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Addressing the Hill Function within a Model 
of Gene Expression Based on Random 
Dynamical Systems Reveals Modularity 
Properties of Gene Regulatory Networks 

 Differential gene expression has broad implications on topics including but not 

limited to phenotypic diversity among clonal populations, cellular differentiation 

and fate, methodologies for biological regulation, tumorigenesis and a vast array 

of disease dynamics.  Unraveling information contained within the genome is 

thereby critical to understanding cellular dynamics and directing bioengineering 

efforts. While research is currently being conducted to empirically characterize 

gene regulatory networks and trends within gene expression, a majority of the 

genome still remains a mystery. Developing methodologies to characterize and 

predict gene expression would then serve as an excellent tool to accelerate novel 

discoveries regarding signaling networks and trends within the genome, as well as 

to better understand spatiotemporal interactions within the cell.  Within A Model 

of Gene Expression Based on Random Dynamical Systems Reveals Modularity 

Properties of Gene Regulatory Networks, F. Antoneli, R. C. Ferreira, and M. R. 

S. Briones introduce a potential methodology to model single-gene systems and 

network motifs based on random dynamical systems [1].   This paper seeks to 

address the usage of the Hill Function within this described model of gene 

expression. 



I. Introduction 

While the Hill functions were originally constructed as a means to model hemoglobin affinity to 

oxygen, the functions have since been commonly used to model the equilibrium state of the 

affinity between n ligands binding to one receptor [2].  Beginning in the sixties the Hill function 

began to be commonly used to model protein binding onto select regions of the genome, as 

means to accurately predict protein ability to modulate gene expression rates.  A key feature of 

the model is its sigmoidal binding curve, which is nearly universally evidenced in empirically 

characterized titration curves.  Here we attempt to define and explicate the logic behind the Hill 

functions, and the mechanism by which they enrich F. Antoneli, R. C. Ferreira, and M. R. S. 

Briones’ model of network interactions. 

II. Background 

I will begin by the providing background on the biological context of the paper. A gene is 

defined biologically as the contiguous DNA sequence necessary to make a functional protein. As 

per the central dogma, gene expression may be described as a two-step process.  Information 

contained in the form of a nucleotide sequence in the DNA is first transcribed into an mRNA 

transcript within of the nucleus. The mRNA transcript is then processed and exported from the 

nucleus to the cytosol, where the ribosome may bind and translate the mRNA transcript into an 

amino acid sequence.  The sequence may then fold and potentially oligomerize into a functional 

protein (the product of gene expression).  Protein functionality may be orthogonally controlled 

by availability of coenzymes/cofactors within the cytosol or by ligand binding, depending on the 

specific conformation of the protein. 

All steps within the process are tightly regulated.  All of the genome is contained within the 

nucleus, though mRNA and proteins are free to disburse within the cytosol or among specific 

organelles. A gene may be turned “on” or “off” depending on its availability to be accessed by 

the cellular machinery.  DNA compaction may be a local or global event depending on specific 

molecular additions (classified as epigenetic modifications); generally, compaction is analogous 

to gene silencing (“off”) and unwinding of nucleosomes allows for active transcription (“on”).  

mRNA transcripts are regulated by their stability and accessibility to cellular machinery; the 

extent to which a gene is transcribed is dictated by the rate at which the mRNA molecule may be 

translated and conversely by the rate at which the mRNA degrades within the cell.   

Proteins, in addition to being regulated by their stability, may also be regulated by ligand 

binding, degradative tags, substrate availability, and several other mechanisms.  Frequently, 

proteins may have more than one binding site, for which its functionality may be modulated in a 

variety of mechanisms—allosteric binding, competitive binding, orthogonal modulators, etc. 

This profound ability ligands within the cytosol to bind and modulate protein activity and or 

functionality was the original purpose for studying the Hill functions. However, a topic which is 

even more compelling, is protein ability to modulate and alter the genome via direct binding.  

Notably, proteins provide most of the molecular machinery of the cell; protein functionality may 

include regulating gene expression (in the form of a transcription factor) and or altering genetic 

compaction (in the form epigenetic control).  Transcription factors bind specific sequences of 



DNA adjacent to coding regions and may accelerate or decelerate transcription by recruiting or 

blocking machinery necessary for forming a RNA transcript.  Epigenetic controls are 

modifications to DNA which alter gene packaging.  Thus, utilizing the Hill functions as a 

mechanism to model protein binding affinity to select regions of the genome is a far more 

sophisticated and complex usage of the model.  Note that degraded mRNA transcripts and or 

proteins sequences are nonfunctional.   

A single gene system analyzes expression of a single gene and is genetic byproducts.  Network 

dynamics delve into the complex topic of gene to gene interactions, which is often more 

representative of regulatory networks in the cell.  An autoregulated motif is a specific class of 

interactions in which the gene expression byproduct influences the rate of transcription of the 

gene from which it was transcribed.  A classic example is the Oct4 protein, for which, when 

transcribed serves as a transcription factor to accelerate its own transcription.   

III. Framework for the Hill Function 

For the framework of this paper, let us address the scenario for which the transcription factor 

binding target (which here represents the gene of interest) has r binding sites.  Affinity may be 

variable, as will be discussed.  The Hill function models a simple scenario.  Given r transcription 

factors 𝐿 which bind to binding site 𝐸 we have the general equilibria reaction:  

𝑟𝐿 + 𝐸 ⇆ 𝐸𝑟𝐿 

Let [𝑋] represent the cellular concentration of molecule X.  As in accord with the literature, the 

equilibria constant, 𝐾𝑑 will be a constant specific to the gene of interest and transcription factor 

complex.  By definition of an equilibria constant we have also:  

𝐾𝑑 =
[𝐸𝑟𝐿]

[𝐿]𝑟[𝐸]
 

Furthermore, the model presumes that the total quantity of binding sites exists within a steady 

state.  Thus, the total cellular concentration of a select binding sites, bound or unbound, is 

constant within the model, that is: 

[𝐸]𝑡𝑜𝑡𝑎𝑙 = [𝐸𝑟𝐿] + [𝐸] 

 

IV. Hill Function Derivations 

The Hill functions described the ratio of bound and unbound binding sites.  Let us describe the 

functions as 𝐻1(𝐿) and 𝐻2(𝐿), respectively [2].  In the single ligand case, we have the Hill 

functions: 

𝐻1([𝐿]) =
[𝐸𝑟𝐿]

[𝐸]𝑡𝑜𝑡𝑎𝑙
=

[𝐿]𝑟

(𝐾𝑑)𝑟 + [𝐿]𝑟
               𝐻2([𝐿]) =

[𝐸]

[𝐸]𝑡𝑜𝑡𝑎𝑙
=

(𝐾𝑑)𝑟

(𝐾𝑑)𝑟 + [𝐿]𝑟
 

A critical component of both functions is monotonicity [2], which readily models physical 

phenomena.  As the cell becomes saturated with a specific transcription factor, the concentration 



of bound sites augments in a sigmoidal fashion—slow as the sites must physically approach and 

bind the ligand in the correct concentration, then rapidly, as the concentration of ligands exceed 

available binding sites. On the other hand, the concentration of unbound sites diminishes, which 

is expected by the steady state assumption.  A critical component of the Hill function is that it 

remains site specific, the binding coefficient will dictate the concentration necessary to saturate 

the binding site.  To demonstrate this binding coefficient dependability, as suggested in [2], take 

𝑦 =
[𝐿]

𝐾𝑑
.  Both Hill functions may then simplify:  

𝐻1(𝑦) =
(

[𝐿]
𝐾𝑑

)
𝑟

(𝐾𝑑)𝑟 + (
[𝐿]
𝐾𝑑

)
𝑟 =

𝑦𝑟

1 + 𝑦𝑟
               𝐻2(𝑦) =

(𝐾𝑑)𝑟

(𝐾𝑑)𝑟 + (
[𝐿]
𝐾𝑑

)
𝑟 =

1

1 + 𝑦𝑟
  

Let us examine in detail the Hill function which gauges the ratio of ligand bound complexes 

(𝐻1(𝑦)).  Let us consider the variable 𝑘 = 𝑘𝑑, which is fixed depending on the ligand of interest 

(𝑦).  We now have the three-variable function, which may gauge ligand cooperativity to its 

binding site of interest: 

𝐻1(𝑟, 𝑘, 𝑦) =
𝑦𝑟

𝑘 + 𝑦𝑟
   

In this manner, k remains the equilibria constant specific to dissociation, y indicates the 

transcription factor interest and r functions as the Hill coefficient.  Here, let 𝑟 ∈ ℝ+, where 𝑟 > 1 

indicates positive cooperativity, and 0 < 𝑟 < 1 would indicate negative cooperativity, and 𝑟 = 1 

indicate independent binding, in accordance with Michaelis-Menten kinetics [1].  Note that, 

taking the limit as r approaches infinity, we see the cooperativity is highly dependent on whether 

the concentration of transcription factors exceeds, equals, or is less than the associated 

dissociation constant:  

𝑟 → ∞  𝐻1(𝑟, 𝑘, 𝑦) → 1 if 𝑦 > 1 

𝐻1(𝑟, 𝑘, 𝑦) → 0 if 𝑦 < 1 

𝐻1(𝑟, 𝑘, 𝑦) →
1

𝑘+1
 if 𝑦 = 1 

However, considering the limit as r approaches zero, we see the concentration of transcription 

factors will not affect cooperativity, indicating a lack of self-regulation. 

𝑟 → ∞  𝐻1(𝑟, 𝑘, 𝑦) →
1

𝑘+1
  

As per [1], the limits as r ranges from zero to infinity develop a schematic for depicting the “on” 

or “off” state of the gene.   

V. Mathematical Context 

Let us first define the mathematical framework for which this model is approached. 



𝑀 is a sigma-field  (sigma-algebra) if it contains the base set and is closed under complements 

and countable unions [pp.29, 3].  That is, 𝑀 is a sigma-field if the following are true: 

o ℝ ∈ 𝑀 

o If 𝐸 ∈ 𝑀, then 𝐸𝑐 ∈ 𝑀 

o If  𝐸𝑛 ∈ 𝑀, 𝑛 = 1,2, …, then ⋃ 𝐸𝑛 ∈ 𝑀∞
𝑛=1  

Given 𝐵 = ⋂{𝑀| 𝑀  𝑖𝑠 𝑎 𝜎 − 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠}, then 𝐵 is the sigma-field 

generated by all intervals.  The elements of 𝐵 are Borel Sets [pp.40, 3]. 

A probability space may be represented as  (S, X, Q), where 𝑆 is an arbitrary set, 𝑋 is a sigma-

field of subsets of S, and 𝑄 is a measure on 𝑋 such that 𝑄(𝑆) = 1.  A random variable will 

refer to a measurable function.  Hence a random variable is defined as follows: if (S, X, Q) is a 

probability space, then  R: S →  ℝ is a random variable if for all a ∈ ℝ, the set R−1([a, ∞)) =
{ω ∈ S|R(ω) ≥ a} ∈ X [pp. 66, 3].  A Bernoulli random variable is a particular class of 

random variables, such that j if a Bernoulli random variable if 𝑃(𝑗 = 1) = 𝑝 and 𝑃(𝑗 = 0) =

1 − 𝑝, for some 0 < 𝑝 < 1, we denote a 𝑗 ~ 𝐵𝑒𝑟(𝑝). 

X, Y are independent if the σ-fields generated by them are independent ⟺ for any Borel sets B 

and C in ℝ, P(X−1(B) ∩ Y−1(C)) = P(X−1(B))P(Y−1(C)), where 𝑃𝑥(𝐵) = 𝑃(𝑋−1(𝐵)) which is 

the probability distribution of the random variable X  [pp.68, 3]. A set of random variables 

(𝐗𝐧)𝐧≥𝟏 are independent if for any k ∈ ℕ, the variables X1, … , Xk are independent. [pp.244, 3]. 

A Random Dynamical System refers to the triplet (S, Γ, Q) where S is the state space, Γ is a set 

of maps from S onto itself, and Q is the probability distribution of Γ [pp. 245, 4].  The system has 

distinct pattern of change:  

o The system begins in an initial state x1 ∈ S 

o γi ∈ Γ is chosen in accord to the distribution dictated in Q 

o x2 = γ1(x1) within the first interval  

The sequence of xn is thereby a Markov Process.  By definition [pp. 119, 4], on state space 𝑆, a 

sequence of random variables {𝑥0, 𝑥1, … , 𝑥𝑛} with values in 𝑆 is a discrete parameter Markov 

Process if, for each 𝑛 ≥ 0, the conditional distribution of 𝑥𝑛+1, given {𝑥0, 𝑥1, … , 𝑥𝑛}, depends 

only on 𝑥𝑛.   

On the other hand, a collection of random variables is considered IID (independent and 

identically distributed) if each random variable 𝑥𝑖 ∈ {𝑥0, 𝑥1, … , 𝑥𝑛}  is mutually independent and 

has identical probability distribution. 

VI. Introduction to the Single Gene Mathematical Model 

Let us introduce the following variables with respect to discrete variable n ∈ ℕ, where n 

indicates a set time point.  Let the variable xn denote the number density of mRNA molecules 

produced between two successive observations.  Let yn be the number density of proteins 

produced between two success observations.  Let the constant variables δ, γ, α, β denote 

respectively: the mRNA production rate, the mRNA degradation rate, the protein degradation 



rate and the protein production rate.  Let us introduce the discrete variable In  that we will use to 

depict respectively the state of the mRNA molecule or the gene of interest.  Let In be a state 

variable with two states, In = {0 = OFF, 1 = ON}.  We have then:  

xn+1 = (1 − γ)xn + δIn 

yn+1 = (1 − α)yn + βxn 

Under this parameter x0, y0 are independent random variables independent of the state process 

In.  Hence, the process (In, xn, yn) is Markovian; its state space is S = {0,1}×ℕ2. 

Here we have that, in the state where the gene is considered “off,” the number density of mRNA 

molecules will be solely dependent on the former number density and its rate of degradation:  

xn+1 = (1 − γ)xn 

And, when the gene is considered “on”, an additional factor is considered into the mix:  

xn+1 = (1 − γ)xn + δ 

Hence we are now provided a mechanism by which the number density of the mRNA molecules 

is highly dependent on the state of the gene, as would be predicted biologically.  The concept 

following the number density of proteins follows the same logic, though since the mechanism by 

which the cellular protein concentration augments is dependent on mRNA, its growth rate is 

correlated to the precense of mRNA.  Here we have derived a mathematical model which is 

biologically sound. 

VII. Hill Function Compatibility 

Theorem B: The classical rate equations of kinetic theory (as described in Section VI) coupled 

through Hill input functions can be readily obtained from the stochastic model, by taking the 

averages of the state variables in the internal dynamics of each single gene sub-system.  [1]. 

Hence the Hill function may be a useful mechanism by which gene expression may be modelled 

among a variety of network dynamics. 

VIII. Conclusion 

Within the context of a clonal population (for which the genomic information contained is 

identical), alternate gene expression is responsible for profound phenotypic differences among 

select individuals.  Only recently was the full human genome fully sequenced, yet incredible 

discoveries in gene regulation, gene expression and gene to gene crosstalk continue to be 

published. Empirical characterization may often be monotonous and labor intensive.  Currently 

our ability to gather precise spatiotemporal data regarding gene regulation is limited due to the 

rapid rate of cellular reactions, and the limits of current experimental methodologies. 

Mathematical models may serve as a strong predictive force for novel discoveries in genomics 

and gene signaling networks, and hopefully accelerate and enhance our understanding of the 

mysteries of the cell, with profound implications in bioengineering, disease dynamics and 

pharmacology.  Hence, fine-tuning mathematical models to accurately represent biological 



phenomena is critical for accelerating discoveries in this rapidly growing field.  Antoneli, 

Ferreira and Briones provide a novel and insightful mechanism by which we many model gene 

to gene interactions in eukaryotic and prokaryotic cell models based on the theory of random 

dynamical systems, which is thereby enriched by its use of the Hill function.  Their insight may 

pave the future for computational models of gene expression, with the potential to rapidly 

enhance our understanding of molecular biology.  
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