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1 Introduction

During the summer of 1900 at the International Congress of Mathematicians
Conference, the famous mathematician David Hilbert gave one of the most
memorable speeches in the history of mathematics. Within the speech, Hilbert
outlined several unsolved problems he thought should be studied in the coming
century. Later that year he published these problems along with thirteen more
he found of particular importance.

This set of problems became known as Hilbert’s Problems. The interest of this
paper is one of these problems in particular: Hilbert’s Tenth problem. This was
posed originally from Hilbert as follows:

Given a diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: to devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers
[3].

The problem was unsolved until 1970, at which time a proof which took 20
years to produce was completed. The proof had many collaborators. Most
notable were the Mathematicians Julia Robinson, Martin Davis, Hilary Putman,



and Yuri Matiyasevich. The proof showed that Hilbert’s Tenth Problem is
not possible; there is no algorithm to show whether a diophantine equation is
solvable in integers. This result is known as the MDRP Theorem (an acronym
of the mathematicians last names that contributed to the paper). The MDRP
Theorem not only proved Hilbert’s Tenth Problem is impossible, but showed all
recursively enumerable sets are diophantine. In this paper we will explore some
of the implications and extensions from the groundbreaking proof for Hilbert’s
Tenth Problem to other domains, in particular, to Q [4].

2 Background Theory

For the rest of this paper it will be necessary to define some technical terms and
introduce some topics of Computation Theory (synonymous with Recursion
Theory):

To begin, it should be established Computation Theory is interested mainly in
Z and so unless otherwise stated, assume we are working with Z.

Definition 2.1. An Algorithm (synonymous with Computable Function and
Recursive Function) is a self contained set of directions to be performed on a
given input to produce an output.

Definition 2.2. A Recursive Set, Decidable Set or Computable Set is a Set such
that there is an algorithm which terminates after a finite number of iterations
to correctly decide whether or not a given input belongs to the set.

Definition 2.3. A Recursively Enumerable Set or Computably Enumerable Set
is a set where there is an algorithm that can list the set. The algorithm may
run forever.

Recursive Sets have some easily verified desirable properties:

The complement of a recursive set is recursive. The union and intersection of
recursive sets are also recursive. The preimage for a recursive function which
maps to a recursive set is a recursive set. If a set and its complement are recur-
sively enumerable then the set is recursive.

While Recursive Sets and Recursively Enumerable Sets seem very similarly
defined, they are not the same. For a set to be Recursive implies that it is
Recursively Enumerable, however the converse is not true. There are Recur-
sively Enumerable Sets that are not Recursive.

An example of a set that is Recursively Enumerable but not Recursive can be
constructed using Godel numbering which is explained more in section 1.9 of

[2].



3 Diophantine Equations

When approaching a solution for Hilbert’s tenth problem, Martin Davis reversed
the problem [1]. Instead of being given a polynomial and investigating a solution,
we will begin with a set of solutions and search for the diophantine equation.

Definition 3.1. We define Diophantine Sets as follows:
A subset A C Z™ is called Diophantine if there exists a polynomial p(Ty, . .. T,y X1, - - - Xk)
with coefficients in Z such that for any element (¢1,...,t,) € Z™ we have that

Jzq, ..., 2k €Z:p(ty, .. ytm,x1, ... xk) =0
)
(tl,...,tm) € A.
In this case we call p(T1,...Tm, X1, - .- Xk) & Diophantine definition of A over Z

[4]

We say ti...t,, are the constants and coefficients of the of the diophantine
equation, and if ¢y ...t,, exist in the diophantine set, then the polynomial
p(t1, . s tm, X1s- -, Xk) = 0 has a solution in Z.

If the set is computable, then that means there is some algorithm that in a finite
amount of steps can determine whether the given diophantine equation has a
solution in Z.

Some examples of diophantine equations are as follows:

1. the set of numbers not divisible by two:

reD<—Jy:2y+1==x

2. ZT ={0,1,2...} is diophantine since
a €72t <= (3w, 10,03, 04 €Z) 2t + 2+ 2+ 23 =a

Which is a result established by Lagrange’s four square theorem: that any
positive integer can be the sum of four squares.

Diophantine Sets have some desirable properties as well:
Lemma 3.1. Intersections and Unions of diophantine sets are diophantine.

To show this, we observe that for two diophantine sets C, D with definitions
P, and P, respectively, we observe that

(P1)(P2)

is the definition for C'U D since the above polynomial is zero at x if and only if
Py(z) =0 or Py(z) = 0. For the intersection we observe

(P1)? + (P2)*

is the definition for C' N D since the above polynomial is zero at z iff Py(x) =0
and Py(z) =0



Theorem 3.2. Diophantine sets are recursively enumerable.

To show this, we observe for a diophantine set D with definition p(t1, . . . tm, 1, . . .

we iterate through each element of Z*+™ to see when the diophantine definition
of the element is zero.

Theorem 3.3. All recursively enumerable sets in Z are diophantine.

This result is not trivial and was a consequence of the MDRP Theorem [4].
Since there are recursivly enumerable sets that are not computable, it follows
that there are diophantine sets that are not recursive.

Summarized in more concrete terms:

Lemma 3.4. There exists a polynomial P(x,...Zn,aq,...ax) over Z such that
it is impossible for an algorithm to exist to determine in a finite number of steps
whether

dxg...x1 €7Z

P(ay,...an,20,...x¢) =0
for a given (a1, ...a,) € Z"

And therefore Hilbert’s Tenth Problem is proved impossible. But the topic
still has much more work to be done ...

4 Hilbert’s Tenth Problem over Q

While Hilbert Originally posed the problem over Z, this problem can be ex-
tended to many different algebraic structures. Specifically an arbitrary ring:

Definition 4.1. A Ring R is a set of objects with two binary operations (4, *)
with the following properties:
For any a,b,c € R:

a+b=b+a

(axb),(a+b) €R
(axb)xc=ax(bxc)
ax(b+c)=axb+axc

Some examples are Q, R and Z are infinite Rings. Where * is the multiplication
operation and + is the addition operation. Z mod n where n > 0 is an example
of a finite ring

It follows that the definition of the diophantine set can be extended to any ring.
Diophantine equations are just equations of a collection of elements and ring
operations, and are therefore well defined on any ring.

One of the largest open problems relating to HTP is its extension to the ra-
tionals, Q. At first glance, the reader may think there is some simple way to
connect the MDRP theorem which applied to HTP over Z to the extension over
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Q. Unfortunately it has not been that simple.

An interesting result is that if HTP was solvable on Z, then it is solvable on
Q. In other words if we knew whether a solution existed in Z, then we know
whether a solution exists in Q. This can be shown with the following logic:

If P is a polynomial with integer coefficients then

21,2 €Q: P(21,...,2) =0

)

x Tk
Jx1, . T Y1, e, Yk GZ,yl...yk7éO:P(—1,...,—):O
1 Yk
We can rewrite " "
P2, =0
Y1 Yk

As a new diophantine equation

Q(xla' "xkaylv"'yk)

By multiplying each term of P by the product of the denominators of each term.
Then intersecting the diophantine set with definition Q with the diophantine
set {z € Z : z # 0}. (As shown earlier, intersections of diophantine sets are
diophantine).
For example if
5
x x
P= <1> +244=0

Y1 Y2

Q@ would be
Q = 2Tya + w2y; +4y7ys =0

Therefore if we can determine weather the diophantine equation ) has solu-
tions over Z, we can determine if the original equation has solutions over Q.
Unfortunatley this does not establish an if and only if relation since there are
diophantine sets over Z that do not follow the above logic backwards to sets in
Q. A specific example would be diophantine sets with definitions where there
is a constant term, such as P(z,y) =22+ 4% +5
One approach in relating the result of MDRP to Q is if Z is diophantine when
viewed as a subset of Q. If Z has a diophantine definition p(7T', X) over Q, then
the MDRP result would also apply to @ and HTP would not be decidable on
Q.
This is because of the following logic. We can take the intersection of the dio-
phantine sets

D=7ZNnQ

such that @ is an undecidable diophantine set over Z. We know that the inter-
section of diophantine sets is diophantine, however the set D is not decidable
since @ is not decidable over Z

In fact using similar logic we have the following;:



Theorem 4.1. If a Ring R contains Z and Z has a diophantine definition on
R, then the MDRP theorem applies to R and HTP is unsolvable on R

Unfortunately there is a Conjecture by Barry Mazur in 1992 which has a
direct consequence that there is no diophantine definition of Z over Q. Neither
can there be a diophantine model of Z over Q. [4].

Definition 4.2. A diophantine model of Z over Q is a mapping ¢ : Z — Q that
is recursive, injective, and maps diophantine sets in Z to diophantine sets in Q.

5 Big and Small Ring Approach

In a different approach, we define a new ring to use:

Definition 5.1. Let S be a set of primes in Q. We define a certain ring Og,s
as the subring of Q:

{E :m,n € Z,n # 0,n is only divisible by primes in S}
n

Some examples are as follows:
1. If S = {2} then Og s = {& 1 j € Z,k € N}
2. If S is (), then we define Og,s =7Z
3. If S is the set of all primes in Q then Og s = Q

If S is finite and non-empty, we will call Og,s a Small Ring, and if S is infinite
then we call Oq s a Big Ring.

These rings have some nice properties relating to diophantine definitions: The
set of nonzero elements of a big or small ring is diophantine over that ring. And
from Julia Robinsons work [4] we know the following theorem:

Theorem 5.1. Z has a diophantine definition over any small subring of Q

In other words for a given S and its resulting Og, g, there is a polynomial
p(xo...2Tpn,a0...ag) such that

Jdag...ar € Oq,s : p(xg...Tp,a0...a5) =0

)

To.. Ty, €7

It follows that HTP is undecidable for any small subring of Q as stated in
theorem 4.2 of the above section.

Unfortunately, no diophantine definition has been established for big rings of Q
[4].

Without any result relating HTP to Q, we come back empty handed.



6 Conclusion

While no one to this day has established an answer for Hilbert’s Tenth Problem
extended to Q, this paper explored different avenues for approaching an answer
for the problem. The topic is very sophisticated, related with many ideas from
different disciplines of mathematics.

It is fascinating how one of the most fundamental structures in algebra, the
polynomial, can have such clunky properties. The ideas relating to HTP show
just how important it is to study polynomials since recursive enumerable sets
constitute many interesting questions in mathematics.

One example in particular is the Riemann hypothesis. We know the zeros

of the Riemann-zeta function are recursively enumerable. Therefore they can
be expressed as the solutions of a diophantine equation. Finding a diophantine
definition for the set of zeros would be an interesting approach to proving the
Riemann Hypothesis.
Another area of interest is the work relating to the universal diophantine equa-
tion explained more detail in section 7 of [1]. Essentially the idea behind the
universal diophantine equation is that the set of all diophantine sets is itself
recursively enumerable. Therefore there is some diophantine definition for all
diophantine sets. To come up with a concrete diophantine defiinition for this
universal diophanitne set would be a large milestone in the study of diophatine
equations
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