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Three major, fundamental, and related theorems regarding the topology of Eu-
clidean space are the Borsuk-Ulam theorem [6], the Hairy Ball theorem [3], and
Brouwer’s fixed-point theorem [6]. Their standard proofs involve relatively sophisti-
cated methods in algebraic topology; however, each of the three also admits one or
more combinatorial proofs, which rely on different ways of counting finite sets—for
presentations of these proofs see [11], [8], [7], respectively. These combinatorial proofs
tend to be somewhat elementary, and yet they manage to extract the same informa-
tion as their algebraic-topology counterparts, with equal generality. The motivation
for this paper, then, is to present the two types of proof in parallel, and to study their
common qualities. We will restrict our discussion to Brouwer’s fixed-point theorem,
which in its most basic form states that a continuous self-map of the closed unit ball
must have a fixed point.

We begin by presenting some basic formulations of Brouwer’s theorem. We then
present a proof using a combinatorial result known as Sperner’s lemma, before pro-
ceeding to lay out a proof using the concept of homology from algebraic topology.
While we will not introduce a theory of homology in its full form, we will come close
enough to understand the essence of the proof at hand. The final portion of the
paper is left for a comparison of the two methods, and a discussion of the insights
that each method represents. Much of this discussion in inspired by Nikolai Ivanov’s
work in [7].
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1 Definitions and background

First, let us denote by Bn and Sn the n-dimensional Euclidean closed unit ball and
sphere, where n ≥ 0:

Bn = {x ∈ Rn : ‖x‖ ≤ 1 }, Sn = {x ∈ Rn+1 : ‖x‖ = 1 }.

Let ∆n and
◦

∆n be the closed and open standard n-simplex ;

∆n = {x ∈ Rn+1 : xi ≥ 0,
∑

xi = 1 },

◦
∆n = {x ∈ Rn+1 : xi > 0,

∑
xi = 1 }.

The following are some of the basic definitions of abstract topology, starting with
the main object of study:

Definition 1.1. A topological space is a set S equipped with a set τ of subsets of S,
such that

(i) The empty set ∅ and the entire set S are both members of τ , i.e., ∅, S ∈ τ .

(ii) If U1, U2, . . . , Un are members of τ , then their intersection U1 ∩U2 ∩ · · · ∩Un is
a member of τ .

(iii) If Ui is a member of τ for every i ∈ I, where I is possibly infinite, then the
union of all the Ui is a member of τ .

The collection of subsets τ is called the topology of the topological space. A subset
U ⊆ S is defined to be an open set of the topological space if U ∈ τ . Likewise, a
subset V ⊆ S is defined to be a closed set of the topological space if its complement
S \ V is in τ .

If we take S = Rn and let τ contain the open sets defined in the normal Euclidean
way, we can verify that n-dimensional Euclidean space is a topological space. In fact,
the topological space is a way of generalizing the familiar properties of open and
closed sets in Euclidean space. It turns out that these properties are even enough to
allow us to define continuity:

Definition 1.2. For a function f from a topological space X to a topological space
Y to be continuous means that for any open subset U in Y , the pullback f−1(U) is
an open set in X.
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Figure 1: The standard 1-simplex as a set in R2, and the standard 2-simplex as a set in
R3. Here ei represents the i-th standard basis vector.

IfX and Y are both Euclidean spaces, this definition is equivalent to the definition
in terms of distance. However, for a general topological space the idea of distance
is not defined, and so we are forced to define continuity only in terms of open sets.
It is the case that many of the usual properties of continuous functions hold for the
above definition, but we will omit such derivations here.

Now we will define two special kinds of continuous function:

Definition 1.3. A retraction r is a continuous function from a topological space X
to a subspace S ⊆ X such that r(x) = x for all x ∈ S.

Here the term subspace indicates that the open sets in S are taken to be the
intersections with S of the open sets in X. In the future, when we treat ∆n, Bn or
Sn as a topological space, we mean to consider it as a subspace of Euclidean space.

Definition 1.4. A homeomorphism h is a continuous function between topological
spaces X and Y such that h is one-to-one and onto, and such that the inverse function
f−1 : Y → X is continuous.

Definition 1.5. Topological spaces X and Y are homeomorphic or topologically
equivalent if there exists a homeomorphism between them.

Homeomorphisms are important because they preserve many important proper-
ties of topological spaces, which we will observe more throughout the paper. As a
first example, consider the property of compactness:
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Definition 1.6. A topological space X is compact when every open covering of X
has a finite subcovering. Here “open covering” refers to a covering of X whose each
member is open in X.

Compactness is not a property that will change if we modify the size, shape, or
orientation of a space. In fact, it is preserved by all homeomorphisms:

Proposition 1.1. If X and Y are topological spaces, h : X → Y is a homeomor-
phism, and X is compact, then Y is compact.

Proof. Let C = {Ui : i ∈ I } be any open covering of Y . Since h−1 is onto,
C ′ = { f−1(Ui) : i ∈ I } covers X, and each f−1(Ui) is open in X by the definition
of continuity. Therefore C ′ has a finite subcovering f−1(U1), f

−1(U2), . . . , f
−1(Un).

Since h is onto, U1, U2, . . . , Un covers Y , and Y is compact.

1.1 Simplices

The standard n-simplex is a topological object which is easy to reason about. It is
so well-behaved, in fact, that we may want to understand other topological spaces
in terms of the different continuous maps from the standard simplex.

Definition 1.7. The j-th face ∆n [j] of the standard n-simplex is the intersection
∆n ∩ { x ∈ Rn : xj = 0 }, where 1 ≤ j ≤ n + 1. The boundary of the standard
n-simplex ∂∆n is the union of its faces.

A face of a simplex has all of the same vertices as the original simplex, save
one. In particular, the j-th face excludes the j-th vertex, so that excluding a certain
vertex of the simplex uniquely determines one of its faces.

Definition 1.8. An n-dimensional simplex σ in a topological space X is a continuous
map σ : ∆n → X. If n ≥ 1, the j-th face of σ is the (n−1)-simplex σ [j] : ∆n−1 → X
which maps

(x1, x2, . . . , xn) 7→ σ(x1, x2, . . . , xj−1, 0, xj, . . . , xn),

where 1 ≤ j ≤ n + 1. In general, a k-dimensional face of σ is a face of a k + 1-
dimensional face of σ. A vertex of σ is a 0-dimensional face, whose image is a single

point. The interior int (σ) is the image of
◦

∆n under σ.

Note that the simplex is defined to be the continuous map itself, not the image.
Note also that the simplex need not be a homeomorphism; in fact, an n-simplex
could have an image consisting of only one point. For this reason, we would like to
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impose stronger conditions on the simplices we consider. It is better to define these
conditions for groups of simplices rather than single ones; this leads us to simplicial
complexes, which intuitively are ways of covering a region using non-overlapping
simplices:

Definition 1.9. A simplicial n-complex K over a topological space X is a finite set
S of simplices in X such that

(i) If σ ∈ S, then each face σ [j] is in S.

(ii) The maximum dimension of any simplex in S is n.

(iii) A simplex in S is one-to-one over its interior, and each point x ∈ X lies in the
interior of exactly one simplex.

(iv) A subset A ⊆ X is open in X if and only if the pullback σ−1(A) is open for
every σ ∈ S.

(v) No two simplices in S share the exact same set of vertices.

In a simplicial complex, we identify each simplex with its vertices, so that σ :=
[v1, v2, . . . , vk+1]. It is easy to see that the face σ [j] is given by [v1, . . . , vj−1, vj+1, . . . , vk+1].

2 The Brouwer fixed-point theorem

The version of Brouwer’s theorem stated here was proved in different ways by L. E.
J. Brouwer [1] and by Jacques Hadamard [5], both in 1910. As one of the first results
of algebraic topology, it remains important throughout many areas of mathematics.
Among other results, Brouwer’s theorem can be used to prove the Fundamental Theo-
rem of Algebra [4], the Perron-Frobenius theorem in linear algebra [2], the existence
of Nash equilibria in game theory [10], and the Jordan curve theorem [9], which
is another fundamental and celebrated topological result. Due to its importance,
Brouwer’s fixed-point theorem has been generalized in numerous ways. However, for
the purposes of this paper the following formulations will be sufficient:

Theorem 2.1 (Brouwer’s fixed-point theorem). Any continuous function f mapping
Bn → Bn has a fixed point, i.e., f(x) = x for some x ∈ Bn. Alternatively, any
continuous function g : ∆n → ∆n has a fixed point.

The theorem holds for a large class of topological spaces besides just Bn and ∆n.
The following more general form is not proved directly, but as a consequence of the
first form:
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Theorem 2.2. If X is a topological space homeomorphic to Bn, then any continuous
function f : X → X has a fixed point.

Proof. Take a homeomorphism h : X → Bn and consider the continuous composition
h ◦ f ◦h−1 : Bn → Bn. By Theorem 2.1 it must have a fixed point h(f(h−1(x))) = x,
and applying h−1 to both sides we have f(h−1(x)) = h−1(x).

A common version of Brouwer’s theorem is as follows. Although we state it
without proof, this statement is implied by Theorem 2.2, since sets satisfying the
hypothesis are homeomorphic to Bn.

Theorem 2.3. If S is homeomorphic to a compact, convex subset of Rn with an
interior point, then any continuous function f : S → S has a fixed point.

A fourth statement turns out to be equivalent to Brouwer’s theorem, and is often
proved instead of the formulations above:

Theorem 2.4 (No Retraction theorem). For n ≥ 1, there is no continuous retraction
from Bn to Sn−1. Alternatively, there is no continuous retraction from ∆n to ∂∆n.
In general, if h : Bn → X is a homeomorphism, there is no continuous retraction
from X to h(Sn−1).

The proof of this equivalence is given in many sources, one of which is [6].

Proof. Given Theorem 2.1, there cannot exist a continuous retraction r mapping
X → h(Sn−1), since the map x 7→ h−1(−r(h(x))) would have no fixed point in Bn.
Conversely, supposing that the fixed-point theorem is false for Bn, we can construct
a retraction. Let f : Bn → Bn have no fixed points, and consider for any x ∈ Bn the
ray ρx(t) = (1− t)f(x) + tx, t ≥ 0, which is nontrivial since x 6= f(x). This ray must
make its closest approach to the origin at a point inside Bn, since it starts inside
Bn. Further, after its closest approach, its distance from the origin only increases, so
after it intersects Sn−1 for the first time it cannot intersect it again. Therefore, let
r(x) be the point ρx(t) where ‖ρx(t)‖ = 1, and notice that r is a retraction. Finally,
ρx(t) is jointly continuous in x and t, by the continuity of f . The value of t at which
‖ρx‖ = 1 also varies continuously in x, since Bn is convex. So g is a continuous
retraction from Bn to Sn−1, and h ◦ r ◦ h−1 is the desired retraction.

Having understood some of the forms of Brouwer’s Theorem, we can proceed to
give proofs.
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3 Combinatorial proof of Brouwer’s theorem

The following proof uses Sperner’s lemma, which is a statement about the possible
ways to label vertices in a grid of simplices (a simplicial complex). By doing so, it
restricts its consideration to only finite amounts of information regarding the contin-
uous function in question. This is part of what makes the method “combinatorial”;
since we concern ourselves only with finite concepts—such as the vertices of sim-
plices and their labellings—the infinite nature of the general continuous function is
irrelevant, and we can focus on counting finitely many combinations of behaviors.

We reproduce the general proof of Sperner’s lemma given in [7]; for a particularly
elegant proof of the two-dimensional case, see [8].

Theorem 3.1 (Sperner’s lemma). If ∆n has a simplicial n-complex K with a set of
vertices V , and a a labelling function ` : V → {1, 2, . . . , n + 1} is such that `(v) 6= j
for v ∈ ∆n [j], then there are an odd number of n-simplices σ for which ` attains
every one of its values on the vertices of σ. We say that such σ are fully-labelled.

Proof. We use induction on n. If n = 1, V is an ordered list of vertices v1, v2, . . . , vr,
and the number of fully-labelled line segments between them is the number of times
`(vi) changes between 1 and 2 when stepping through. But since `(v1) = 1 and
`(vr) = 2, this number must be odd.

Next, assume Sperner’s lemma holds for some n − 1, and take a simplicial n-
complex K over ∆n with a set of vertices V and a labelling function ` satisfying the
hypothesis. Let α1, . . . , αe be the fully-labelled n-simplices of K. Each of these has
exactly one face whose labels include all 1 ≤ j ≤ n, which is found by excluding the
vertex labelled n + 1. Let β1, . . . , βf be the n-simplices on whose vertices ` attains
every value except n + 1. Each of these βi has two distinct vertices which have the
same label; by excluding exactly one of these vertices, we can form exactly two faces
of βi whose labels include all 1 ≤ j ≤ n.

Let γ1, . . . , γg be the (n − 1)-simplices of K contained in ∆n [n+ 1] on whose
vertices ` attains every value 1 ≤ j ≤ n. Note that these are these are the only
simplices in ∂∆n with this property, since any simplex on the boundary which is not
contained in ∆n [n+ 1] is contained within ∆n [j], meaning none of its vertices have
j as a label.
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By the inductive hypothesis, g is odd. Also, since the γi are on the boundary of
∆n, each one is a face of exactly one n-simplex of K.1 Let δ1, . . . , δh be the (n− 1)-
simplices not on the boundary of ∆n, but on whose vertices ` attains every value
1 ≤ j ≤ n as above. Since these δi are not on the boundary of ∆n, each is a face of
exactly two n-simplices of K.2

Let us count the number of pairs σ, σ′ in K such that σ is an n-simplex, σ′ is
a face of σ, and the labels of the vertices of σ′ include all 1 ≤ j ≤ n. On the one
hand, the result should be e + 2f , since letting σ = γi yields one such pair, setting
σ = δi yields two such pairs, and if σ is neither then no faces of σ have the desired
labellings. On the other hand, we should get g + 2h, since setting σ′ = αi yields one
pair, setting σ′ = βi yields two pairs, and no other σ′ have the desired labellings. We
conclude that

e+ 2f = g + 2h.

Since the right-hand side is odd, the left-hand side is also odd, making e odd.

We may now derive Theorem 2.4 from Theorem 3.1 following [7]; in particular we
will prove the second form of Theorem 2.4, which is stated for the standard n-simplex
rather than the ball. Naturally, the proof relies on taking simplicial complexes over
the standard simplex, and at this point we have not proven the existence of any such
simplicial complex. As such, let the simplicial n-complex K0 consist of a simplex
which is the identity map on ∆n, along with all of the k-dimensional faces of this
simplex for k ≥ 0. One can verify that the axioms of a simplicial complex are satisfied
for K0.

We can divide the standard n-simplex into smaller n-simplices as follows:3 for
1 ≤ i ≤ n+1, take τi : ∆n → ∆n to be the simplex which maps x = (x1, x2, . . . , xn+1)
to

1

2
x +

1

2
ei, (1)

1Take x0 in the interior of γi. Each point y within ε > 0 of x0 which is inside the interior of
∆n must lie in the interior of some simplex σy of K. Since simplicial complexes are finite in this
paper, all other simplices of dimension smaller than n are separated from x0 by a nonzero distance,
meaning σy will be an n-simplex at each y as long as ε is small. Let σ∗ be one of the finitely-many
σy which is the σy for y values with ε arbitrarily small. Then x0 ∈ ∂σ∗, and the face of σ∗ containing
x0 must equal γi, since x0 can only be in the interior of one simplex. There are no other n-simplices
with γi as a face, since the points y do not lie in the interiors of multiple simplices.

2The argument is similar to the above, except the points within ε of x0 now lie in the interiors
of two different n-simplices, one for each side of δi.

3There are many ways of subdividing simplices, and this one was chosen because it is intuitive
and easy to visualize.
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where ei is the i-th standard basis vector in Rn+1. Take τn+2 : ∆n → ∆n to be the
simplex which maps x to

c− 1

2
(x− c) =

3

2
c− 1

2
x, (2)

where c = (1/(n+ 1), 1/(n+ 1), . . . , 1/(n+ 1)) is the center point of ∆n. The
images of these maps cover ∆n without overlapping interiors, and if 1 ≤ i ≤ n + 1,
then the i-th face of τi coincides with the i-th face of τn+2. The rest of the faces of
the first n+ 1 simplices lie on the boundary of ∆n.

Using these maps, we may subdivide a simplex σ into n+ 2 smaller simplices by
taking the compositions σ ◦ τi for 1 ≤ i ≤ n + 2. Indeed, the n-simplex of K0 can
be divided into n+ 2 smaller simplices using this method, and those n+ 2 simplices
along with their faces form a simplicial complex K1. Repeating the process, we take
the n-simplices of Kh and apply each of the n+ 2 subdivision maps to each one. The
resulting simplices, along with their faces of all dimensions, constitute the simplicial
complex Kh+1. Some properties to note are that Kh has (n+2)h different n-simplices,
and that the diameter of one of these n-simplices is half that of one of the n-simplices
of Kh−1 (the diameter of a simplex is the maximum Euclidean distance between any
two points in its image).

The most important part of this construction is that for any positive ε, beyond
a certain k all of the n-simplices of Kh have diameter less than ε. This makes our
proof of the No Retraction Theorem possible.

First, though, we prove the Lebesgue Number Lemma, which is used in the proof.

Lemma 3.1 (Lebesgue’s Number Lemma). If X is a compact subset of Rn and U
is an open cover of X, then there is some number δ > 0 such that every closed ball
of radius δ in X is contained within a some element of U .

Proof. Let Br(x) denote the portion of the closed ball of radius r centered at a point
x which lies in X. For a given δ, let Tδ ⊆ X consist of the points x ∈ X such that
Bδ(x) is contained within one element of U . This Tδ is open, since if x0 ∈ Tδ has
Bδ(x0) ⊆ U0 ∈ U , then Bδ(x0) is a finite distance a from X \ U0 and Ba/2(x0) is
contained in Tδ.

The sets Tδ for δ > 0 cover X, since each x ∈ X is contained in some element of
U which must also contain a ball around x. By compactness, a finite number of Tδ
cover X, which means that X = Tδ for some δ.

As a final definition, let the open star st v of a vertex v in one of the Kh be the
union of the interiors of the simplices in Kh for which v is a vertex. Note that the
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diameter of st v cannot be larger than twice the maximum diameter of simplices in
Kh, by the Triangle Inequality.

Proof of Theorem 2.4. Assume for the sake of contradiction that r : ∆n → ∂∆n is a
continuous retraction. The set differences ∂∆n \∆n [j] are open as subsets of ∂∆n,
since the sets Rn+1 \ ∆n [j] are open in Rn+1 (recall that ∂∆n can be treated as a
topological subspace of Rn+1). By continuity of r, the preimages Uj = r−1(∂∆n \
∆n [j]) are open in ∆n, and they must cover ∆n since the ∂∆n \ ∆n [j] cover ∂∆n.
By the Lebesgue number lemma, there is some δ such that balls of radius δ inside
∆n lie inside single sets Uj. If we choose Kh with h large enough that the diameters
of simplices are smaller than δ/2, then we can guarantee that the open stars of the
vertices of Kh lie inside single sets Uj.

We now label the vertices of Kh as follows: given a vertex v, `(v) will be some
j such that r(st(v)) ⊆ ∂∆n \ ∆n [j]. In other words, v will be labelled by some j
such that the retraction r never maps points “near” v to the j-th face of ∆n. This
labelling satisfies the hypothesis of Sperner’s lemma, since if v is on ∆n [j] then st(v)
has a point in the interior of ∆n [j] as a limit point, and by continuity of r, r(st(v))
also has this interior point as a limit point. Therefore r(st(v)) must intersect ∆n [j],
and v is not labelled by j. Hence, by Sperner’s lemma there exists an n-simplex σ of
Kh which is fully-labelled. But the interior int (σ) is in the open star of each of the
vertices of σ, and so r(int (σ)) is contained in ∂∆n \∆n [j] for all j. Since int (σ) is
non-empty, this is a contradiction.

4 Homological proof of Brouwer’s theorem

The idea of homology is to understand a topological space by examining the number
of “holes” it has of a particular dimension. For example, the Euclidean space Rn is
free of holes, while the sphere Sn possesses one n-dimensional hole. There are many
useful theories of homology; here we will introduce the theory of singular homology,
since it leads to a relatively short proof of Brouwer’s theorem. The adjective singular
refers to the fact that we are working with arbitrary continuous simplices, as opposed
to members of simplicial complexes, and that the simplices can have “singularities”
where they are not one-to-one.

4.1 Singular homology

To develop singular homology, we first must define the singular chain, which is an
abstract structure built from simplices. Unlike simplices, though, they carry a notion
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of orientation; a chain can be thought of as a collection of simplices in a topological
space, along with information about the “direction” in which each simplex should
be traversed. For example, the two possible directions for traversing the faces of a
2-simplex correspond to clockwise and counterclockwise. In general, there are only
two possible orientations, which we represent as a sign, “+” or “−”. We can formally
represent this collection of simplices as a sum:

Definition 4.1. A singular n-chain C of a topological space X is a finite formal
sum of n-simplices of X, or of their negations. Symbolically,

C :=
k∑
i=1

±σi ,

where σi : ∆n → X are n-simplices of X. These σi are not required to be distinct,
so σ0 + σ0 is a valid chain. However, any repeated occurrences of a simplex should
have the same sign. The negation −C is formed by reversing the sign of each term.
The sum C1 +C2 of two n-chains is formed by joining their terms and cancelling any
pairs of opposite terms such as σ0 + (−σ0). When working with chains, we use 0 to
denote the empty chain.

Finally, we use the notation Cn(X) to represent the set of all singular n-chains
of X.

It is important to realize that the “+” and “−” appearing here do not represent
any real operations related to the simplices. They are simply formal symbols which
allow us to define singular chains. The sum of two simplices is not defined, and does
not yield a new simplex. The only objects we may add are singular chains of the
same dimension, and doing so produces another chain.

Definition 4.2. If C ∈ Cn(X) is a singular n-chain on a topological space X which
consists of only one simplex σ0, then its boundary ∂C ∈ Cn−1(X) is the singular
(n− 1)-chain

∂C :=
n+1∑
i=1

(−1)i+1σ0 [i] .

In order to define boundaries for chains C of multiple simplices, we let ∂(−C) = −∂C
and ∂(C1 +C2) = ∂C1 + ∂C2. The boundary of a 0-chain is defined to be the empty
chain 0.

Homology involves the study of special types of chains, in particular the chains
without boundary. Intuitively, these are chains whose simplices combine to form
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Figure 2: A representation of a chain consisting of one 2-simplex, and a representation of
its boundary; in truth, we are only depicting the images of these simplices. We treat the
page as part of the topological space R2. The arrows are shorthands for the orientation of
each simplex: when the sign of a simplex is positive, the arrow points towards the vertices
in ascending order, and when the sign is negative it points to the vertices in descending
order.

closed loops or closed surfaces, so that any piece of the boundary of one of its sim-
plices is also a piece of the boundary of another simplex. Chains without boundary
must also have a consistent orientation, so that each piece of boundary of one of
its simplices appears with each of its two possible orientations an equal number of
times.

Definition 4.3. A singular chain C ∈ Cn(X) is a cycle when ∂C = 0.

We are also interested in chains which are themselves boundaries; if C = ∂B,
then one can roughly imagine that C encloses some region of the topological space.
In other words, C does not enclose a hole in the space, since every point enclosed by
C is contained in the images of the simplices of B. Note, however, that this intuition
is not rigorous in the general case.

Definition 4.4. A singular n-chain C of a topological space X is a boundary when
there is some B ∈ Cn+1(X) such that C = ∂B.

Proposition 4.1. A boundary C = ∂B in Cn(X) is a cycle.

Proof. We will assume B consists of a single (n + 1)-simplex σ0. The general case
will then follow from the fact that if C1 and C2 are cycles, so are −C1 and C1 + C2.
By the definition of a chain’s boundary,

C =
n+2∑
i=1

(−1)i+1σ0 [i] ,
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and

∂C =
n+2∑
i=1

(−1)i+1∂ (σ0 [i]) =
n+2∑
i=1

n+1∑
j=1

(−1)i+jσ0 [i] [j] . (3)

Recall that the i-th face of σ0 is defined to be the map

∆n → X : (x1, ... , xn+1) 7→ σ0(x1, ... , xi−1, 0, xi, ... , xn+1).

Assuming i ≤ j, the j-th face of the i-th face of σ0 is the map from ∆n−1 to X given
by

σ0 [i] [j] : (x1, ... , xn) 7→ σ0 [i] (x1, ... , xj−1, 0, xj, ... , xn)

= σ0(x1, ... , xi−1, 0, xi, ... , xj−1, 0, xj, ... , xn).

Similarly, the i-th face of the (j + 1)-st face of σ0 is the map from ∆n−1 to X given
by

σ0 [j + 1] [i] : (x1, ... , xn) 7→ σ0 [j + 1] (x1, ... , xi−1, 0, xi, ... , xn)

= σ0(x1, ... , xi−1, 0, xi, ... , xj−1, 0, xj, ... , xn),

and so it turns out that σ0 [i] [j] = σ0 [j + 1] [i] whenever i ≤ j. Now we split (3)
into two sums, the first with i > j and the second with i ≤ j:

∂C =
n+2∑
i=2

i−1∑
j=1

(−1)i+jσ0 [i] [j] +
n+1∑
i=1

n+1∑
j=i

(−1)i+jσ0 [j + 1] [i] .

Now we reindex the second sum with r = j + 1, s = i, to get

∂C =
n+2∑
i=2

i−1∑
j=1

(−1)i+jσ0 [i] [j]−
n+1∑
s=1

n+2∑
r=s+1

(−1)r+sσ0 [r] [s] .

If we were to switch the order of the summations in the second term, r should range
from 2 to n+ 2, and for any fixed r, s should range from 1 to r − 1. Therefore, the
two sums are equal, and their difference is zero.

The most important types of chains for understanding homology are those which
are cycles but not boundaries. In contrast with the boundaries, these chains can be
thought of as enclosing one or more holes in the underlying space. Of course, there
will be many such cycles corresponding to any one hole in the space; in fact, two
cycles might be said to enclose the same hole exactly when they differ by a boundary.
This insight motivates the following definitions:
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Figure 3: Simplices of a topological space
which is shaped as an annulus. Each 2-simplex
has the counterclockwise orientation. The 1-
cycle C = σ1+σ2+σ3 is homologous to the other
1-cycle D = σ4+σ5+σ6, since C−D is equal to
the boundary of the 2-chain σ7 + · · ·+ σ12. Nei-
ther is a boundary; intuitively, C and D enclose
the same hole in the underlying space.

Definition 4.5. Two n-cycles C1 and C2 of a space X are homologous when their
difference C1 − C2 is a boundary.

Definition 4.6. If C is a cycle of a space X, the homology class of C is denoted
[C] and is defined as the set of cycles which are homologous to C. Every space has
a trivial homology class [0], consisting of all of its boundaries. Given a space X, we
denote by Hn(X) the set of all homology classes of singular n-chains of X.

A topological space X has n-cycles which are not boundaries if and only if it has a
homology class in Hn(X) which is not [0]. This occurs whenever X has a “hole.” As
one might imagine, the space consisting of a single point, {0}, has no n-dimensional
holes for n ≥ 1:

Proposition 4.2. A cycle in Cn({0}) is a boundary for n ≥ 1.

Proof. There is only one n-simplex of {0} for each n, which maps all of ∆n to 0.
We will call this simplex σn, and take Cn to be the chain consisting of just σn. The
boundary of Cn is just an alternating sum of n+1 copies of Cn−1, which is equal to 0
for odd n and Cn−1 for even n ≥ 2. The cycles of {0} with n ≥ 1 are therefore either
zero chains, or chains with odd dimension. For odd n, Cn is the boundary of Cn+1,
and so since each n-cycle is a sum of some number of Cn, each n-cycle is a boundary.
Combined with the fact that 0 is a boundary, this completes the proof.

4.1.1 Maps between chains

An important property of homology is related to the idea that we can apply continu-
ous functions to singular chains. If f : X → Y is a continuous map and σ : ∆n → X
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is an n-simplex of X, then f naturally associates to σ the n-simplex f ◦ σ of Y .
Moreover, if C is a singular n-chain of X given by

k∑
i=1

±σi,

then f associates to C the singular n-chain of Y given by

f(C) :=
k∑
i=1

±(f ◦ σi),

where the sign of each simplex is preserved. As usual, we cancel terms which have the
same simplex but opposite signs. This is necessary since the f ◦σi are not guaranteed
to be distinct for distinct σi. Finally, if 0 is the chain consisting of no simplices, then
f(0) = 0.

This application of f to chains is linear, in that f(−C) = −f(C) and f(C1+C2) =
f(C1) + f(C2). The most important property of this operation, however, is that

f(∂C) = ∂f(C) (4)

for any chain C of X. By appealing to linearity as before, we only need to show the
equality when C consists of a single n-simplex σ0. In this case, f(C) = f ◦ σ0, so

∂f(C) =
n+1∑
j=1

(−1)j+1(f ◦ σ0) [j] .

The j-th face of f ◦ σ0 is the simplex

(x1, . . . , xn) 7→ f(σ0(x1, . . . , xj−1, 0, xj, . . . , xn)),

and so it is equal to f(σ0 [j]). We now have

∂f(C) =
n+1∑
j=1

(−1)j+1f(σ0 [j]) = f(∂C)

as desired.
Among other results, this shows that applying f to a boundary yields a boundary,

and that applying f to a cycle yields another cycle. The identity is also useful because
of the following fact, and because of the definition it makes possible:
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Proposition 4.3. If two n-cycles C1 and C2 of a space X are homologous, then
f(C1) and f(C2) are homologous n-cycles of Y .

Proof. Let C1 − C2 = ∂B for some B ∈ Cn+1(X). Then f(C2) − f(C1) = f(∂B) =
∂f(B).

Definition 4.7. If f : X → Y is continuous, then for each n there is a function
f∗ : Hn(X) → Hn(Y ) which maps a homology class [C] of X to the homology class
[f(C)] of Y . By Proposition 4.2, f∗ is well-defined in that it only assigns a single
result to a given homology class.

A simple fact about the map f∗ is that f∗([0]) = [f(0)] = [0]. This will be useful
in our proof of Brouwer’s theorem, which now follows.

4.2 Proof of No Retraction theorem

Rather than proving Brouwer’s theorem directly, we will prove the No Retraction
theorem which we know to be equivalent. The following version is taken from [3],
and given the tools we have developed so far, the proof is for the most part very
simple. However, it relies on the following facts:

Proposition 4.4. Every cycle in Ck(B
n) is a boundary as long as k ≥ 1. There

exists a cycle in Cn(Sn) which is not a boundary.

We will discuss Proposition 4.4 afterwards, since it is more difficult to prove.

Proof of Theorem 2.4. Assume for the sake of contradiction that r : Bn → Sn−1 is a
continuous retraction, and let i : Sn−1 → Bn be the “inclusion” or identity map (recall
that Sn−1 is a subset of Bn in Euclidean space). By the definition of a retraction,
r ◦ i is the identity map on Sn−1. Let [C] be any homology class in Hn−1(S

n−1), and
note that (r ◦ i)∗([C]) = [C]. On the other hand, (r ◦ i)∗([C]) equals r∗([i(C)]), and
since i(C) is an n-cycle in Bn, Proposition 4.4 tells us that [i(C)] = [0]. This shows
that [C] = r∗([0]) = [0], or equivalently that all (n−1)-cycles of Sn−1 are boundaries.
By Proposition 4.4, we have a contradiction.

We proceed to discuss Proposition 4.4.

4.2.1 Homotopy equivalence and the homology of Bn

Intuition tells us that all cycles in Bn should be boundaries, since Bn has no holes.
In order to formalize this notion, it is best to introduce a new type of equivalence
between topological spaces.
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Definition 4.8. Two continuous functions f, g : X → Y are homotopic when there
exists a continuous function H : X × [0, 1] → Y such that H(x, 0) = f(x) and
H(x, 1) = g(x) for x ∈ X. This function H is called a homotopy between f and g.

If f = g, then f and g are homotopic, since H(x, t) = f(x) is a homotopy.

Definition 4.9. A topological space X is homotopy equivalent to another space Y
when there exist continuous maps f : X → y and g : Y → X such that g ◦ f is
homotopic to the identity map in X and f ◦ g is homotopic to the identity map in
Y . In this case, f and g are called homotopy equivalences.

The use of the variable t in H(x, t) is suggestive of time, and indeed these def-
initions capture the intuitive idea of continuously deforming one map or space into
another. Two functions are homotopic when we can continuously change one into
the other over some time interval, where the intermediary maps are ft : X → Y : x 7→
H(x, t).

Viewed from another angle, homotopy equivalence captures the same fundamen-
tal idea as homeomorphism, namely that two spaces have similar topological prop-
erties as long as we can change between them in a continuous fashion. Homotopy
equivalence, though, is a weaker condition. For example, an important property of
a homeomorphism is that it preserves dimension, i.e., an open subset of Rn and an
open subset of Rm can only be homeomorphic if m = n; on the other hand, all of the
balls Bn are mutually homotopy equivalent since Bn can be continuously expanded
to fill Bn+1.

Proposition 4.5. If X and Y have a homeomorphism h : X → Y , then X and Y
are homotopy equivalent.

Proof. Let the homotopy equivalences be given by h : X → Y and h−1 : Y → X.
Both are continuous, and h ◦ h−1 and h−1 ◦ h are the identity functions of Y and
X. Since the identity functions are homotopic to themselves, the conditions for
homotopy equivalence are satisfied.

For our purposes, the most important feature of homotopy-equivalent spaces is
that they have the same number of homology classes. In order to show this, we need
the following fact:

Proposition 4.6. If the continuous maps f, g : X → Y are homotopic, then the
maps f∗, g∗ : Hn(X)→ Hn(Y ) coincide.

The proof of Proposition 4.6 is beyond the scope of this paper; see [6], page 112.
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Proposition 4.7. If X and Y are homotopy equivalent, there exists a one-to-one
and onto correspondence between Hn(X) and Hn(Y ).

Proof. Let f : X → Y and g : Y → X make up a homotopy equivalence. Then (g◦f)∗
is the identity map on Hn(X), so it is one-to-one. Since (g ◦f)∗ = g∗ ◦f∗, f∗ must be
one-to-one. On the other hand, (f ◦ g)∗ is the identity map on Hn(Y ), so it is onto.
Since (f ◦ g)∗ = f∗ ◦ g∗, f∗ must be onto. So f∗ gives the desired correspondence.

The fact that will be most useful to us is as follows: if X and Y are homotopy
equivalent, X has n-cycles which are not boundaries if and only if Y has n-cycles
which are not boundaries.

In particular, it happens that Bn is homotopy equivalent to the topological space
{0} consisting of a single point. Indeed, if we let f map Bn to {0} in the only way
possible, and g map {0} to the center point 0 ∈ Bn, then f ◦ g is the identity on {0}
and g ◦ f maps Bn to its center point. By letting H : Bn× [0, 1]→ Bn map x to tx,
we see that g ◦ f is homotopic to the identity on Bn.

By Proposition 4.2, every k-cycle in {0} is a boundary when k ≥ 1. We have
shown that the same is true for Bn.

4.2.2 The homology of Sn

We now turn our attention to the sphere Sn. The simplest possible case is that of
S0, which only consists of the two isolated points −1, 1 ∈ R.

Lemma 4.1. There exists a 0-cycle of S0 which is not a boundary.

Proof. There are only two k-simplices of S0, each of which maps its entire domains to
a single one of the points −1 or 1; this is because continuous functions map connected
sets to connected sets. If σ is one of the two 1-simplices, the faces of σ map ∆0 onto
the same point, and so σ [1] = σ [2]. The chain consisting of σ therefore has an empty
boundary, and by the linearity of the boundary operator, so does any other 1-chain
of S0.

Let σ1 be the 0-simplex mapping ∆0 to the point 1, and let σ2 be the other
0-simplex which maps to −1. Let C1 be the chain consisting of σ1 and likewise for
C2. These chains are nonzero and so cannot be boundaries. Since the boundary of a
0-chain is defined to be zero, C1 and C2 are also cycles.

By the linearity of the boundary operator, any nonzero combination of C1 and
C2 will be a cycle which is not a boundary. One such cycle which will be useful later
is

C1 − C2. (5)
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In what follows, we will sketch a proof of the second part of Proposition 4.4 using
induction on the dimension n. In particular, we want to show that the existence of
an (n− 1)-cycle of Sn−1 which is not a boundary implies the existence of an n-cycle
of Sn which is not a boundary. The proof is a special case of the Mayer-Vietoris
sequence, which is useful for computing the homology classes of many topological
spaces. Unfortunately, the proof of the Mayer-Vietoris sequence relies on a property
of singular homology about excision, the proof of which is beyond the scope of this
paper. We will therefore leave out the derivation of Fact 4.1. Before stating it, it
will be helpful to begin the proof.

In the remainder of this section, it is assumed that n ≥ 1. The first step is to
divide Sn into two overlapping pieces,

Sn1 =

{
(x1, . . . , xn+1) ∈ Sn : xn+1 ≤

1

2

}
,

Sn2 =

{
(x1, . . . , xn+1) ∈ Sn : xn+1 ≥ −

1

2

}
.

The subset of Sn1 ∩ Sn2 with xn+1 = 0 is homeomorphic to Sn−1, and the entire
intersection Sn1 ∩ Sn2 is homotopy equivalent to this subset. For example, a homo-
topy equivalence f : (Sn1 ∩ Sn2 ) × [0, 1] → (Sn1 ∩ Sn2 ) can be constructed by taking
(x1, . . . , xn+1, t) to (x1, . . . , xn, txn+1), and normalizing the result so that it lies on
the unit sphere. Therefore the homology classes of Sn1 ∩ Sn2 are the same as those of
Sn−1.

The chain in (5) naturally extends to a chain in C0(S
1
1 ∩ S1

2), where we map the
point 1 ∈ S0 to (1, 0) ∈ S1

1 ∩ S1
2 and the point −1 ∈ S0 to (−1, 0). It also extends

to a chain in C0(S
1
1) defined in the same way, as well as one in C0(S

1
2). The latter

two 0-chains are boundaries in their respective spaces; for example, the one in S1
1

is the boundary of the 1-chain consisting of the simplex σ : ∆1 → S1
1 : (x, 1 − x) 7→

(cos πx, − sin πx).
Another fact is that the sets Sn1 and Sn2 are each homeomorphic to the ball Bn.

We can construct a homeomorphism for Sn1 as follows: given (x1, . . . , xn+1), take
(x1, . . . , xn), normalize it so that it lies on the boundary of Bn, and then multiply
by the scalar 2

3
(xn+1 + 1). The inverse simply takes the spherical subset of Bn

with a distance r from the origin, and maps it back to the spherical cross section
xn+1 = 3

2
r− 1 of Sn1 in the obvious way. Therefore every k-cycle of Sn1 is a boundary

for k ≥ 1, and because it is homeomorphic to Sn1 by mapping xn+1 7→ −xn+1, the
same holds for Sn2 .

We have reduced Proposition 4.4 to the following:
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Proposition 4.8. If there exists a cycle of Cn−1(S
n
1 ∩ Sn2 ) which is not a boundary

in Sn1 ∩ Sn2 , then there exists an cycle in Cn(Sn) which is not a boundary in Sn.

Let Cn(Sn1 + Sn2 ) ⊆ Cn(Sn) consist of the chains whose each simplex is either
contained in Sn1 or Sn2 . Equivalently, the chains in Cn(Sn1 + Sn2 ) are those which can
be expressed as the sum of a chain contained in Sn1 and a chain contained in Sn2 .
To help us with the proof of Proposition 4.8, we require the following fact, which is
proved in full generality in [6], page 199.

Fact 4.1. If there exists a cycle in Cn(Sn1 +Sn2 ) which is not the boundary of a chain
in Cn+1(S

n
1 + Sn2 ), then there exists a cycle in Cn(Sn) which is not the boundary of

a chain in Cn+1(S
n).

Fact 4.1 is related to the following intuitions: if we are searching for an (n+ 1)-
chain B =

∑
±σi such that ∂B = C =

∑
±σ′i for a given cycle C ∈ Cn(Sn1 + Sn2 ),

the behavior of the simplex maps of B on the interior of their domain ∆n+1 is
unimportant. Since we only care about the boundary of B, we only care about how
the simplices σi of B behave on the faces of ∆n+1. Of course, by continuity, the σi will
need to send points near ∆n+1 [j] to points in Sn near σi(∆

n+1 [j]). The assumption
that C is in Cn(Sn1 + Sn2 ), then, means that continuity will not require the values
of σi near ∆n+1 [j] to intersect both Sn1 − Sn2 and Sn2 − Sn1 for any particular j for
which σi [j] is supposed to be one of the σ′. By using many different σi such that
most of the faces of the σi cancel in the boundary, it makes intuitive sense that we
should be able to build B such that ∂σi are each contained within either Sn1 or Sn2 ,
as long as any B ∈ Cn+1(S

n) exists to begin with.4 Now, since the behavior of σi
on the interior of ∆n+1 is unimportant, we should be able to deform or modify σi
such that its values on the interior of ∆n+1 lie in one of the sets Sn1 or Sn2 which also
contains ∂σi. More formally, since ∂σi is a cycle and thus a boundary in either Sn1
or Sn2 , we may replace σi with some simplex contained in Sn1 or Sn2 which has the
same boundary as σi. Hence, if C is the boundary of a chain in Cn+1(Sn), it should
be the boundary of a chain in Cn+1(S

n
1 + Sn2 ), and by contrapositive, is C is not the

boundary of any chain in Cn+1(S
n
1 +Sn2 ), it should not be the boundary of any chain

in Cn+1(S
n).

We proceed with the proof of Proposition 4.8. Let C ∈ Cn−1(Sn1 ∩ Sn2 ) be a cycle
but not a boundary. In the special case n = 1, let C be the chain in (5). Let i
and j be the inclusion or identity maps from Sn1 ∩ Sn2 into its supersets Sn1 and Sn2 ,
respectively, and let k and l be the inclusion maps from Sn1 and Sn2 into Sn. These
maps are all continuous, meaning i(C) and j(C) are cycles by (4). Since we showed

4This is the only step in the paragraph which is difficult to make rigorous.
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above that all (n−1)-cycles in Sn1 and Sn2 are boundaries for n > 1, and that applying
i or j to the chain in (5) gives a boundary, we are justified in letting i(C) = ∂A and
j(C) = ∂B. Here A and B are singular n-chains of Sn1 and Sn2 , respectively. Now, we
claim that the chain D = k(A)− l(B) in Cn(Sn1 +Sn2 ) is a cycle, but not a boundary
of a chain in Cn+1(S

n
1 + Sn2 ). The construction of D is shown in Figure 4.

By (4) we have ∂D = ∂k(A)−∂l(B) = k(i(C))− l(j(C)), and since k ◦ i and l ◦ j
both represent the inclusion map from Sn1 ∩ Sn2 to Sn, these two terms cancel. This
makes D a cycle.

In order to show that D is not a boundary of a chain in Cn+1(S
n
1 + Sn2 ), we show

the contrapositive: if D is constructed as above and is a boundary of a chain in
Cn+1(S

n
1 + Sn2 ), then C is a boundary.

Suppose D = ∂P where P ∈ Cn+1(S
n
1 +Sn2 ). By the definition of Cn+1(S

n
1 +Sn2 ),

we can write P as k(Q) − l(R) for some Q ∈ Cn+1(S1) and R ∈ Cn+1(S2), and we
have that D = ∂k(Q)− ∂l(R) = k(∂Q)− l(∂R). But D also equals k(A)− l(B), so
k(A− ∂Q) = l(B− ∂R). This k(A− ∂Q) is in the image of both k and l, so A− ∂Q
is contained in Sn1 ∩ Sn2 and we can let A − ∂Q = i(Y ) for some Y ∈ Cn(Sn1 ∩ Sn2 ).
Finally, ∂Y = C, since i(∂Y ) = ∂(A − ∂Q) = ∂A = i(C) and i is one-to-one. (We
have used the fact that ∂(∂Q) = 0; see Proposition 4.1.)

We have now shown that D is a cycle in Cn(Sn1 + Sn2 ) which is not the boundary
of any chain in Cn+1(S

n
1 + Sn2 ). By Fact 4.1, there exists a cycle in Cn(Sn) which

is not a boundary, thus completing the proof of Proposition 4.8. Proposition 4.8
completes the proof of Proposition 4.4, which in turn completes our homological
proof of Brouwer’s theorem.

Figure 4: The chain C consists of three 1-simplices of the space Sn1 ∩ Sn2 , which is not
shown. The chains A of Sn1 and B of Sn2 each essentially have C as their boundary, and so
their difference D in Sn has an empty boundary.
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5 Analysis

First, it should be noted that our combinatorial proof of the No Retraction theorem in
section 3 was nonstandard. Our proof was taken from [7], in which it is compared with
the more traditional proof. The traditional proof also relies on Sperner’s Lemma, and
the difference is mostly one of notation. In any case, the most interesting comparisons
are between the combinatorial and homological proofs.

One clear similarity between the two proofs we have presented is that both use
the No Retraction theorem as an intermediary. More than Brouwer’s theorem itself,
the No Retraction theorem is exposed to attacks via topological methods, since it
relates to maps between Bn and Sn−1 which are fundamentally different topological
objects. The particular connection I would like to discuss, however, is as follows:
any continuous retraction r from Bn to Sn−1 gives rise to a homotopy between the
identity map on Sn−1 and a map sending all of Sn−1 to a single point. One such
homotopy is given by

H(x, t) = r
(

(1− t)x
)
, (6)

where tx is interpreted as a point in Bn. We see that H(x, 0) is constantly equal to
r(0), while H(x, 1) = r(x) = x on Sn−1. As such, a continuous retraction from Bn to
Sn−1 gives a way of continuously deforming Sn−1 = ∂Bn into a point, without it ever
intersecting the interior of Bn. In some fashion or another, both the combinatorial
and homological proofs of the No Retraction theorem can be related to this homotopy.

At the start of section 4.2, we gave a proof of the No Retraction theorem using the
language of homology classes. This was done partly to emphasize the importance
of homology classes. In particular, homology theory is more properly developed
using the tools of group theory,5 which makes the proof using homology classes more
convenient than others. However, we do not even need homology classes for this
proof:

Proof of Theorem 2.4. Let i : Sn−1 → Bn the inclusion map, and let C be a cycle
of Sn−1 which is not a boundary. We know that i(C) is a boundary in Bn, so let
i(C) = ∂B. There cannot exist a continuous retraction r : Bn → Sn−1, since C would
equal r(i(C)) = ∂r(B).

5The sets Cn(X) are thought of as groups, and the boundary operators are thought of as ho-
momorphisms between them. The cycles form a subgroup of Cn(X), and the boundaries form a
subgroup of the cycle group. The homology classes Hn(X) also form a group, and in fact Hn(X)
is constructed by taking the quotient group of the cycles with respect to the boundaries. Since it
was not necessary for the proof of Brouwer’s theorem, we ignored this group structure.
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This follows the same line of reasoning as the version with homology classes.
As a common thread, most proofs of the theorem by topological methods rely on
some invariant, or property which is known to be preserved under suitable maps
and transformations. In the proof above, we show that the property “every cycle
is a boundary” is invariant under continuous retraction. There are many other im-
portant types of invariants in topology and throughout mathematics; for example,
Proposition 1.1 states that the compactness of a topological space is invariant under
homeomorphism. We now present a third homological proof of the No Retraction
theorem which makes the use of such an invariant more explicit. In particular, Propo-
sition 4.7 states that the homology classes of a space are invariant under homotopy
equivalence.

Proof of Theorem 2.4. If the identity in Sn−1 and the map to a single point a =
r(0) ∈ Sn−1 are homotopic as in (6), then Sn−1 is homotopy equivalent to the
topological space { a }. To see this, let f be the map from Sn−1 to { a }, and let
g be the inclusion map which sends a ∈ { a } to a ∈ Sn−1; then f ◦ g is trivially the
identity map in { a }, and g◦f is homotopic to the identity in Sn−1 by (6). Hence the
homology classes of Sn−1 and { a } should be in one-to-one correspondence, which is
a contradiction by Propositions 4.2 and 4.4.

This proof nicely represents the idea of both homological proofs we have given:
show that two spaces have different properties, and show that those properties must
be invariant under some map related to the hypothetical continuous retraction.

Let C be a cycle of Sn−1 which is not a boundary, and consider the intermediary
functions rt(x) = H(x, t) of of the homotopy (6). Clearly r0(C) = r(C) = C is a cycle
and not a boundary, but the same is not true of r1(C), whose simplices map to single
points. Our homological proof amounts to invoking the properties of homotopies:
r0(C) and r1(C) must be homologous by Proposition 4.6. Ultimately, Proposition
4.6 is derived from nothing more than the properties of continuous functions, most
importantly the fact that compositions of continuous functions are continuous.

By contrast, our combinatorial proof initially accepts the existence of such a
homotopy. Rather than using an invariant property between r0 and r1 to rule out
its existence, we explore the behavior of rt between t = 0 and t = 1. Using Sperner’s
Lemma, we showed a contradiction as long as the retraction r0 maps neighborhoods
smaller than some δ to some ∂∆n \∆n [j]. Equivalently, we showed that in order for
the homotopy H to exist, it must map arbitrarily small sets of (x, t) to the entirety of
∂∆n (for now we substitute the sphere with the simplex and regard H as a homotopy
from a point to ∂∆n). In order to complete the proof, we use Lebesgue’ number



lemma and the properties of continuous functions, particularly that the preimages
of the open sets ∂∆n \∆n [j] are open.
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