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1. Introduction 

Support vector machines (SVM) are a mathematical technique used for data 

classification and regression. The paper Regression tasks in machine learning via 

Fenchel duality gives an overview of how they work and how optimal solutions to 

support vector regression problems can be found. The paper starts by introducing the 

properties that an SVM should have and what it means for a specific SVM function to 

be good fit for a data set. It then describes how finding a dual problem can make 

finding the solution to the original regression problem easier due to possible 

differentiability issues that can arise in minimization problem of finding the best fit 

for the data.  

When solving regression problems, a common approach is to find the gradient 

of the loss function (A function designed to measure how well the function that we 



have generated fits the data) with respect to the optimization parameters in the fit 

function. The gradient is then used to vary the fit function in a way that will 

minimizes the loss function and thus give better fit for the data. This technique is 

called gradient descent. However, a problem arises if the loss function is not 

differentiable. This will cause problems, because if the loss function is not 

differentiable the gradient cannot be computed, meaning that it will be impossible for 

the algorithm to minimize the loss function. 

Reproducing Kernel Hilbert Space[8] 

 Before we can start defining what a support vector machine is we must define 

reproducing kernel Hilbert space. Hilbert space is a vector space with infinite 

dimensionality, and a reproducing kernel Hilbert space is a Hilbert space with specific 

properties. A Hilbert space H of functions defined on set 𝐸 is said to be a reproducing 

kernel Hilbert space if there exists a function k(x,y)  on 𝐸 × 𝐸 such that 

1. 𝑘(∙, 𝑦) ∈ 𝐻 for any 𝑦 ∈ 𝐸 

2. < 𝑓, 𝑘(∙, 𝑦) >= 𝑓(𝑦) for all 𝑓 ∈ 𝐻 

This function is called the reproducing kernel for H. 

3. SVM Definition 

A support vector machine is defined to be a function f that is a member of Hk 

where Hk is the reproducing kernel Hilbert space corresponding to the kernel k(x, y). 

Here the kernel k is assumed to be both symmetric and finitely positive semidefinite. 

In this context symmetric means that k(x,y) = k(y,x) and finitely positive semidefinite 

means that for any  

{𝑥1, … , 𝑥𝑚} ⊂ ℝ
𝑛 and 𝑎 ∈ ℝ𝑚 it is true that ∑ ∑ 𝑎𝑖𝑎𝑗𝑘(𝑥𝑖, 𝑥𝑗)≥ 0

𝑚
𝑗=1

𝑚
𝑖=1 . We shall 

take our f to be: 

𝑓(𝑢) =∑𝑐𝑖𝑘(𝑢, 𝑥𝑖

𝑁

𝑖=1

) 

Where the vectors xi are the input vectors of the data set. Using the representor 

theorem we will be able to show that the 𝑓 ∈ 𝐻𝑘 that best fits our data will take this 

form. In this definition of f any xi for which 𝑐𝑖 ≠ 0 is called a support vector of f. 



4. Measuring the Quality of an 

SVM 

In order to determine the quality of a support vector machine for modeling a 

data set we must define a method to quantitatively measure how well the function fits 

our data set. To do this we must define a loss function v that will compare the output 

of our function at data points xi with the expected value of the function at those 

specific inputs given by yi. This is however not enough to determine if a function is a 

good fit for the data because it is possible for a match the data perfectly, but not 

reveal any information about the phenomenon that created the data. For example, 

many data sets could be matched perfectly be simply creating a piecewise function 

that would create straight lines connecting the data points, however in the majority of 

cases this would be a bad fit for the data.  

  From left to right: 

Under fit, just right, 

over fit 

[4]  

 

 

To avoid this we must introduce a smoothness functional into our measurement of f to 

insure that it will map points in ℝ𝑛 that are close to values in ℝ that are close.  We 

will call this functional Ω(𝑓). From this we get that the optimal fit for our data will 

satisfy the Tikhonov regularization problem: 

inf {𝐶∑𝑣(𝑓(𝑥𝑖), 𝑦𝑖) +  Ω(𝑓)/2}

𝑁

𝑖=1

  [2] 

In this expression C>0 is called the regularization parameter [2] and is used to set the 

tradeoff between under and over fitting to the data set. 

 For the smoothness functional we can take Ω(𝑓) = ‖𝑓‖𝑘
2. Where ‖𝑓‖𝑘 

signifies the norm of f on the Hilbert space Hk.  

Gram Matrix[7]- The square matrix consisting on pairwise scalar products of 

elements in a Hilbert space or a pre-Hilbert space. 

There exists a 𝜙 such that 𝑘(𝑥, 𝑦) =<𝜙(𝑥),𝜙(𝑦)>, so k has a Gram matrix and it 

will take the form: 



𝐾 =
𝑘(𝑥1 ,𝑥1) … 𝑘(𝑥𝑁,𝑥1)

⋮ ⋱ ⋮
𝑘(𝑥1,𝑥𝑁) … 𝑘(𝑥𝑁, 𝑥𝑁)

 

Because k is symmetric and positive semidefinite K must be as well. From this matrix 

we get the results 𝑓(𝑥𝑖) = (𝐾𝑐)𝑖 and ‖𝑓‖𝑘 = 𝑐
𝑇𝐾𝑐, so the optimization problem 

becomes: 

 𝑃𝑔𝑒𝑛    inf𝑐∈ℝ𝑛
 {𝐶∑𝑣((𝐾𝐶)𝑖, 𝑦𝑖) + 𝑐

𝑇𝐾𝑐/2}

𝑁

𝑖=1

  [2] 

5. Representor theorem 

The representor theorem states that if an SVM optimization problem can be expressed 

as: 

inf {𝐶∑𝑣(𝑓(𝑥𝑖), 𝑦𝑖)+  𝑔(‖𝑓‖𝑘)}

𝑁

𝑖=1

 

and g is non-decreasing, then the optimal solution f can be expressed as  

𝑓(𝑢) =∑𝑐𝑖𝑘(𝑢, 𝑥𝑖

𝑁

𝑖=1

) 

Proof [1] 

Let fs(u)be the projection of f(u)onto the subspace of Hk defined by: 

𝑠𝑝𝑎𝑛(𝑘(𝑢, 𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑁 

 

With fT(u) being the component of f that is perpendicular to fs 

‖𝑓‖2 = ‖𝑓𝑠‖
2 + ‖𝑓𝑇‖

2 ≥ ‖𝑓𝑠‖
2

 

Because g is non-decreasing 

𝑔(‖𝑓‖𝑘
2) ≥ 𝑔(‖𝑓𝑠‖𝑘

2) 

Therefore g is minimized if f lie in the subspace. In addition k has the reproducing 

property so: 

𝑓(𝑥𝑖) =< 𝑓, 𝑘(𝑥𝑖, 𝑢) ≥< 𝑓𝑠 ,𝑘(𝑥𝑖, 𝑢) > +< 𝑓𝑇 , 𝑘(𝑥𝑖, 𝑢) ≥ 

< 𝑓𝑠 , 𝑘(𝑥𝑖, 𝑢) >= 𝑓𝑠(𝑥𝑖)  



Therefore ∑ 𝑣(𝑓(𝑥𝑖), 𝑦𝑖)
𝑁
𝑖=1  depends only on 𝑓𝑠. Together these two result show that 

the optimal f will lie on the subspaces. 

 

6. Using Duality to Solve the 

Optimization Problem 

 Because the optimization problem is convex, but not necessarily differentiable 

it can be difficult to find the solution. To solve this, the paper introduced a dual 

problem using the Fenchel-Moreau conjugate function defined by: 

𝑓∗(𝑝) = sup
𝑥∈ℝ𝑛

{𝑝𝑇𝑥 − 𝑓(𝑥)}[2] 

With the property called the Young-Fenchel inequality [2]: 

𝑓(𝑥)+ 𝑓∗(𝑝) − 𝑝𝑇𝑥 ≥ 0 

And for 𝜕𝑓(𝑥) ≠ ∅ 

𝑝 ∈ 𝜕𝑓(𝑥)     ↔    𝑓(𝑥)+ 𝑓∗(𝑝) = 𝑝𝑇𝑥 

This gives the dual problem: 

 𝐷𝑔𝑒𝑛      sup
                     𝑝∈ℝ𝑛

{−𝐶∑(𝑣(∙, 𝑦𝑖))
∗
(
−𝑝𝑖
𝐶
)− 𝑝𝑇𝐾𝑝 

𝑁

𝑖=1

} [2] 

6.1 Proof for weak duality[2]: 

Because K is positive semidefinite and because of the Young-Fenchel inequality we 

have that: 

0 ≤ 𝐶 [∑𝑣(𝑓(𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

+∑(𝑣(∙, 𝑦𝑖))
∗
(
−𝑝𝑖
𝐶
)

𝑁

𝑖=1

] +
(𝑐 − 𝑝)𝑇𝐾(𝑐− 𝑝)

2
 

=  𝐶 [∑𝑣(𝑓(𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

+∑(𝑣(∙, 𝑦𝑖))
∗
(
−𝑝𝑖
𝐶
)

𝑁

𝑖=1

] + 𝑃𝑇𝐾𝑐−𝑃𝑇𝐾𝑐+
𝑐𝑇𝐾𝑐

2
+
𝑝𝑇𝐾𝑝

2
 

= 𝐶∑𝑣(𝑓(𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

+
𝑐𝑇𝐾𝑐

2
+ 𝐶∑(𝑣(𝑓(∙), 𝑦𝑖))

∗
(
−𝑝𝑖
𝐶
)

𝑁

𝑖=1

+
𝑝𝑇𝐾𝑝

2
 

Therefore: 



−𝐶∑(𝑣(∙, 𝑦𝑖))
∗
(
−𝑝𝑖
𝐶
)

𝑁

𝑖=1

−
𝑝𝑇𝐾𝑝

2
≤  𝐶∑𝑣(𝑓(𝑥𝑖), 𝑦𝑖)

𝑁

𝑖=1

+
𝑐𝑇𝐾𝑐

2
 

So weak duality holds. 

 

 

Now that we have weak duality, if we can show strong duality for the two problems, 

then the solutions will be the same. This means that we can use the dual problem to 

find the solution to the original problem. The condition necessary for this is that:  

(𝑄𝐶)          𝐼𝑚(𝑘) ∩∏𝑟𝑖(

𝑁

𝑖=1

𝑑𝑜𝑚𝑎𝑖𝑛(𝑣(𝑢, 𝑦𝑖)) ≠ ∅ 

Where 𝐼𝑚(𝑘)denotes {𝐾𝑥:𝑥 ∈ ℝ𝑛} and 𝑟𝑖 denotes the interior relative to the affine 

hull. 

Affine combination[6]- The affine combination of points  𝑥 ∈ 𝐷 is the set of finite 

sums with the property 

∑𝜆𝑖𝑥𝑖

𝑛

𝑖=1

      𝑤ℎ𝑒𝑟𝑒   𝜆 ∈ ℝ𝑛  𝑎𝑛𝑑  ∑𝜆𝑖 = 1

𝑛

𝑖=1

 

Affine hull[6]- The affine combination all points in the set. 

 

6.2 Proof of strong duality[2]: 

For the problem 

𝑃𝑔𝑒𝑛    inf𝑐∈ℝ𝑛
 {𝐶∑𝑣((𝐾𝑐)𝑖, 𝑦𝑖)+  𝑐

𝑇𝐾𝑐/2}

𝑁

𝑖=1

  

Let 𝑔(𝑐) = 𝑐𝑇𝐾𝑐/2 

Because 𝑑𝑜𝑚𝑎𝑖𝑛(∑ 𝑣(𝑢, 𝑦𝑖)
𝑁
𝑖=1 ) = ∏ 𝑟𝑖(𝑁

𝑖=1 𝑑𝑜𝑚𝑎𝑖𝑛(𝑣(𝑢, 𝑦𝑖)) we have 

𝐾(𝑟𝑖(𝑑𝑜𝑚𝑎𝑖𝑛(𝑔)) ∩∑𝑣(𝑢, 𝑦𝑖)

𝑁

𝑖=1

= 𝐼𝑚(𝑘) ∩∏𝑟𝑖(

𝑁

𝑖=1

𝑑𝑜𝑚𝑎𝑖𝑛(𝑣(𝑢, 𝑦𝑖)) ≠ ∅ 

Therefore there exists a 𝑝̅ such that [3] 



inf
𝑐∈ℝ𝑛

 {𝐶∑𝑣((𝐾𝑐)𝑖, 𝑦𝑖) +  𝑐
𝑇𝐾𝑐/2}

𝑁

𝑖=1

 = 

 sup
     𝑝∈ℝ𝑛

{−(∑𝐶𝑣(∙, 𝑦𝑖) 

𝑁

𝑖=1

)

∗

(−𝑝) − 𝑔∗(𝐾𝑝)} = − (∑𝐶𝑣(∙, 𝑦𝑖) 

𝑁

𝑖=1

)

∗

(−𝑝̅) − 𝑔∗(𝐾𝑝̅) 

For 𝑞 ∈ ℝ𝑛 we have that 

𝑔∗(𝑞)= {
1

2
𝑞𝑇𝐾−𝑞 𝑖𝑓𝑞 ∈ 𝐼𝑚(𝐾)

+∞              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 𝐾− is the Moore-Penrose pseudo –inverse. Therefore we have that 

𝑔∗(𝑔) =
1

2
(𝐾𝑝̅)𝑇𝐾−(𝐾𝑝̅) =

1

2
𝑝̅𝑇𝐾𝐾−𝐾𝑝̅ =

1

2
𝑝̅𝑇𝐾𝑝̅ 

Therefore 

(∑𝐶𝑣(∙, 𝑦𝑖) 

𝑁

𝑖=1

)

∗

(−𝑝̅) − 𝑔∗(𝐾𝑝̅) = 𝐶 (∑𝑣(∙, 𝑦𝑖) 

𝑁

𝑖=1

)

∗

(−
𝑝̅

𝐶
)− 𝑔∗(𝐾𝑝̅) 

It follows[5] that there exist 𝑝̅ 𝑖 ∈ ℝ𝑛 such that ∑ 𝑝̅𝑖 = 𝑝̅𝑛
𝑖=1  such that 

(∑𝑣(∙, 𝑦𝑖) 

𝑁

𝑖=1

)

∗

(
−𝑝̅

𝐶
) =∑𝑣∗(∙, 𝑦𝑖) (

−𝑝̅𝑖

𝐶
)

𝑁

𝑖=1

 

Therefore 

inf
𝑐∈ℝ𝑛

 {𝐶∑𝑣((𝐾𝐶)𝑖, 𝑦𝑖) +  𝑐
𝑇𝐾𝑐/2}

𝑁

𝑖=1

 = −𝐶∑𝑣∗(∙, 𝑦𝑖)(
−𝑝̅𝑖

𝐶
)−

1

2
𝑝̅𝑇𝐾

𝑁

𝑖=1

𝑝̅ 

Combining this with the weak duality we get that 𝑝̅ must be the optimal solution to 

𝐷𝑔𝑒𝑛. 

 

 

The final result that we must have in order to use duality, is to find the 

conditions for which 𝑃𝑔𝑒𝑛−𝐷𝑔𝑒𝑛 = 0. 

6.3 Theorem[2]: Let (QC) be satisfied. Then 𝑐̅ is an optimal solution for𝑃𝑔𝑒𝑛 

if and only if there exists an optimal solution 𝑝̅ of 𝐷𝑔𝑒𝑛 such that 



1. 
−𝑝̅𝑖

𝐶
= 𝜕𝑣(∙, 𝑦𝑖)((𝐾𝑐)̅𝑖) 

2. 𝐾(𝑐̅ − 𝑝̅) = 0 

Proof[2]: 

From strong duality we have that there exists an optimal solution 𝑝̅ of 𝐷𝑔𝑒𝑛 such that: 

𝐶∑𝑣((𝐾𝑐̅)𝑖,𝑦𝑖) + 𝐶∑(𝐾𝑐̅)𝑖
𝑝̅𝑖
𝐶

𝑁

𝑖=1

+

𝑁

𝑖=1

𝐶∑𝑣∗(∙, 𝑦𝑖) (
−𝑝̅𝑖

𝐶
)+

1

2
𝑝̅𝑇𝐾

𝑁

𝑖=1

𝑝̅ +
𝑐̅𝑇𝐾𝑐̅

2

− 𝑝̅𝑇𝐾𝑐̅ = 0 

This is equivalent to 

{
𝑣((𝐾𝑐̅)𝑖, 𝑦𝑖) + 𝑣

∗(∙,𝑦𝑖)(
𝑝𝑖̅
𝐶
) = (𝐾𝑐̅)𝑖

𝑝̅𝑖
𝐶

(𝑐̅ − 𝑝̅)𝑇𝐾(𝑐̅ − 𝑝̅) = 0
 

By the properties of the Young-Fenchel inequality the first statement is equivalent to 

−
𝑝̅𝑖

𝐶
∈ 𝜕𝑣(∙, 𝑦𝑖)((𝐾𝑐)̅𝑖). The second statement is equivalent to 𝐾(𝑐̅ − 𝑝̅) = 0. 

7. Applying Duality 
7.1 The 𝜺-insensitive loss function 

𝑣𝜀(𝑎, 𝑦) = (|𝑎 − 𝑦|− 𝜀)𝜀 = {
0, |𝑎 − 𝑦| ≤ 𝜀
|𝑎 − 𝑦|, 𝑒𝑙𝑠𝑒

 

This loss function will not be differentiable, so we cannot use the gradient descent 

method to find its minimum. Instead we will use the duality method outlined above to 

create a differentiable dual problem that will give us a minimization of this loss 

function.  

  

Derivation of the dual problem[2]: 

Using the conjugate function as defined earlier we get that for 𝑧, 𝑦 ∈ ℝ: 

−(𝑣(∙, 𝑦))
∗
= − sup

𝑎∈ℝ
{𝑧𝑎 − (|𝑎 − 𝑦| − 𝜀)+} = inf        𝑎∈ℝ

{−𝑧𝑎+ (|𝑎 − 𝑦| − 𝜀)+} 

From here we can replace (|𝑎 − 𝑦| − 𝜀)+ with 𝑡 such that 𝑡 ≥ 0 and                  𝑡 ≥

(|𝑎 − 𝑦|− 𝜀)+ so we get: 

−(𝑣(∙, 𝑦))
∗
= inf

                                      𝑎∈ℝ
{−𝑧𝑎 + 𝑡} 

 



 

 

In order to find the correct value for we use the optimization: 

−(𝑣(∙, 𝑦))
∗
= inf

                                      𝑎∈ℝ

{−𝑧𝑎 + 𝑡} = 𝑠𝑢𝑝
𝜆,𝛽≥0

{ 𝑖𝑛𝑓
𝑎,𝑡𝜖ℝ

{−𝑧𝑎 + 𝑡 + 𝜆|𝑎 − 𝑦|− 𝜆𝜀 − 𝜆𝑡 − 𝛽𝑡}}  

= 𝑠𝑢𝑝
𝜆,𝛽≥0

{ 𝑖𝑛𝑓
𝑎,𝑡𝜖ℝ

{−𝑧𝑎+ 𝜆|𝑎 − 𝑦|}+𝑖𝑛𝑓
𝑎,𝑦𝜖ℝ

{𝑡 − 𝜆𝑡 − 𝛽𝑡} − 𝜆𝜀} 

 

Because 

𝑖𝑛𝑓
𝑎𝜖ℝ

{−𝑧𝑎 + 𝜆|𝑎 − 𝑦|} = {
−𝑧𝑦, 𝜆 ≥ |𝑧|

−∞,             𝑒𝑙𝑠𝑒
 

And 

𝑖𝑛𝑓
𝑡𝜖ℝ
{𝑡 − 𝜆𝑡 − 𝛽𝑡} = {

0, 𝜆 + 𝛽 = 1
−∞,             𝑒𝑙𝑠𝑒

 

We have that for |𝑧| ≤ 1, 𝜆 + 𝛽 = 1 so: 

 

−(𝑣(∙,𝑦))
∗
= 𝑠𝑢𝑝

𝜆,𝛽≥0
{−𝑧𝑦−𝜆𝜀} 

 

Because we have |𝑧| and a lower bound of 𝜆, and in order for −𝑧𝑦−𝜆𝜀 to be 

maximized, 𝜆 must be minimized, we get that 𝜆 = |𝑧| . From here we can get a 

formula for the conjugate loss function: 

−(𝑣(∙, 𝑦))
∗
(𝑧)= {

−𝑧𝑦 − 𝜀|𝑧|, |𝑧| ≤ 1
−∞, 𝑒𝑙𝑠𝑒

 

This this gives us the dual problem for the 𝜀-insensitive loss function: 

sup
𝑃∈ℝ𝑁

{−
𝑃𝑇𝐾𝑃

2
+∑𝑃𝑖𝑦𝑖− 𝜖|𝑃𝑖|

𝑁

𝑖=1

} 

This problem is differentiable at as long as 𝑃𝑖 ≠ 0, so this optimization problem is 

much easier to solve than the original problem. 

7.2 The Huber Loss Function 

This loss function is defined by  



𝑣𝐻(𝑎, 𝑦) = {
𝜀|𝑎 − 𝑦|−

𝜀2

2
, |𝑎 − 𝑦| > 𝜀

1

2
|𝑎 − 𝑦|2 , |𝑎 − 𝑦| ≤ 𝜀

 

This loss function is not differentiable on the transition from |𝑎 − 𝑦| > 𝜀 to |𝑎 − 𝑦| ≤

𝜀, which makes it difficult to solve directly. However, we can generate a 

differentiable dual problem that will allow us to optimize using this loss function. 

Derivation of the dual problem[2]: 

The conjugate for this loss function for 𝑧, 𝑦 ∈ ℝ will be: 

−(𝑣𝐻(𝑎,𝑦))
∗
(𝑧) = −𝑠𝑢𝑝

𝑎∈ℝ
{𝑧𝑎 + 𝑣𝐻(𝑎, 𝑦)} = 𝑖𝑛𝑓

𝑎∈ℝ
{−𝑧𝑎− 𝑣𝐻(𝑎, 𝑦)} 

= min

{
 

 
𝑖𝑛𝑓
𝑎∈ℝ

|𝑎−𝑦|≤𝜀

{−𝑧𝑎 +
|𝑎 − 𝑦|2

2
}, 𝑖𝑛𝑓

𝑎∈ℝ
|𝑎−𝑦|>𝜀

{−𝑧𝑎 + 𝜀|𝑎 − 𝑦|−
𝜀2

2
}

}
 

 
 

= min

{
 
 

 
 𝑖𝑛𝑓

𝑎∈ℝ
|𝑎−𝑦|≤𝜀

{−𝑧𝑎 +
|𝑎 − 𝑦|2

2
}, 𝑖𝑛𝑓

𝑎∈ℝ
𝑎>𝜀+𝑦

{−𝑧𝑎 + 𝜀(𝑎 − 𝑦)−
𝜀2

2
},

 𝑖𝑛𝑓
𝑎∈ℝ
𝑎>𝑦−𝜀

{−𝑧𝑎 + 𝜀(𝑦 − 𝑎) −
𝜀2

2
}  

}
 
 

 
 

 

In the first infimum we get 

 𝑖𝑛𝑓
𝑎∈ℝ
𝑎>𝜀+𝑦

{−𝑧𝑎 + 𝜀|𝑎 − 𝑦| −
𝜀2

2
} =

{
  
 

  
 

𝜀2

2
− 𝑧𝑦 −

𝑦2

2
, 𝑧 < −𝜀

−𝑧2

2
− 𝑧𝑦 −

𝑦2

2
, 𝑧𝜖[−𝜀,𝜀]

𝜀2

2
− 𝑧𝑦 − 𝑧𝜀 −

𝑦2

2
, 𝑧 > 𝜀

 

For the second 

𝑖𝑛𝑓
𝑎∈ℝ
𝑎>𝜀+𝑦

{−𝑧𝑎 + 𝜀(𝑎 − 𝑦)−
𝜀2

2
} = {

𝜀2

2
− 𝑧𝑦 − 𝑧𝜀, 𝑧 ≤ 𝜀

−∞, 𝑒𝑙𝑠𝑒
 

 

And finally for the third 



 𝑖𝑛𝑓
𝑎∈ℝ
𝑎>𝑦−𝜀

{−𝑧𝑎 + 𝜀(𝑦 − 𝑎)−
𝜀2

2
} = {

𝜀2

2
− 𝑧𝑦 + 𝑧𝜀, 𝑧 ≥ −𝜀

−∞, 𝑒𝑙𝑠𝑒
 

 

 

By combining these we get that 

−(𝑣𝐻(𝑎, 𝑦))
∗
(𝑧)

= {
min{

−𝑧2

2
− 𝑧𝑦 −

𝑦2

2
, −

𝜀2

2
+ 𝑧𝑦 − 𝑧𝜀,

𝜀2

2
− 𝑧𝑦 − 𝑧𝜀}, 𝑧 ∈ [−𝜀, 𝜀]

−∞, 𝑒𝑙𝑠𝑒

 

= {
−𝑧2

2
− 𝑧𝑦 −

𝑦2

2
, 𝑧 ∈ [−𝜀, 𝜀]

−∞, 𝑒𝑙𝑠𝑒
 

This gives us the dual problem 

𝑠𝑢𝑝
𝑃∈ℝ𝑁

{−
𝑃𝑇𝐾𝑃

2
+∑𝑃𝑖𝑦𝑖 −

𝑃𝑖
2

2𝐶
−
𝑦𝑖
2

2

𝑁

𝑖=1

} 

which is differentiable with respect to 𝑃, so it will be possible to find a solution. 

8. Conclusion 
 By using dual optimization problems we are able to greatly expand the variety 

of loss functions that we can use for to fit SVMs to data. Trying to minimize the loss 

function directly prevents us from using gradient descent for non-differentiable loss 

functions, but by finding a dual optimization, the problem can become much simpler 

to solve. This can be seen in the 𝜀-insensitive loss function (7.1). At the points 

|𝑎 − 𝑧| = 𝜀 it is not even continuous, so crossing that boundary in the optimization 

process would be very difficult. On the other hand the dual optimization does not 

have this issue. Different loss functions behave differently, and as a result will give 

different results when used for regression. This means that when we fit a function to 

our data, some loss functions may perform better in different circumstances. Because 

of this, by expanding the variety of loss functions at our disposal, we have more 

opportunities to tune the loss function that we use to our specific regression problem. 
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