, Tao also mentions the possibility of an alternative proof to theorem
2.2, which uses UAP d norms and the orthogonality condition established by propo-
sition 3.3. We work out the alternative proof in this section. It is worthwhile
seeing the alternative argument because it allows us to frame theorem 2.2 within
the randomness-structure schema of the rest of the paper. It will also give us a
better handle on how the Gowers uniformity and uniform almost periodicity norms
are used in practice.

For the purpose of proving theorem 2.2, we can make several simplifying assump-
tions about (7). First, by reindexing, can assume that the function in {f0, ..., fk−1}
with the minimal Gowers uniformity norm is f0. Second, the map T−λ0r preserves
expectation, by proposition 2.1. Thus we can assume that λ0 = 0. Under these
assumptions, we have

Er∈ZN
∫
ZN

k−1∏
j=0

T λjrfj =

∫
ZN

f0Er∈ZN
k−1∏
j=1

T λjrfj =

〈
f0,Er∈ZN

k−1∏
j=1

T λjrfj

〉
(16)

Theorem 2.2 becomes a quick consequence of the following lemma.
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Lemma 4.1. If k ≥ 2 and λ1, ..., λk−1 are distinct elements in ZN , then for any
bounded functions f1, ..., fk−1 : ZN → C, we have

Er∈ZN
k−1∏
j=1

T λjrfj ∈ UAP k−2. (17)

with a UAP k−2 norm less than 1.

Indeed, once this lemma has been established, we need only apply proposition 3.3
to (16), along with the fact that the Gowers uniformity norms are invariant under
conjugation, to obtain the desired result∣∣∣∣∣∣Er∈ZN

∫
ZN

k−1∏
j=0

T λjrfj

∣∣∣∣∣∣ ≤ ||f0||Uk−1

∣∣∣∣∣∣
∣∣∣∣∣∣Er∈ZN

k−1∏
j=1

T λjrfj

∣∣∣∣∣∣
∣∣∣∣∣∣
UAPk−2

≤ ||f0||Uk−1 . (18)

It remains to prove lemma 5.1.

Proof of lemma 5.1. By reindexing we can assume that λ1 6= 0. Another simplifying
assumption is made possible by proposition 2.2. This proposition tells us that the
map r 7→ λ1r(modN) takes ZN bijectively to itself. (Recall that addition is taken
modulo N , and N is assumed to be a large prime number.) Thus by reindexing the
fj ’s to match the natural ordering of 0, λ1, 2λ1, ..., (N − 1)λ1 we can assume that
λ1 = 1.

We proceed by induction on k. For the base case, take k = 2. In this case, we
have

(17) = Er∈ZNT
rf1(x) =

1

N
(f1(x) + f1(x+ 1) + · · ·+ f1(x+ (N − 1))). (19)

This quantity does not depend on integer x and thus is constant. This means that
(17) is contained in UAP 0 when k = 2. Moreover, by boundedness of f1, we have
|Er∈ZNT λ1rf1(x)| ≤ 1, and this means that the norm of (17) when k = 2 is at most
1.

Now we handle the induction step. Suppose (17) holds true for k − 1. We
compute

Er∈ZN
k−1∏
j=1

T λjrfj = Er∈ZN

T rf1 k−1∏
j=2

T λjrfj

 ,

= Er∈ZNT
s

T rf1 k−1∏
j=2

T λjrfj

 =
1

N

N−1∑
r=0

T r+sf1 k−1∏
j=2

T λjr+sfj


=

1

N

N−1∑
r=0

T rf1 k−1∏
j=2

T λj(r−s)+sfj

 = Er∈ZN

T rf1 k−1∏
j=2

T λj(r−s)+sfj


17



= Es∈ZNEr∈ZN

T rf1 k−1∏
j=2

T λj(r−s)+sfj


= Er∈ZN

(T rf1)Es∈ZN
k−1∏
j=2

T λj(r−s)+sfj

 (20)

In the first line above, we use the fact that fact that λ1 = 1 to pull out T rf1. In
the second line, we introduce the shift T s, for an s ∈ ZN , which leaves the expected
value unchanged, by proposition 2.1. In the third line we make the change of indices
r 7→ r − s.9 In the fourth line we take the average over s ∈ ZN . In the fifth line we
pull this average inside, noting that T rf1 does not depend on s.

Applying the shift map Tn to (20) thus gives us

TnEr∈ZN
k−1∏
j=1

T λjrfj = Er∈ZN

(T r+nf1)Es∈ZN
k−1∏
j=2

T λ1(r−s)+s+nfj



= Er∈ZN

(T rf1)Es∈ZN
k−1∏
j=2

T λ1(r−n−s)+s+nfj


= Er∈ZN

(T rf1)Es∈ZN
k−1∏
j=2

T (1−λ1)sfj

 , (21)

here making the change of variables r 7→ r − n and then applying the shift map
T−λ1(r−n)+n inside Es∈ZN (·), which leaves the expectation invariant. We claim that
(21) has the form (15) with M = 1. Indeed, T rf1 is a bounded, complex valued
function on ZN , and Es∈ZN

∏k−1
j=2 T

(1−λ1)sfj ∈ UAPK−3 by the induction assump-

tion. Thus TnEr∈ZN
∏k−1
j=1 T

λjrfj is contained in UAP k−2 with UAP k−2 norm less
than or equal to 1. This completes the induction step, so we are done.

5 Energy incrementation

We present Tao’s energy incrementation argument for proof of the structure theorem
(theorem 2.3).

5.1 σ-algebras and the L2(B) Hilbert space structure

A central idea behind Tao’s proof of the structure theorem is to not just work with
uniform almost periodic functions, but also with σ-algebras which they generate.

9It is extremely important to note that we are working in the cyclic group ZN to make sense of
these index changes. Observe that the sum still runs from 0 to N − 1.
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σ-algebras are sets of subsets of ZN which play a role analogous to partitions of sets
of real numbers in the theory of Riemann integration. The goal in this section is to
present two propositions which allow us to approximate a uniform almost periodic
function by its mean value on the minimal elements of a σ-algebra. We begin with
some definitions.

Definition 5.1 (σ-algebra, atom). A set B of subsets of ZN is a called a σ-algebra
of ZN if the following conditions are satisfied.

1. ∅ ∈ B and ZN ∈ B.

2. If A,B ∈ B, then A ∩ B ∈ B and A ∪ B ∈ B and A − B ∈ B ( in words, B is
closed under unions, intersections, and complementation).

A set A ∈ B is said to be an atom of B if A has no subsets also contained in B.

Note that the atoms of B must form a partition of ZN .
In analogy with the union operation in set theory or the direct sum of two vector

spaces in linear algebra, we would like to have a way of combining two σ-algebras
to produce another σ-algebra. This is achieved by the following operation.

Definition 5.2 (∨-sum of σ-algebras). Given two σ algebras B1 and B2 we denote
by B1 ∨ B2 the smallest σ-algebra which contains the elements of both B1 and B2.

It is important to note that the “smallest” σ-algebra is here uniquely determined,
and so the operator ∨ is well-defined. In particular, if B is a minimal σ-algebra then
it is precisely equal to the set {B ∪ C,B ∩ C,B − C : B,C ∈ B1 ∪ B2}.

Just as functions on the real numbers may be Riemann measurable depending
on (roughly speaking) how well the function may be approximated on partitions
of its domain, we also have the following concept of measurability with respect a
σ-algebra for functions ZN → C. With this concept of measurability, we can define
the Hilbert space L2(B) of functions measurable with respect to a σ-algebra B. This
will be helpful for interpreting geometrically some of the ideas to follow.

Definition 5.3 (Measurability, the L2(B) Hilbert space). A function f is said to be
measurable with respect to a σ-algebra B if all the level sets of f are contained in
B. We define L2(B) to be the subspace of L2(ZN ) consisting of all functions which
are measurable with respect to the σ-algebra L2(B).

It is not difficult to verify that L2(B) is a Hilbert subspace, and we won’t prove
it here. We next define the expectation operator f → E(f |B). The expectation
E(f |B), representing the best approximation of f by functions measurable in B, is
defined to be the orthogonal projection of f onto the space L2(B),

E(f |B)(x) := EB(x)f
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where B(x) is the (necessarily unique) atom of B which contains x. One simple fact,
which will be useful later in our argument, is the following.∫

ZN
E(f |B) =

∫
ZN

f (22)

This follows immediately by expanding E(f |B) = EB(x)f as the sum definition for
expected value. To verify the fact that E(f |B) is an orthogonal projection, recall
that for functions g, h in the Hilbert space L2(ZN ) we had the inner product 〈g, h〉 :=∫
ZN ḡh. We have

〈E(f |B), f − E(f |B)〉 =

∫
ZN

fE(f |B)−
∫
ZN

E(f |B)E(f |B)

=

∫
ZN

E(fE(f |B)|B)−
∫
ZN

E(f |B)E(f |B) = 0.

Building on this fact, we will say that a function f is orthogonal to a σ-algebra B if
E(f |B) = 0. Thus any function f ∈ L2(ZN ) has the decomposition,

f = (f − E(f |B)) + E(f |B) (23)

where (f − E(f |B)) is orthogonal to B and E(f |B) is measurable in B.
Uniform almost periodic functions are related to σ-algebras by the following

proposition. It says that the level sets of any function in UAP d may be arbitrarily
well approximated by the atoms of some σ-algebra and that functions measurable
in this σ-algebra may be arbitrarily well approximated by functions in UAP d.

Proposition 5.1. (UAP functions generate compact σ-algebras) Fix d ≥ 0, and
suppose G ∈ UAP d with the bound ||G||UAP d ≤ M for some M > 0. Then for any
ε > 0 we can find a σ-algebra Bε(G) with OM,ε(1) atoms, which satisfies

||G− E(G|Bε(G) ∨ B)||L∞ = O(ε)

for any σ-algebra B. Moreover, for any bounded, nonnegative function f ∈ L2(Bε(G))
and any δ > 0, there is a bounded, nonnegative function fUAP ∈ UAP d such that

||f − fUAP ||L2 ≤ δ

and
||fUAP ||UAP d = OM,ε,δ(1).

To describe the energy incrementation argument in the next subsection, the
concept of the complexity of a σ-algebra is crucial. Roughly speaking, the complexity
of a σ-algebra B represents minimal amount of work required to build up B from
σ-algebras generated by uniform almost periodic functions of order d. We imagine
that we would like to be as lazy as possible, building up B from just a few σ-algebras,
each with just a few atoms and generated by small UAP d functions. With more
complex σ-algebras, it is more difficult to accomplish this task.
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Definition 5.4 (Compact σ-algebra, complexity). A σ-algebra B is said to be com-
pact of order d with complexity at most X if

B = Bε1(G1) ∨ · · · ∨ BεK (GK)

where Gj ∈ UAP d, and ||Gj ||UAP d ≤ X, and εj ≤ 1/(1 + X), and 1 ≤ K ≤ X
(j = 1, ...,K). The complexity of B is defined to be the minimal X for which the
above conditions hold true.

The next proposition describes how well a function in a given σ-algebra may be
approximated by functions in UAP d.

Proposition 5.2. Fix d ≥ 0 and X ≥ 0, and suppose that B is a σ-algebra compact
of order d with complexity at most X, then for any bounded, nonnegative function
f ∈ L2(B) and any δ > 0, there is a bounded, nonnegative function fUAP ∈ UAP d
such that

||f − fUAP ||L2 ≤ δ

and
||fUAP ||UAP d = Od,δ,X(1).

5.2 Abstract energy incrementation argument

Important to Tao’s proof of the structure theorem is the concept of the energy of a
σ-algebra, which measures the size of the best approximation of a set of functions
on a given σ-algebra.

Definition 5.5 (Energy). The energy Ef (B) of anm-tuple of functions f = (f1, ..., fm)
on a σ-algebra B is defined by

Ef (B) =
m∑
j=0

||E(fj |B)||2L2 (24)

Note that if B′ ⊃ B is a finer σ-algebra than B, then E(fj |B′) is orthogonal to
E(fj |B)− E(fj |B′). The Pythagorean theorem then gives us the useful formula

Ef (B′)− Ef (B) =

m∑
j=0

||E(fj |B′)− E(fj |B)||2L2 (25)

As an immediate consequence of this formula, we note that the energy of a σ-algebra
always increases with the fineness of the σ-algebra.

The abstract energy incrementation lemma reduces the matter proving some
property P (M), for some M > 0, to a matter proving a dichotomy – either P (M) is
true relative to some σ-algebra B, or we can find a finer σ-algebra B′ which satisfies
certain properties.
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Lemma 5.1 (Abstract energy incrementation). Suppose we have a property P (M)
which depends on parameter M > 0. Fix d ≥ 0, and let f = (f1, ..., fm) be a
collection of bounded functions.

Given any X,X ′ > 0, and given any σ-algebras B, compact of order d with
complexity at most X, and B′ finer than B, also compact of order d with complexity
at most X ′, suppose at least one of the following conditions is true:

i. If we have the energy gap condition Ef (B′)−Ef (B) ≤ τ2, then P (M) is true for
some M = Om,τ,X,X′(1).

ii. There exists a σ-algebra finer than B and compact of order d with complexity at
most Od,τ,X,X′, which satisfies the energy increment property Ef (B′′)−Ef (B′) ≥
c(d, τ,X), where positive quantity c(d, τ,X) > 0.

Then P (M) is true for some M = Om,d,τ (1).

Proof. Consider the following algorithm.

1. Set σ-algebra B = {0,ZN} and let X denote the complexity of B.

2. Set σ-algebra B′ = B and let X ′ denote the complexity of B′.

3. Since B and B′ satisfy the energy gap condition in (i), by assumption either
P (M) is true for some M = Om,d,X,X′(1), or we can find a finer σ-algebra B′′
with complexity at most Om,d,X,X′(1) satisfying condition (ii). If the former
is true, stop. If the latter is true, go on to step 4.

4. If B and B′ satisfy the energy gap condition Ef (B′) − Ef (B) ≤ τ2, replace B′
with B′′ and go to step 3 again. Otherwise, replace B with B′′ and go to step
2 again.

It follows from our assumptions that each time we replace B′ with B′′, Ef (B′) in-
creases by at least c(d, τ,X). As soon as Ef (B′) − Ef (B) exceeds τ2, the algorithm
requires B be replaced by B′′. Thus the algorithm takes at most τ2/c(d, τ,X) =
Od,τ,X(1) steps before replacing B with B′′. Fundamental to this argument, the
complexity of the resulting B′′ depends on X, and not on any of the intermediate
complexities X ′; indeed, this part of the algorithm starts out with B′ = B (and
hence X ′ = X) and keeps replacing B′ with another σ-algebra which has complexity
Om,d,X,X′(1), so when the energy gap violates Ef (B′)−Ef (B) ≤ τ2, the resulting B′′
has complexity depending only on d,τ ,X, and the number of steps for the energy gap
condition to be violated. Since we have seen that the number of steps is Od,τ,X(1),
we conclude that the complexity of the resulting B′′ is Od,τ,X(1).

Now consider the part of the algorithm where we replace B by B′′. By bound-
edness of the fj ’s for j = 1, ...,m, the energy Ef (B) will never exceed m. Since each
time B is replaced by B′′ only when the energy gap increases by more than τ2, the
replacement can occur only m/τ2 = Om,τ (1) times.
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Combining these results we conclude that the algorithm iterates at mostOd,m,τ,X(1)
times before stopping. Since each time B′′ replaces B, the complexity increases by at
most Od,τ,X(1), the complexity X is determined by the initial complexity of {∅,ZN}
which is zero, so in fact the complexity increases by Om,τ (1). In particular, the M
at which the algorithm terminates is at most Om,d,τ (1), which is what we needed to
show.

5.3 Energy incrementation applied to the structure theorem

By the previous lemma, it is sufficient to prove the following dichotomy to show
that the structure theorem is true.

Lemma 5.2 (Structure theorem dichotomy). Let k ≥ 0, and suppose we have the
σ-algebras B and B′ both of order k − 2, with complexities of at most X and X ′

respectively. Let F : R+ → R+ be a function. Let f be a nonnegative bounded
function which, for some δ > 0, satisfies

∫
ZN f ≥ δ and the energy gap condition,

Ef (B′)− Ef (B) ≤ τ2.

for τ = δ2/5000k. Then at least one of the following is true

i. We can find an M = Ok,δ,X(1) such that the structure theorem (2.3) is true for
the f and δ given above and for some functions fU⊥, fUAP , and d := k − 2
(here preserving all the notation in the statement of theorem 3.5).

ii. There exists a σ-algebra B′′ finer than B and compact of order d with complex-
ity at most Od,τ,X,X′, which satisfies the energy increment property Ef (B′′) −
Ef (B′) ≥ c(d, τ,X), where positive quantity c(d, τ,X, F ) > 0 independent of X.

Proof. Start by fixing σ-algebras B ⊂ B′ in ZN , both compact of order k − 2 with
complexity at most O(X). We split f into two orthogonal parts

f = fU + fU⊥

where fU⊥ = E(f |B′) and fU = f − E(f |B′). Since f is non-negative and bounded,
E(f |B) is also non-negative and bounded. So by proposition 4.2, there is a function
fUAP ∈ UAP k−2 such that

||E(f |B)− fUAP ||L2 ≤
δ2

5000k
(26)

and
||fUAP ||UAP d < M

for some M = Ok,δ,X(1). We can show that functions fU⊥ , fUAP satisfy the es-
timates (8),(9), and (10) for d = k − 2. Indeed, with τ = δ2/5000k, we have
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by assumption the energy gap condition Ef (B′) − Ef (B) ≤ τ2, and thus by (25)
||E(f |B′) − E(f |B)||L2 ≤ τ . Combined with (26) and the triangle inequality, this
gives us ||E(f |B)− fUAP ||L2 ≤ 2τ , or

||fU⊥ − fUAP ||L2 ≤ 2τ <
δ2

1024k

So (8) is satisfied. To see that (9) is also satisfied, note that by (22)
∫
ZN fU⊥ =∫

ZN E(f |B′) =
∫
ZN f ≥ δ, by hypothesis. We just showed that (10) is satisfied. If

(11) is satisfied, then the first half (i) of the structure theorem dichotomy is true,
so let us assume that (11) is false, and show that this implies (ii) is true. This
assumption gives us

||fU ||Uk−1 >
1

F (M)

But then Lemma 3.1 implies that there is a function G ∈ UAP k−2 such that
||G||Uk−2 ≤ 1 and |〈fU , G〉| ≥ c0(k, δ,M,F ) > 0. Let B′′ = B′ ∨ Bε(G), for a
given ε = ε(k, δ,M) to be chosen later. We make yet another split into orthogonal
parts

fU = (f − E(f |B′′)) + (E(f |B′′)− E(f |B′))

G = (G− E(G|B′′)) + (E(G|B′′)− E(G|B′)) + E(G|B′)

Observe that (by (23)) the first of the orthogonal parts for fU is orthogonal to B′′
(and thus also to the courser σ-algebra B′), while the second term is measurable in
B′′. Similarly the first of the orthogonal parts for G is orthogonal to B′′ (and to B′),
while the second part is measurable in B′′ and the third part is measurable in B′.
This causes the inner product of fU and G to a take the simple form

〈fU , G〉 = 〈f − E(f |B′′)), G− E(G|B′′)〉+ 〈E(f |B′′)− E(f |B′),E(G|B′′)− E(G|B′)〉

By proposition 5.1, ||G − E(G|B′ ∨ Bε(G))||L∞ = O(ε). Since f is bounded, we
therefore have

|〈f − E(f |B′′)), G− E(G|B′′)〉| = O(ε).

Considering the lower bound on the inner product 〈fU , G〉, we conclude that for a
sufficiently small ε,

||E(f |B′′)− E(f |B′′)||L2 ≥ c0(k, δ,M,F ),

which combined with (25) gives us the energy increment and implies (ii) is true.

6 Conclusion

Number theory remains ever old and ever new, a fact testified by the variety of
interesting proofs of Szemeredi’s theorem over the past forty years. The quantitative
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ergodic theory proof of Szemerédi’s theorem given by Tao [14] provides us with
fascinating, if somewhat unexpected, way to understand the theorem, and it is full
of ideas which are interesting in their own right. In particular, the Gowers uniformity
norms paired with the uniform almost periodicity norms provide a useful perspective
for studying systems which exhibit both structured and quasi-random behavior.
Given that similar methods have been used to solve other difficult problems in recent
years, for example Green and Tao in [7], understanding the randomness-structure
dichotomy holds great promise for the future.
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204-256.

[5] Gowers, Timothy. A new proof of Szemerédi’s theorem for arithmetic progres-
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