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 REAL PROOFS OF COMPLEX THEOREMS (AND VICE VERSA)

 LAWRENCE ZALCMAN

 Introduction. It has become fashionable recently to argue that real and complex

 variables should be taught together as a unified curriculum in analysis. Now this is
 hardly a novel idea, as a quick perusal of Whittaker and Watson's Course of Modern

 Analysis or either Littlewood's or Titchmarsh's Theory of Functions (not to mention
 any number of cours d'analyse of the nineteenth or twentieth century) will indicate.
 And, while some persuasive arguments can be advanced in favor of this approach,

 it is by no means obvious that the advantages outweigh the disadvantages or, for

 that matter, that a unified treatment offers any substantial benefit to the student.

 What is obvious is that the two subjects do interact, and interact substantially,

 often in a surprising fashion. These points of tangency present an instructor the

 opportunity to pose (and answer) natural and important questions on basic material

 by applying real analysis to complex function theory, and vice versa. This article is

 devoted to several such applications.

 My own experience in teaching suggests that the subject matter discussed below

 is particularly well-suited for presentation in a year-long first graduate course in

 complex analysis. While most of this material is (perhaps by definition) well known

 to the experts, it is not, unfortunately, a part of the common culture of professional
 mathematicians. In fact, several of the examples arose in response to questions
 from friends and colleagues. The mathematics involved is too pretty to be the private

 preserve of specialists. Publicizing it is the purpose of the present paper.

 1. The Greening of Morera. One of the most useful theorems of basic complex

 analysis is the following result, first noted by Giacinto Morera.

 MORERA'S THEOREM [37]. Let f(z) be a continuous function on the domain D.

 Suppose that

 (1) f(z)dz = 0

 for every rectifiable closed curve y lying in D. Then f is holomorphic in D.

 Morera's Theorem enables one to establish the analyticity of functions in

 situations where resort to the definition and the attendant calculation of difference

 quotients would lead to hopeless complications. Applications of this sort occur, for

 instance, in the proofs of the Schwarz Reflection Principle and other theorems on the

 extension of analytic functions. Nor is its usefulness limited to this circle of ideas;

 the important fact that the uniform limit of analytic functions is again analytic is an

 immediate consequence (observed already by Morera himself, as well as by Osgood

 [39], who had rediscovered Morera's theorem).

 115
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 116 LAWRENCE ZALCMAN [February

 Perhaps surprisingly, the proofs of Morera's theorem found in complex analysis

 texts all follow a single pattern. The hypothesis on f insures the existence of a

 single-valued primitive F of f, defined by

 rz

 (2) F(z) = f f(C)dC.
 0

 Here zo is some fixed point in D and the integral is taken over any rectifiable curve
 joining zo to z. The function F is easily seen to be holomorphic in D, with F'(z) = f(z);
 since the derivative of a holomorphic function is again holomorphic, we are done.

 Several remarks are in order concerning the proof sketched above. First of all,

 the assumption that (1) holds for all rectifiable closed curves in D is much too strong.

 It is enough, for instance, to assume that (1) holds for all closed curves consisting

 of a finite number of straight line segments parallel to the coordinate axes; the

 integration in (2) is then effected over a (nonclosed) curve composed of such segments,

 and the proof proceeds much as before. Second, since analyticity is a local property,

 condition (1) need hold only for an arbitrary neighborhood of each point of D;

 that is, (1) need hold only for small curves. Finally, the proof requires the fact that
 the derivative of an analytic function is again analytic. While this is a trivial con-

 sequence of the Cauchy integral formula, it can be argued that that is an inappropriate

 tool for the problem at hand; on the other hand, a proof of this fact without complex

 integration is genuinely difficult and was, in fact, only discovered (after many years

 of effort) in 1961 [44], [10], [46].
 There is an additional defect to the proof, and that is that it does not generalize.

 Thus, it was more than thirty years after Morera discovered his theorem that Torsten

 Carleman realized the result remains valid if (1) is assumed to hold only for all
 (small) circles in D. It is an extremely instructive exercise to try to prove Carleman's

 version of Morera's theorem by mimicking the proof given above. The argument

 fails because it cannot even be started: the very existence of a single-valued primitive

 is in doubt. This leads one to try a different (and more fruitful) approach, which

 avoids the use of primitives altogether.

 Suppose for the moment that f is a smooth function, say continuously dif-

 ferentiable. Fix zo e D and suppose (1) holds for the circle Fr(ZO) of radius r, centered
 at zo. Then, by the complex form of Green's. theorem

 0 f f(z)dz = 2i j j dxdy, rr (ZO) ar (ZOof
 where 4(Zo) is the disc bounded by FU(zO) and Of/lz = 2 (3f/Ox + i Of/Dy).
 (There's no cause for panic if the 0/Di operator makes you uneasy or you are not
 familiar with the complex form of Green's theorem; just write f(z) = u(z) + iv(z),

 dz = dx + idy, and apply the usual version of Green's theorem to the real and

 imaginary parts of the integral on the left.) Dividing by an appropriate factor, we
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 1974] REAL PROOFS OF COMPLEX THEOREMS 117

 have

 7tr2 tJJ (: ) jedxdy = 0;

 i.e., the average of the continuous function Of /0 over the disc AF(zo) equals 0.
 Make r -+ 0 to obtain (Of /O) (z0) = 0. Since this holds at each point zo e D,

 Of /Oz= 0 identically in D. Writing this in real coordinates, we see that ux = vp,
 uY = -vx in D; thus the Cauchy-Riemann equations are satisfied and f is analytic.

 Notice that we did not need to assume that (1) holds for all circles in D or even

 all small circles; to pass to the limit it was enough to have, for each point of D, a
 sequence of circles shrinking to that point. Moreover, since f has been assumed

 to be continuously differentiable, it is sufficient to prove that af/iz vanishes on a
 dense set. Finally, and most important, the fact that our curves were circles was

 not used at all! Squares, rectangles, pentagons, ovals could have been used just

 as well. To conclude that (Of/li)(zo) = 0, all we require is that (1) should hold
 for a sequence of simple closed curves y that accumulate to zo (zo need not even lie
 inside or on the y's) and that the curves involved allow application of Green's

 theorem. It is enough, for instance, to assume that the curves are piecewise con-

 tinuously differentiable.

 To summarize, we have shown that Green's theorem yields in a simple fashion

 a very general and particularly appealing version of Morera's theorem for C' func-

 tions. It may reasonably be asked at this point if the proof of Morera's theorem

 given above can be modified to work for functions which are assumed only to be

 continuous. That is the subject of the next section.

 2. Smoothing. Let +(z) be a real valued function defined on the entire complex

 plane which satisfies

 (a) 0(z) > 09
 (b) ff q(z)dxdy = 1,
 (c) 4 is continuously differentiable,

 (d) 0(z) = 0 for I z I _ 1.
 It is trivial to construct such functions; we can even require / to be infinitely dif-

 ferentiable and to depend only on I z , but these properties will not be required in the
 sequel. Set, for e > 0, 4,(Z) = C-20(z/E). Then, clearly, 4? satisfies (a) through (c)
 above and /E vanishes off j z I < s. The family of functions {4E} forms what is known
 in harmonic analysis as an approximate identity (a smooth approximation to the

 Dirac delta function); workers in the field of partial differential equations, where

 the smoothness properties of the /e are emphasized, are accustomed to call similar
 functions (Friedrichs) mollifiers.

 Suppose now that f is a continuous function on some domain D and set

 (3) fe(Z) = ff f(z - C)08()dXdi C = = + it,
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 118 LAWRENCE ZALCMAN [February

 where the integral is extended over the whole complex plane. This integral exists

 and defines a continuous function for all points z whose distance from the boundary

 of D is greater than e. Moreover, f,(z) is continuously differentiable for such points.
 Indeed, changing variable in (3), we have

 fX(z) = jf f,(z -)f(C)ddq

 and the x and y derivatives can be brought inside the integral since we have chosen

 0b to be continuously differentiable. Finally, we note that for any compact subset K
 of D, fe(z) converges uniformly to f(z) on K as s -* 0. This expresses the delta-
 function-like behavior of the family { O}. Here is the simple proof. By (b),

 f (z) - f(z) = {f(z) -fe(z -)10,(C)dQdq

 whence by (a) and (b)

 If(Z) -4(z) I Ifif 1(z) -f(z - d 1 (t)dXd
 (4) V?

 ? sup If(z)-f(z-O.1
 KlI E

 Since K is compact, f is uniformly continuous on K; so (4) shows that

 sup f(z) - f(z) I ?-0 as - + 0.
 z cK

 The proof of Morera's theorem is now easily completed. Suppose, for instance,
 that f is continuous on D and that there exists a sequence of positive numbers

 r, ? r2 2 r3 > O such that

 (5) f f(w)dw = 0

 for each z E D whenever the circle Frn(Z) = {w: jw - z I = rn} lies in D. Fix a compact
 set K c D and take s < + dist (K,aD). Then for r = r, < 1dist (K,aD) and z E K
 we have

 fArZ(W)dW = f { jJ f(w -)0,(4)ddq dw
 rr(z) r (z)

 JJ H {J f(w - )dw} /(4)dXdq

 if { f.r(z)

 =0.
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 1974] REAL PROOFS OF COMPLEX THEOREMS 119

 Since f. is continuously differentiable, it is analytic on the interior of K; and since
 f, converges to f uniformly on K, f must be analytic there. Finally, because K is
 arbitrary, f is analytic on all of D.

 Again, there is nothing particularly sacred about circles: if {y,J is a sequence
 of simple closed piecewise continuously differentiable curves which shrink to the

 origin and yT,(z) is the image of yT, under the map w F+ w + z, we may replace (5) by

 (6) f) (w)dw = 0
 ,n(z)

 and the rest of the argument remains unchanged. Similarly, it is enough to assume

 that (5) or (6) hold only for a dense set of z E D, since the full condition then follows

 from the continuity of f.

 The result can be extended even further. The requirement that f be continuous

 may be relaxed to the assumption that f is measurable and integrable with respect
 to Lebesgue area measure on compact subsets of D. Of course, the conclusion now

 reads that f agrees almost everywhere with a function analytic on D. For a complete

 treatment, together with an historical discussion, see [62]. The use of smoothing

 operators is a standard tool among workers in partial differential equations and

 approximation theory; for a systematic exposition of its use in this last subject,

 see [52].

 The success of the smoothing technique in dealing with Morera's theorem

 suggests using it to prove Cauchy's theorem. This is a good idea, but one which,

 unfortunately, simply does not work. Here's the rub. Suppose f(z) is analytic in the

 disc D. We know (by Green's theorem) that STf(z)dz = 0 for every triangle T in
 D if f is continuously differentiable. Of course, in general, f is not known a priori

 to be continuously differentiable; but we may construct f3(z), as in (3), which is.
 However, it is not clear that Jt(z) is holomorphic. The problem is that while f'(z)

 is known to exist for each z e D, and is easily proved to be measurable, it is not

 known to be integrable; we cannot, therefore, differentiate f inside the integral

 sign of (3). (A similar difficulty arises in the proof of Hartogs' theorem: If a function

 of two complex variables g(ZI, Z2) is analytic in each variable separately, then
 it is analytic as a function of the joint variables zI, Z2). The argument does work
 if f' is assumed to be area integrable, but this assumption is (of course) unnecessary,

 and it seems best to base the proof of Cauchy's theorem on Pringsheim's device [45]
 of subdividing triangles. This is the pattern followed in most modern texts.

 3. In circles. All the versions of Morera's theorem discussed up to now have

 depended in an essential fashion on the fact that (1) holds for a certain class of

 contours containing arbitrarily small curves. The obvious question to ask is what

 happens if (1) holds for circles which do not shrink in radius. In this situation, it is

 natural to assume that the function in question is defined on the entire complex

 plane. A satisfying answer is provided by the following result, proved in 1970 [62].
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 THEOREM. Let f be a continuous function on the complex plane and suppose

 that there exist numbers rl, r2 > 0 such that

 (7) I f(z)dz = 0

 for every circle having radius r1 or r2 (and arbitrary center). Then f is an entire

 function unless r1/r2 is a quotient of zeroes of the Bessel function J1(z).

 The hypothesis on f may be relaxed to the assumption of local integrability,

 and (7) need hold only for 'almost all' circles. The restriction on the pair r1, r2 is,

 however, essential: in case it is not satisfied, f may fail to be holomorphic anywhere.
 The proof is considerably more involved than (and of an altogether different

 character from) the sort of argument we have seen in the preceding sections;

 essential ingredients include the harmonic analysis of an appropriate space of dis-

 tributions and the Delsarte-Schwartz theory of mean-periodic functions. See [62],

 where related results are discussed, for details. One can also show that if f is con-
 tinuous on the plane and (7) holds for every square (of arbitrary center and orienta-

 tion) having side of fixed length, then f is entire. Again, a reference is [62]. Further
 perspectives on results of this sort will be found in [63].

 4. Reflections on reflection. According to the Schwarz Reflection Principle, iff(z)

 is analytic in A = {z: I z < 1} and continuously extendible to an open arc y of
 F = {z: zI = 1}, and if the values off corresponding to points of y lie on a cir-
 cular, or, more generally, an analytic arc y*, then f may be extended by 'reflection'
 to a function analytic in a domain containing A u y. The usefulness of this technique

 can hardly he overestimated: it provides an essential tool in problems involving the

 extension of conformal mappings and plays a traditional role in the 'slick' proof

 [49, pp. 322-325] of Picard's little theorem. Another application yields what is

 surely the simplest proof that a nonzero function analytic in A cannot vanish iden-

 tically on an arc of F.

 The question thus naturally arises whether an analogous result holds if y* is no

 longer analytic but simply smooth, C' say. A negative answer is immediate. Indeed,

 let F* be an infinitely differentiable, nowhere analytic, simple closed Jordan curve

 and let f map A conformally onto the interior D of F*. The univalent function f,
 extends to a homeomorphism of A u F onto D u F* and induces a one-one corre-

 spondence between the points of F and those of F*. However, f cannot be continued

 analytically across any subarc of F, for then f would establish an analytic corre-
 spondence between a subarc y of F and a subarc y* of F*. Thus y* would be analytic,

 contrary to hypothesis. This example is really quite striking, providing, as it does,

 an example of a (univalent!) function analytic on A and of class C' on A U F which

 cannot be extended analytically across any arc of F.

 What is not generally realized is that the example can be worked backward to

 provide an example of an infinitely differentiable, yet nowhere analytic, Jordan
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 curve. This approach avoids altogether reliance on the plausible (and true) but

 nonobvious facts concerning smoothness and univalence of the boundary function

 which we invoked so shamelessly above. The tools we need are two, the first of

 which is the following simple lemma.

 LEMMA. Let f(z) = z + a2z + a3z3 + ... be analytic in A. Suppose that

 n= 2n I an, < 1. Then f is continuous on A u F and univalent there.

 Proof. Continuity is clear from the absolute convergence of the series. Let

 z, eA UF. Then

 f(z)-f( G) - 1 + , a,,(z'1' + zl-'4' + ... + i:1)
 Z - it = 2

 Thus

 If(z) ,f(N) 00 -Enl n|>O
 > n 2

 so that f is univalent.

 The second ingredient we need is the celebrated Hadamard gap theorem.

 HADAMARD GAP THEOREM. Let f(z) = U=O a znk have A as its disc of con-

 vergence. If nk+link _ qfor some q > 1 and all large k, thenf has F as its natural
 boundary; that is, f cannot be continued analytically across any subarc of F.

 The beautiful proof of this theorem due to L. J. Mordell ([36], cf. [54, p. 223])
 should be standard fare in graduate courses in complex analysis.

 The construction of the required function is now almost trivial. We choose the
 sequences {ak} and {nk} to satisfy

 (a) ao = no = 1,
 (b) zko1 nkf ak|<
 (c) (ak)I/nk _* 1,

 (d) nk+ l/nk - 2,
 (e) 2:k-Onk|ak j = 0, 1,2, *

 A simple concrete example is provided by the function

 00

 f(z) = z + 2n!.
 n = S

 By the lemma, f establishes a homeomorphism between F and a simple closed Jordan
 curve F*. Since f satisfies the hypothesis of Hadamard's gap theorem, f cannot be

 extended analytically across any arc of F. Hence, F* must be nowhere analytic

 since otherwise the Schwarz principle would apply. Finally, by (e), the series for

 fU) (z) converges absolutely on {z:| z < 1} for each j; thus f is infinitely differen-
 tiable on A U F, so that F* is a C' curve,
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 Interestingly enough, one can trace the basic ideas of this section back to before
 the turn of the century, (see Osgood [38]). In particular, the lemma, which is usually

 attributed to the American topologist J. W. Alexander [67], was known to Fredholm

 as early as 1897 ([38, p. 17]).

 5. Extensions. The reflection principle enables one (in certain circumstances)

 to extend a holomorphic function across an analytic arc to a somewhat larger domain.

 As we have seen, it is in general impossible to relax the condition of analyticity;

 nevertheless, the much weaker hypothesis of rectifiability suffices in case a con-

 tinuous extension analytic in an abutting domain is already known. The precise

 result may be stated (somewhat informally) as follows.

 THEOREM. Let D be a domain and let J be a simple rectifiable Jordan arc

 dividing D into disjoint domains D1 and D2. Suppose fj (j = 1,2) is analytic in
 Dj and continuous on DJ J J and that f =f2 on J. Then the function f obtained
 by setting f(z) =fj(z) for z eD U J is analytic in D.

 The proof is a standard application of Morera's theorem, with due care exercised
 in dealing with the assumption that J is merely rectifiable.

 The precise nature of the hypothesis of rectifiability on J in the above theorem

 is by no means clear, and the proof (which we leave to the reader) does little to
 explicate it. My experience has been that students - especially good ones - gen-

 erally guess that the result remains true if rectifiability is dispensed with. This,

 however, is not the case, as the following example shows.

 Let K be a compact set of positive Lebesgue measure and set

 (8) f(z)= i dq + dX.

 The function f(z) is obviously analytic off K and satisfies f(oo) = 0; moreover

 since lim ,00zf(z) = - fJK dXdq =A 0, f is nonconstant on the unbounded com-
 ponent of K. We claim f is actually continuous on the complex sphere. Indeed,
 formula (8) exhibits f explicitly as the convolution of the locally (area) integrable

 function 1/I with the bounded measurable function of compact support XK(g), the
 characteristic function of K. Such a convolution is well known (and easily proved)

 to be continuous (see, for instance, [5, p. 154]).
 Suppose now that K = J, a simple closed Jordan curve. The existence of such

 curves having positive area was first proved by Osgood [41] in 1902. (This is one of

 the relatively few examples in mathematics that retains its original vigor unimpaired:

 students today - even those who know about Peano curves - are as baffled and

 surprised by this fact as mathematicians were 70 years ago. The construction is not
 too complicated for presentation in class, and the example itself instills a healthy

 respect for the Jordan curve theorem.) One can actually construct J to have the
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 additional property that it has positive area everywhere, that is, if D is an open set

 and D rl J # 0 then D rT J has positive area. The function f defined by (8) with

 J = K is continuous on C = C u {oo and analytic off J; thus, it is analytic in both
 components D1, D2 of ? \J. However, f is not analytic at any point of J. Indeed,

 suppose f analytic at zo e J and let D be a small open disc about zo lying in the
 domain of analyticity of f. Set J1 = D rn J. Then

 f (z) = d di + fZdi = g(z) + h(z)

 for z ? J, and g(z) is clearly analytic in D. Thus h(z) must be analytic in D as well.

 But h is obviously analytic-offD and continuous on 'C. Thus, according to the theorem
 of the present section, h is analytic on all of C, hence a constant. But J r) D =J

 has positive area, so that h(z) is nonconstant. We have reached the desired contra-
 diction.

 Thus f cannot be continued analytically across any arc of J. In particular, the

 restrictions f, f2 of f to the components D1, D2 of C\J determine analytic functions
 which are not analytic continuations of one another; indeed, J forms a natural
 boundary for each of these functions.

 Actually, the requirement that J have positive measure was used merely to insure

 the existence of nontrivial functions continuous on C and analytic off J. The same

 result can be obtained (but with more work) if the set in question has positive

 Hausdorff (1 + ?)-measure for some - > 0 [61]. Even this condition is not necessary;

 in fact, Denjoy [11] has constructed an arc which is the graph of a function and

 which has the required property.

 6. Blowing up the boundary. Questions involving length and area arise in con-

 formal mapping as well. A conformal map, being analytic, must map sets of zero
 area to sets of zero area; however, distortion at the boundary is an a priori possibility.

 Writing A u F = {z: z f ? 1} as before, let us assume that the univalent function
 f(z) maps A conformally onto the Jordan region D. According to the Osgood-

 Taylor-Caratheodory theorem, f extends to a homeomorphism of A u F onto
 D u OD. (Proofs of this important result, announced by Osgood [65] and proved

 independently by Osgood and Taylor [66, p. 294], and Caratheodory [6], [7] are

 available in [9, pp. 46-49] and [24, p. 129-134]. The reader will find a comparison

 of the treatments in these references particularly instructive in the matters of style

 of exposition and attention to detail.) In case OD is rectifiable, a theorem of the

 Riesz brothers [47] insures that f and f -' preserve sets of zero length ( = Haus-

 dorff one-dimensional measure). When OD fails to be rectifiable, however, all hell
 breaks loose. In particular, a subset of OD having positive area may correspond to

 a subset of F having zero Lebesgue (linear) measure! For the construction, we need
 an important result from plane topology.

 MOORE-KLINE EMBEDDING THEOREM [351. A necessary and sufficient condition
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 that a compact set K ( C should lie on a simple Jordan arc is that each closed

 connected subset of K should be either a point or a simple Jordan arc with the

 property that K - y does not accumulate at any point of 7, except (perhaps) the
 endpoints.

 Now let K be a Cantor set having positive area; K may be realized, for instance

 as the product of two linear Cantor sets, each of which has positive linear measure.

 Construct countably many disjoint simple Jordan arcs Jn c C \ K such that the
 sequence {Jn} accumulates at each point of K and at no other points of C and with

 the additional property that if zo e C \ (K tu {Jn}) = R and z e K, then any arc
 from zo to z which lies, except for its final endpoint, in R must have infinite length.
 By the Moore-Kline embedding theorem, we may pass a simple closed Jordan

 curve J through K U {JnJ. Let f be a conformal map from A to D, the domain
 bounded by J. Then f extends to a homeomorphism from F to J. Let S = f -'(K).

 That S has zero linear measure follows at once from the following theorem, due to

 Lavrentiev.

 THEOREM. Let f be a conformal homeomorphism of Au Fu onto the Jordan

 domain D UJ. If S c J is not rectifiably accessible from D then f '(S) c F has
 zero measure.

 Proof. Since D is a bounded domain, its area, given by the expression

 f fA f '(z) I2dxdy, is finite. Thus
 2n 1

 f f'(reio) I rdrdO

 2ir 1 1 j2 2r2 1 112
 ? (Jj k O rdrdO JJ If'(reE?) r drdO <00.

 It follows that f '(re) I r dr < oo for almost all 0 or, what is the same,
 l(0) = B If '(re0) I dr < oc almost everywhere. But l(0) is the length of the image
 of the radius from 0 to ei? under f. So almost every point of F corresponds to a
 rectifiably accessible point of J, and we are done.

 Actually, much more is true. It follows from a result of Beurling [3] (cf. [9, p. 56])

 that the set of points on J which are not rectifiably accessible from D must correspond

 to a set of logarithmic capacity 0 on the unit periphery. It would take us too far

 afield to enter into a detailed discussion of the capacity of plane sets here; for our

 purposes it is enough to know that sets of capacity zero are exceedingly small. For

 instance, such a set must have zero Hausdorff s-measure for all s > 0. The first
 person to show that a set of capacity zero on F could correspond under a conformal

 mapping to a set having positive area was Kikuji Matsumoto [33]. He actually

 proved (what is implicit in the above discussion) that for each totally disconnected

 compact subset K of the plane there exists a Jordan domain D with boundary

 J D K such that K corresponds under conformal mapping to a set of capacity zero
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 1974] REAL PROOFS OF COMPLEX THEOREMS 125

 on F. The discussion here (in particular, the ingenious proof of the central result)

 is based on an idea of Walter Schneider [51].

 The compression of the boundary of the unit disc presents greater difficulties.

 Lavrentiev, however, has shown that a set of positive measure on F may be mapped

 onto a set of zero length under a conformal mapping of Jordan domains [30].

 A more recent construction is due to McMillan and Piranian [32].

 7. Absolute convergence and uniform convergence. Conformal mapping techniques

 are also useful in constructing examples concerning the convergence of power

 series and Fourier series. Below we offer some simple but instructive examples.

 The first example of a power series which converges uniformly but not absolutely

 on the closed unit disc was given by Fejer [15], cf. [25, vol. 1, p. 122]. The following

 geometric example, due to Gaier [68] and rediscovered by Piranian (see [1, pp. 289,
 314]), is particularly appealing. Let D be the region of figure 1, a triangle from

 FIG. 1

 which wedges have been removed in such a way that the vertex at z = 1 is not

 rectifiably accessible from the interior of D. Since D is a Jordan region, any conformal

 map of A = {z: z < 1} onto D extends to a homeomorphism of the closed regions.

 Suppose that f(z)- 2anz is such a homeomorphism satisfying f(1) = 1. Clearly,
 e1 e~~~1 XO

 f If'(r) dr = | na r"-1 I dr
 (9)

 < j (nlanlrn 1 dr= S na.
 n=1 n=1

 Sinco the length of the image of [0, 1] under f is infinite and is given by the extreme

 left member of (9), the series for f is not absolutely convergent. That the series is

 uniformly convergent on the closed disc follows from a result due to Fejer.

 FEJE'R'S TAUBERIAN THEOREM [16], [55, p. 357]. Let f(z) = EnO a Zn and

 suppose " n |a 2 < o I. If limr,i.f(re0) = f(e'0) exists, then the sum
 Sn=Oa e? exists and is equal to f(e'0). Moreover, if limr+if(re'0) = f(ei?)
 uniformly for 0 ?0 02, then 1=0 a ein? = f(ei?) uniformly for 01 < 0 <02 .
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 This is a typical theorem of Tauberian type, the Tauberian condition being, of

 course, in I anI12 < ??

 Proof. Set sN(el') = n= O a,ne "0. Then
 N oo

 If(re"0) -sN(e") ? _ I I an I(1n-r) + I I a. I rn = SI + S2
 n=1 n=N+1

 Now 1 - rn < n(1 - r) (divide both sides by 1 - r). Thus,

 N N 12 N12 1/2

 SI < (I -r) I n I a?| < (1r) n n I a n2 < KN(1- r),
 n=1 n=1 n=1

 where K = i n Ia 12)1/2. Here we have used the Cauchy-Schwarz inequality
 and the fact that N N(N + 1)/2 < N2. Applying Cauchy-Schwarz to S
 yields

 S2 n=N+1 n' '\=N+1 n/ it =N+ 1 n
 n=N+ | | a | n< (z - E n I a a 12)

 - N( - r) n=N+l ?l
 since

 00 00

 L r2n/n ? 1/N E rn = 1/N(1 - r).
 n=N+1 n=O

 Having fixed N, we may, by the intermediate value theorem for continuous functions,

 choose r = rN such that N(1 - rN) = (' =N+I,nIal12)1/2. Clearly, as N- oo,
 rN -+ 1. Thus

 oo 1/2 oo 1/4

 Iff(rNeio) -SN(eio) I ? K(E nIanI 1/2 + (nI+ nlIan12)4 If( N) N( l - n=N+l ] l) (=N+1 n

 and the right hand side tends to 0 as N - oo since Zoo ln, a1 2 < co. Since f(re'0)
 f(ei0), sN(ei0) ~*f(eiO); hence ?=0 anei0 = f(e'i). Finally, all our calculations are
 uniform in 0, so if f(re"0) -+f(ei?) uniformly on some arc, then 'I7% a einl = f(e"0)
 uniformly on that arc.

 To apply Fejer's theorem to the situation at hand, simply note that if f maps

 A conformally onto the Jordan region D then (by the Osgood-Taylor-Caratheodory

 theorem) f extends continuously to A u F so that f(re"0) -*f(e'0) uniformly for
 0 < 0 < 27r. Since

 oo 1 2 i

 n I n I an 12 = j If(re'0) 12 dO r dr = area of D < oo,
 n=T s O

 the Taylor series for f converges uniformly on F.

This content downloaded from 108.179.181.50 on Wed, 05 Apr 2017 21:47:20 UTC
All use subject to http://about.jstor.org/terms



 1974] REAL PROOFS OF COMPLEX THEOREMS 127

 We should observe that it is easy to modify the domain of figure 1 so that its

 boundary becomes analytic at every point except z = 1. The corresponding mapping

 function then extends (by Schwarz reflection) across F\{1} and yields a function
 univalent and analytic on a domain containing (A u F)\{1} whose Taylor series

 converges uniformly but not absolutely on A u F.

 8. Fourier series. One of the loveliest applications of complex analysis to real

 variables occurs in the theory of Fourier series. The result in question is the so-

 called Pal-Bohr theorem, which may be stated as follows.

 PAIL-BOHR THEOREM. Let f(e"0) be a continuous real-valued function on the
 unit circle F. There is a self-homeomorphism 0 of F such that the Fourier series

 of f o X converges uniformly.
 It is well known, of course, that the Fourier series of a continuous function may

 diverge on a dense subset of F [28, p. 58]; this gives the P'al-Bohr theorem added
 poignancy. On the other hand, a deep and famous result of Lennart Carleson [64]

 insures that the Fourier series of a continuous function converges almost every-

 where in the sense of Lebesgue measure.

 The P'al-Bohr theorem has an interesting history. It was first proved by Jules

 Pal in 1914 with the weaker conclusion that uniform convergence could be obtained

 on any proper closed subarc of F, however large. Bohr [4], in 1935, removed

 the restriction in P'al's theorem. Finally, in 1944, Salem [50] introduced a trick which

 yields the full strength of the result very quickly.

 Proof of the Pal-Bohr Thieorem. Regard f as a function on the interval
 [-, t] satisfying the periodicity condition f( - 7) = f (7). We rule out at the

 outset the trivial case in which f is identically constant. By adding, if necessary,

 a continuous periodic function of bounded variation, we may assume that f ( - t)

 = f (i) = f(x) for exactly one point x e ( - it, 7t). (This is Salem's trick; see [50]
 for a complete verification.) Since the Fourier series of a continuous function of

 bounded variation converges uniformly, it is enough to prove the theorem under

 this additional assumption. Let g be a continuous periodic function on [-i, 7]
 which increases on (- , x) and decreases on (x, it). Then the image of [-i, ]

 under the map H(t) = g(t) + if(t) is a simple closed Jordan curve J in the plane.

 Let F(z) 1'.0 ajz' be a Riemann map of A onto the interior of J such that
 F- 1) = H( - i). Then F extends to a homeomorphism of F onto J, and by the

 discussion following the proof of Fejer's theorem, the series F(eiO) = n=O anei0
 converges uniformly on F. The required homeomorphism of [-it, ) is obtained

 by setting 0(t) = H `(F(e"t)). Indeed, this is clearly a homeomorphism, and
 f(O(t)) = f o H `(F(et)) = Im F(e it), which has a uniformly convergent Fourier
 series since F(eit) does.

 Perhaps surprisingly, the argument given above is (essentially) the only known

 proof of this theorem. Whether an analogous result holds for complex-valued
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 functions remains an open question; of course, this is equivalent to the question of

 whether, given two real-valued continuous functions f, g on F, one can find a single

 homeomorphism 4 for which f o 4 and g o 0 both have uniformly convergent
 Fourier series.

 We learned of the P'al-Bohr theorem from the interesting survey article of Goffman

 and Waterman [20], and our treatment parallels the discussion given there. The

 decision to reproduce the proof in some detail was based on our feeling that this

 beautiful result deserves a wider public.

 9. Harmonic conjugates. A somewhat different application of conformal

 mapping to problems involving Fourier series involves the construction of functions

 having certain prescribed bad boundary behavior. Thus, one may ask (and Prof. A.

 Devinatz did) for an explicit example of a function harmonic on A and continuous

 on A u F whose harmonic conjugate is discontinuous but bounded. Although the

 problem has been framed (for simplicity) in terms of harmonic functions, it is

 actually a pure real variable question concerning the lack of smoothness of a certain

 singular integral operator.

 For the solution, consider the simply connected domain D, indicated in Figure 2,

 bounded by an (open) analytic curve J together with its asymptote the segment

 D

 FIG. 2

 {y: - I < y < 1} of the y-axis in the complex plane. Map A conformally onto D

 by the univalent function f (z) = u(z) + iv(z). A standard result in conformal

 mapping [55, p. 353] insures that a single point of F, say 1, corresponds to the

 "bad" part of the boundary and that f establishes a homeomorphism between

 F\{l} and J. By the reflection principle, f actually extends analytically across

 F\{l}. One proves that as z -+ 1, u(z) -*0; and it is now obvious that u is not
 only harmonic on A and harmonically extendible across F\{l} but also con-

 tinuous on A u F. On the other hand, the harmonic function v, which is clearly

 bounded, is not continuous at z = 1. The details of the proof will be easily supplied

 by anyone familiar with Caratheodory's important theory of prime ends [7], [55,
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 pp. 352-355], [9]. An obvious modification yields a bounded continuous function
 whose conjugate is unbounded.

 10. Tauberian theorems. Tauberian theorems, such as Fejer's, have an intrinsic

 interest quite independent of applications. Of these, the most celebrated is certainly

 that due to Littlewood, which states that if limr<i -n??2Oanrn = L exists and
 = 0(1/n), then 1'=an = L. This result resisted considerable efforts at proof

 for several years before it was finally settled by Littlewood [31], whose argument
 required six pages of ingenious and delicate analysis. Much later, Karamata [27]

 introduced a new technique, based on approximation theory, resulting in an en-
 ormous simplification of the proof. Much less well-known is Wielandt's modification

 [59] of Karamata's proof, which yields a simple and transparent proof of the
 theorem in question. Below, we present Wielandt's proof of a strengthened version

 (due to Hardy and Littlewood [22]) of the Littlewood Tauberian theorem.

 THEOREM. Let f(z) = ' nanzn be analytic in I z < 1 and suppose that the an
 are real and that nan ? K for some K > 0. If limr,i f(r) = L exists as r -1-,
 then I'- an = L.

 The advantage of this result over the original Littlewood theorem lies, of course,
 in the fact that the order estimate on the coefficients is replaced by a one-sided
 bound.

 Proof. Trivial normalizations allow us to assume that L = 0, aO = 0, K = 1.
 Consider the family J of real functions ?>(x) on (0, 1) which satisfy

 (a) I 1 anO4(xW) iS convergent for x e (0, 1),
 (b) @D(x) = X?ta q (xn)-?0as x 1-.

 Clearly, if ?>(x) e Y, q$(xk) e J (k = 1, 2, ) and 5 is closed under linear combina-
 tions. Since (by hypothesis) x e 5, each polynomial vanishing at the origin belongs
 to S. The proof depends on a simple lemma concerning the approximation of
 functions.

 LEMMA. Let 0(x) satisfy (a). Suppose that for each E > 0 there exist poly-

 nomials pl(x), p2(X) such that pi(O) = 0, pi(l) = 1 (i = 1,2) and

 P(x) < (X) < p2(X) p2(X) - p(x) = q(x) > 0, x( - x)

 where f' q(x)dx < e. Then 0(x) satisfies (b) and hence belongs to S.

 Proof of Lemma. Let 4D(x) = Z' I a T(Xn), q(x) = = Obkxk.
 Then

 ?D(x) - Y anp1(x ) = I an(?(x) - pP(x)) ? z (p2(x) -pP(x'))
 n= 1 n=1 n=1 n
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 0 10

 - X -(1 - x')x'q(x') < (1 -x) I x'q(x')
 n=l n n=lI

 n n1
 r 00 r b(X)Xk +I bk

 -t ( X) I bk E x n(k +1)= I ( +
 kO = f1 k=0 lx k 0 tl+k

 - f'q(x)dx <e as x1-.

 Here we have used the fact that 1 -Xn < n(l - x) and that (1- xn)/(l - x) -+ n as
 x-> 1. Since p1(x)e , En1a p1(x")0 as x-+ 1 -so that uD(x) < E for x near 1.

 Consideration of p2(x) - (x) shows similarly that D(x) > - e if x is near enougl

 to 1. Thus D(x)-*0 as x-+ 1, so that 04e.
 Continuing with the proof of the theorem, let

 0*(X) {= 2? ? 1* ) O < x < I

 so that @(x) = I an(xn) = 2. 1 a= N= , a,, = SN, where

 N = [log 2/log-].

 It suffices to show that +*(x) e ,, for then SN 0 as Nn= oo, whence n an = 0
 as required. Now 0* clearly satisfies (a), so it is enough to show that the conditions
 of the lemma are fulfilled. Since continuous functions are dense in the integrable

 functions, we can find continuous functions g1(x) and g2(x) such that

 40*(x) 1 (10) g1(x) < -x(t ) <g2(x) J[92(x) -g 1(x)]dx < e.

 The functions g1 and g2 may then be approximated uniformly by polynomials q1

 and q2 in such a way that (10) still holds with the gi's replaced by the qi's. Putting

 pi(x) = x + x(l - x)qi(x), q(x) = q2(x)- q,(x), we obtain polynomials satisfying
 the hypothesis of the lemma. This completes the proof.

 The subject of Tauberian theorems extends far beyond questions concerning the

 convergence or divergence of a power series on its circle of convergence. One of the

 central results in the harmonic analysis of the real line is Wiener's Tauberian theorem,

 which states that if f e L1(R4) and the Fourier transform of f never vanishes, then
 linear combinations of translates of f are dense in L'(R). The relation between the

 theorems of Wiener and Littlewood is far from obvious, and it has become customary

 to deduce the latter from the former by way of explicating the Tauberian character

 of Wiener's theorem. This deduction is standard and may be found, for instance,

 in [60, pp. 104-106]. The proof involves the function K(x) = e-'exp( - e-x) and

 uses the fact that the gamma function F(z) has no zeroes on the line Re z = 1.

This content downloaded from 108.179.181.50 on Wed, 05 Apr 2017 21:47:20 UTC
All use subject to http://about.jstor.org/terms



 1974] REAL PROOFS OF COMPLEX THEOREMS 131

 Unfortunately, the deduction of Littlewood's theorem from Wiener's is longer and

 significantly more complicated in both conception and detail than Wielandt's proof

 of the (more general!) Hardy-Littlewood theorem: it is a little like proving that the

 medians of a triangle are concurrent by invoking the fact that a nested sequence of

 compact sets has nonvoid intersection. Of course, Wiener's powerful methods

 have applications in many situations where the simple approximation theory argu-

 ment we have given does not apply.

 One such instance concerns the so-called high indices theorem.

 HIGH INDICES THEOREM. Let f(z) = 0X 0 akznk be analytic in i z < 1 and sup-
 pose that nk+ lnk ? q> lfor all k. Iflimrif(r) = L exists, then Sk=oak = L.

 This theorem lies considerably deeper than Littlewood's theorem or its extension

 proved above; it was first proved, by Hardy and Littlewood, in 1925 [23], having

 been conjectured by Littlewood as early as 1910. The novelty of the result lies in the

 fact that the Tauberian condition (the lacunarity of the sequence of coefficients)

 involves no bound on the size of the coefficients. It is most instructive to try to apply

 the ideas used in proving the Tauberian theorems of Fejer and Hardy-Littlewood

 to the high indices theorem: they all fail miserably. In fact, I am aware of no really

 simple proof of this result. A particularly attractive argument, marked by con-

 siderable ingenuity in the use of such tools as the Phragmen-Lindelof principle and

 Blaschke products, has been given by Halatsz [21], following some ideas of the
 German mathematician Dieter Gaier.

 In concluding this section we should like to mention an amusing sidelight.

 Wielandt's proof of the Hardy-Littlewood theorem shares, with Mordell's proof

 of the Hadamard gap theorem, the property of being a gem of complex analysis

 mined by a mathematician whose central interests lay altogether outside analysis.

 The late Professor Mordell was, of course, one of the world's leading number

 theorists; Professor Wielandt is a group theorist of international repute. Is there a

 moral to be drawn here?

 11. Category. The usual theorems on convergence of sequences of analytic

 functions, such as Vitali's convergence theorem [54, p. 168], require the uniform

 boundedness of the sequence in question on compact subsets of the domain. There
 is, however, a sometimes useful result, due to Osgood, which avoids altogether

 hypotheses other than simple pointwise convergence.

 OSGOOD'S THEOREM [40]. Let D be a domain and let {fn} be a sequence of
 functions analytic in D. Suppose fn(z) -+f(z) for each z eD. Then f is analytic
 in an open set D1 c D which is dense in D, and convergence is uniform on compact
 subsets of D1.

 This result has been rediscovered countless times and has on innumerable other

 occasions brought the experts to grief. Indeed, the question as to whether f must
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 be analytic anywhere, appears (happily, with a correct solution) in the problem

 section of a recent symposium [29, p. 543]. The present formulation suggests - cor-
 rectly - the use of the Baire category theorem.

 Proof of Osgood's Theorem. Let Fm = {z: If,(z)I < m n = 1,2,3,}. The
 Fm are clearly relatively closed in D and U Fm = D. By the Baire category theorem,
 some Fm must have interior. For this m, the sequence {f,j is uniformly bounded on
 F? hence by Vitali's theorem converges uniformly on compact subsets of Fo to an

 analytic function. Thus f is analytic on F,. Since the argument can be applied to

 any subdomain R of D - in particular, to an arbitrary disc - it follows that f must

 be analytic on a dense open subset D1 of D. That convergence is uniform on compacta

 contained in D1 is a standard argument, which we suppress.

 A comment is perhaps in order on our use of the Baire category theorem, which

 states that a complete metric space is not the countable union of closed nowhere

 dense sets. Obviously, D is not complete in the Euclidean metric. However, it is

 easy to see that D can be given a new metric which induces the same (Euclidean)

 topology, under which D is complete. Alternatively, one may replace D by a slightly

 smaller compact set K and relativize the argument to K. We should also mention

 that category arguments appear elsewhere in complex analysis as well. A notable

 example is the proof of Hartogs' theorem, mentioned earlier in Section 2.

 A nice complement to Osgood's theorem is provided by an example of a sequence

 of entire functions f,,(z) with the property that

 (0 z$O
 (11) lim f,,(z) = i

 n -oo I z = O.

 There are (at least) two essentially distinct ways of constructing such a sequence.

 One method is to construct an entire function F(z) such that F(O) = 1 and

 F(z) -O 0 as I z | oo on each ray through the origin. Such functions were first ex-

 FIG. 3
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 hibited by Mittag-Leffler; see [34] for a detailed discussion and some surprising

 extensions. The construction of F is, with appropriate hints, a nice and doable

 exercise and occurs as such in Rudin's text [49, pp. 326-327]. Once F has been
 obtained, one observes that the sequence fn(z) F(nz) satisfies (11).

 Alternatively, one can apply Runge's theorem to "notched annuli" to construct

 polynomials satisfying (11). To be explicit, consider the set indicated in figure 3.

 A moment's reflection will reveal that one can choose a sequence Kn of such sets,

 with the property that for each z E C\{0} there exists an integer N such that z E Kn

 for all n > N. (The inner circle contracts, the outer circle expands, and the notch

 gets thinner and rotates, tending toward but never reaching its limiting line.) The
 function

 0? z cKn
 gn(Z) { K

 clearly extends to a function analytic in a neighborhood of the (disconnected) set

 Kn u {0}. Since this set does not separate the plane, g may be approximated uni-
 formly (to within 1/n, say) on Kn u {0} by a polynomial pn. These polynomials
 clearly satisfy (11).

 12. Miscellany. The interactions between real and complex analysis are by no

 means limited to the areas mentioned above. To keep the discussion within manage-

 able limits, we have restricted ourselves to (a subset of) those applications, examples,

 and aspects of the theory that have not found sustained treatment in the "popular"

 literature of texts and survey articles. Subjects which are treated elsewhere at ade-

 quate length but which deserve mention here by virtue of their interdisciplinary

 nature include the following:

 (a) The evaluation of real integrals and sums by residue techniques. This is

 surely one of the most striking applications of complex function theory to real

 analysis. Fortunately, any good text on complex analysis will contain a fairly detailed

 discussion.

 (b) Complex methods in harmonic analysis. This is a substantial area, which
 includes topics as diverse as interpolation theorems (see, for instance, [28, pp. 93-98])
 and theorems of Paley-Wiener type [43]. Two of the most attractive recent texts in

 harmonic analysis [13], [28] devote whole chapters to this aspect of the theory.

 Further developments are discussed in the survey article of Weiss [57].

 (c) Functional analysis. Complex variable methods appear here perhaps most
 notably in the construction of functional calculi for operators on Hilbert space or

 Banach space. The applications to commutative Banach algebras are particularly
 substantial; indeed, parts of this last-named subject are virtually coextensive with

 certain aspects of several complex variable theory. For further references, see [17]

 and [58]. In the opposite direction, techniques of functional analysis can be used
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 to establish many results in function theory; this is the programme of [48]. Finally,

 an honest partnership between complex variables and functional analysis occurs in

 the study of certain Banach spaces of analytic functions, especially HP spaces [12],
 [26].

 (d) Function theoretic methods in differential equations. Complex methods
 occur rather naturally in the study of ordinary differential equations [8]. Their

 appearance in the study of partial differential equations is perhaps more surprising.

 Yet there are substantial applications, and more than one book [2], [19] has been

 devoted to this area. Further applications of function theory to problems in partial

 differential equations will be found in [18]. In a rather different direction, the theory

 of linear partial differential equations with constant coefficients is intimately con-

 nected with the study of certain spaces of entire functions of several complex varia-

 bles; see [14] for an exhaustive treatment.

 13. Monodromy. No excursion onto the bypaths of complex analysis would be

 complete without some mention of the monodromy theorem.

 MONODROMY THEOREM. Let D be a simply connected domain and let f(z) be

 analytic in a neighborhood of zo e D. Then if f(z) can be continued analytically
 from zo along every path lying in D, the continuation gives] rise to a single-valued
 unction analytic on all oJ D.

 A more general version states that analytic continuation along paths is a homo-

 topy invariant; see, for instance, [53]. Like the reflection principle, the monodromy

 theorem is an essential ingredient in the short proof of Picard's little theorem; in its

 extended form, it is the central result in the subject of analytic continuation. Yet

 no theorem of basic complex analysis is more abused or less understood. Indeed, it

 has been misapplied more than once even by mathematicians of the first rank (and

 specialists in complex analysis, at that!). One may speculate that a source of at

 least some of the confusion surrounding this result is the essentially topological,

 rather than function-theoretic, nature of the theorem.

 The sort of error into which one may lapse is best indicated by an explicit example.

 Let D be a simply connected domain and f a function analytic in D which satisfies

 f '(z) 0 0 on D. Suppose R = f(D) is also simply connected. Question: Must f be
 univalent (one-one)? An affirmative answer may be found in [56, p. 243] and in other

 references as well. The argument is as follows. At each point w0 E R one may define

 a local inverse fJt1(w) of f, analytic in a neighborhood of w0. Since R is simply
 connected, the totality of these functions defines a single-valued analytic function

 f -1 on R, which is a global inverse for f. Thus f must be univalent. Note further

 that the simple-connectivity of D is quite extraneous to the demonstration.

 Unfortunately, the argument given above is altogether incorrect, since the

 essential hypothesis of the monodromy theorem, that analytic continuation be

 possible along every path in R, has not been verified. Can the proof be salvaged?
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 The answer is no. In fact, consider the function f(z) = f e2 dC. This f is analytic
 (entire) on the simply connected domain C and f'(z) _ eZ2 is nowhere zero. Clearly,
 f is not univalent. So it suffices to prove that f(C) is simply connected. We claim

 f(C) = C. Indeed, suppose f(z) # w. Since eZ2 is an even function, f(z) is odd,

 so that if f fails to take on the value w it also misses the value - w. If w =A 0, this
 contradicts Picard's (small) theorem. Since f(O) = 0, f takes on every value in the

 complex plane.

 For D = C, any function which satisfies f'(z) 0 0 must be transcendental
 and hence must (by Picard's theorem) take on most values infinitely often. One can,

 however, construct a non-univalent, locally univalent function mapping the disc

 A = {z: I z I < 1} onto itself, which takes on no value more than three times. The
 extremely elegant example given above is due to D. S. Greenstein and appears as a

 solution to MONTHLY Problem 4740. It is an appropriate note on which to end

 this survey.

 Preparation of this paper was supported in part by NSF GP 28970.
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