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1 Introduction

When considering a simple favorable bet (e.g. flipping a coin for
money), a gambler must do more than make the binary decision
of whether or not to play, he must also determine an appropriate
amount of money to bet. The Kelly Criterion, provides a theory
of optimal resource allocation when it comes to favorable bets and
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thus provides a criterion for bet size in a gamble to maximize long
run utility. We will first explore the Kelly Criterion understanding
both its derivation (A modified version of the derivation presented
in Thorpe [1]) and the intuition we can gain from it about optimal
bets. We will then discuss a practical application of the Kelly Cri-
terion in determining investment amounts in the U.S. stock market
to maximize gain.

2 Definitions

• Random Variable: A random variable is a function that val-
ues to each of an experiment’s outcomes. For example a ran-
dom variable X could represent the number of heads I get in
5 flips of a coin. A random variable could be either discrete or
continuous depending on the values it can take.

• Probability distribution: A probability distribution is some
function that defines probabilities associated with all outcomes
of a random variable.

• Expectation: For a discrete random variable, X the expecta-
tion is E[X] =

∑∞
i=1 xi∗P (X = xi), where xi is a possible value

of X. Analogously for a continuous random variable, Y , the ex-
pectation is E[Y ] =

∫∞
−∞ yf(y)dy, where f(y) is the probability

density function at y. Additionally, one useful fact for expec-
tation calculations is the linearity of expectation, the fact
that expectation is a linear function (as we can see from the
definitions), so for random variables X and Y and constants a
and b, E[aX + bY ] = aE[X] + bE[Y ].

• Variance: For a random variable, X the variance of X is de-
fined to be V ar(X) = E[(X − E[X])2]. Intuitively variance
provides a measure of how spread out the values of a random
variable are from its expectation (mean).

• Standard Deviation: For a random variable, X with variance
V ar(X) = σ2, we have that the standard deviation of X is√
V ar(X) = σ. This measure tells us how far from the mean

we should expect to see values of this random variable fall.
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3 Motivation

Say we are playing a coin-flipping betting game against an infinitely
wealthy opponent, where each time the coin is flipped you place a
bet on the coin landing heads, receiving the amount you bet if the
coin lands heads, and losing the amount you bet if the coin lands
tails. However say the coin is biased with a probability 1 > p > 1

2
chance of landing heads and q = 1− p chance of landing tails. This
is obviously a favorable bet for you to make as if b is the amount
you bet and X is a random variable representing the total amount
you gain, we can calculate the expectation of X to see that

E[X] = p ∗ b− q ∗ b = (p− q) ∗ b > 0

Because this is a positive quantity, it is definitely worth it to play
this game. Let Xi be a random variable representing the amount
you have after i trials, and say that at the beginning of the game,
you have X0 dollars. The problem we are faced with is trying to
determine the optimal Bi, the amount you will bet on the ith trial.
First we will examine a seemingly obvious strategy of naively trying
to maximize the expectation of this game. The expected amount
you will have after n trials of this game is

E[Xn] = X0 +
n∑
i=1

(p− q)Bi

, however, we know that because p > 1
2
, we have that q < p and so

p− q must be positive. Thus we maximize the expected amount of
money by maximizing Bi; however, in the context of betting, this
amounts to betting as much money as we have (which is the max-
imum we can bet), so Bi = Xi−1. We can trivially see that this
strategy does not make much sense in the real world as if we were to
lose only a single game, we would be bankrupt and the probability
of losing a game after n trials is 1− pn which goes to 1 as n→∞;
using this betting strategy, you are ensuring your ruin in the long
run!
So maximizing expectation evidently does not yield the optimal bet-
ting amount in the long run, as it ensures ruin; additionally, if we
were to instead play so as to minimize the chance of ruin, we would
also minimize the expected gain so neither of these strategies seems
feasible. This is where the Kelly Criterion enters the picture.
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4 The Kelly Criterion

4.1 Main Idea

In the gambling game we just described, the gambling probability
and payoff per bet do not change, and thus, from an intuitive stand-
point, it would make sense that an optimal solution would bet the
same fraction, f , of your money for every trial. The Kelly Criterion
follows from this intuition (in order to allow for this type of frac-
tional betting, we will assume that money is infinitely divisible).
Following this strategy, after n trials if we were to call S the num-
ber of successes and F the number of failures (so S + F = n) we
would have that

Xn = X0(1 + f)S(1− f)F

. We have that e
n log(Xn

X0
)(1/n)

= Xn

X0
meaning that log(Xn

X0
)(1/n) mea-

sures the exponential rate of increase per trial. For the Kelly Cri-
terion, we are concerned with maximizing the expectation of this
growth.

4.2 Deriving The Criterion

We define the growth rate coefficient to the the expectation of the
exponential rate of increase per trial

G(f) = E[log(
Xn

X0

)(1/n)] = E[
S

n
log(1 + f) +

F

n
log(1− f)]

. We can compute this expectation by noticing that S is a Binomial
random variable with parameters n and p and thus E[S] = np.
Similarly E[F ] = n(1 − p) = nq. Via the linearity of expectation,
we can then get that

G(f) = p log(1 + f) + q log(1− f)

. We now will attempt to maximize G(f) via simple calculus. We
can easily calculate that

G′(f) =
p

1 + f
− q

1− f
=

p− q − f
(1 + f)(1− f)

4



and by setting G′(f) = 0 and solving for f we can find that f = p−q.
We can further verify that this is indeed a maximum by taking a
second derivative to find that

G′′(f) =
−f 2 + 2f(p− q)− 1

(1− f 2)2

which is less than 0 at f = p− q so we have a local maximum. We
can further confirm this is a global maximum by noting that it is
the only critical point and G(0) = 0 while as limf→1− G(f) = −∞.
So we have that G is maximized at f = p−q (which we will now call
f ∗). This means that, on each trial, you want to bet the fraction
f ∗ = p − q of your total money in order to maximize the expected
exponential rate of increase.

4.3 Intuition and Further Analysis

So we have that G is maximized at f = f ∗ = p − q. Further
examining some properties of G, we can see that G(0) = 0, so, as
we can intuitively guess, the exponential rate of growth will be 0 if
we bet 0$ and limf→1− G(f) = −∞ meaning that, as we saw earlier,
betting all your money is guaranteed to lose you all your money. We
can also note that because G(f ∗) is a maximum (which is positive),
as f → 1 we have G(f) → −∞, and G is continuous, there must
also be some crossover point, call it fc, where G(fc) = 0. You can
clearly see both f ∗ and fc in the graph below where f ∗ is the peak
of the curve and fc is the point at the rightmost x-intercept.
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One interesting thing to note about G that gives us some additional
intuition is that we can rewrite G(f) = 1

n
E(logXn) − 1

n
(logX0).

However, X0, the amount of money you start with is given, so for n
fixed, we can see that maximizing G(f) is the same as maximizing
E(logXn). So, for a favorable trial with a probability of success of
p and q = 1− p, the optimal fraction of your money to bet p− q, is
exactly the quantity that maximizes E log(Xn) under this fractional
betting scheme.
There are several additional useful properties of the criterion, such
as the fact that when G(f) > 0 then limn→∞Xn =∞ (any favorable
growth rate will cause the money to infinity in the long run), when
G(f) < 0 then limn→∞Xn = 0 (on the other hand, a negative
growth rate will cause the money to shrink to 0). We can also prove
that any strategy other than maximizing E log(Xn) is worse than

ours (formally that limn→∞
Xn(Φ∗)
Xn(Φ)

=∞ where Φ∗ is a strategy that

maximizes E log(Xn) and Φ is essentially any other strategy), and
finally, that the expected time for your ”running capital” Xn to
reach any predefined number X, is least with a strategy like ours
that maximizes E(logXn).
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5 Stock Market

5.1 Idea

We can view investing in the stock market as a continuous gam-
bling game, and, as such, we will now examine how we can apply
the Kelly Criterion to the stock market. Suppose we have initial
capital X0 and we want to determine the optimal betting fraction
f ∗ to invest each year in S&P 500 stocks. However, unlike in the
previous situation we examined the Kelly Criterion for, there is not
a finite number of outcomes of a bet on a security, so, we will use
a continuous probability distribution as opposed to the discrete one
we were using previously. Additionally to simplify this analysis a
bit, we will ignore inflation, broker’s fees, tax considerations, and
other ancillary factors.

5.2 Derivation

Here we will present a modified version of the proof given in Thorpe
[2]. We will let X be the random variable representing the return
per unit. We will also assume that

P (X = µ+ σ) = P (X = µ− σ) = .5

where µ = E[X], the mean, and σ2 = V ar(X) which means that
σ is the standard deviation. In plain English, this assumption is
simplifying the outcomes of investing in the stock market to two
separate equally likely outcomes. Either your investment is success-
ful in which case your return per unit is a standard deviation above
the mean, otherwise it is unsuccessful in which case your investment
is a standard deviation below the mean.
Now, following analogous steps to before, if we say that the initial
capital you have is V0, we can see that the capital is given by

V (f) = V0(1 + (1− f)r + fX)

where r is the rate of return of capital invested elsewhere (for in-
stance in treasury bonds or a similar stable investment). We can

then say G(f) = E[log(V (f)
V0

)] and via the linearity of expectation
we find that

G(f) = 0.5 log(1 + r + f(µ− r − σ))
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. Now we will divide the time interval into n equal steps in order
to get a situation with n trials analogous to what we had in the
previous section.Now instead of having a single X, we will have n
separate independent Xi’s with mean µ

n
and variance σ2

n
and similar

to before we have that

P (Xi =
µ

n
+

σ√
n

) = P (Xi =
µ

n
− σ√

n
) = .5

We can compute the ratio between our final capital and our initial
capital as

Vn
V0

=
n∏
i=1

(1 + (1− f)r + fXi)

. We now have that the expected exponential rate of growth is
Gn(f) = E[log(Vn

V0
)] and we will attempt to find the limit of this

function as n → ∞ to find the instantaneous rate of growth. We
can expand this expression for Gn(f) into the Taylor series around
f = 0 to get

Gn(f) = r + f(µ− r)− σ2f 2

2
+O(n−(1/2))

. Now we can the limit as n→∞ and see that the O(n−(1/2)) terms
vanish so we can say that the instantaneous rate of growth is

G∞(f) = r + f(µ− r)− σ2f 2

2

. Now, as before, we can use simple calculus to maximize this quan-
tity and can find that f ∗ = µ−r

σ2 . Thus, under our simplifying as-
sumptions we are able to apply the Kelly Criterion to the stock
market and were able to find the optimal amount to bet.

5.3 Example

Now examining actual market data, as given in Rotando [1], the
mean return on a blue chip stock from the S&P 500 for a 59 year
period were µ = .058 and the standard deviation of the returns
were σ = .216. Additionally, we will assume that the alternative
investment is a treasury bond, which has an average rate of return
of .029 over that time period. Thus as per our equation we have
that f ∗ = .058−.029

.2162
≈ .62. Thus as per the Kelly criterion, we should
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be willing to invest 62% of our money in a blue chip stock over the
period of time and put the rest in Treasury bonds. Obviously, there
were several simplifying assumptions made in this calculation and
care should be taken to examine how closely the stock market actu-
ally resembles how we modeled it here before immediately investing
in the market based off this criterion.

6 Conclusion

The Kelly criterion provides a theory backing optimal bet amounts.
We explored the Kelly Criterion in the context of a discrete game
whose outcome was simple win or lose coin flip and then expanded
the discussion to the context of a continuous gambling game based
on the stock market. Overall the Kelly criterion provides a useful
guide to how to structure bets in this sort of game, but, care should
be taken to fully understand how the real world (particularly the
stock market) actually meets the assumptions we made when deriv-
ing the Kelly criterion.
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