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Abstract

This paper is intended as a very brief review of General Relativity
for those who do not want to skimp on the details of the mathemat-
ics behind how the theory works. This paper mainly uses [2], [3], [4],
and [6] as a basis, and in addition contains short references to more
in-depth references such as [1], [5], [7], and [8] when more depth was
needed. With an introduction to manifolds and notation, special rel-
ativity can be constructed which are the relativistic equations of flat
space-time. After flat space-time, the Lagrangian and calculus of vari-
ations will be introduced to construct the Einstein-Hilbert action to
derive the Einstein field equations. With the field equations at hand
the Schwarzschild equation will fall out with a few assumptions.

1 Introduction

Einstein’s General Relativity is a powerful physical theory that describes
interactions in the universe in much greater accuracy than the previous New-
tonian theory of gravitation. Light is established as the invariant ”speed
limit” of causality, described by Lorentz invariant transformations, which
are the baseline assumption holding up General Relativity. In this paper,
tensor notations, Lorentz contractions, and Minkowski space will be intro-
duced in order to lay a foundation for understanding the Einstein Field
Equations taken directly from Einstein’s first paper [3], and these tools will
be utilized to derive the Einstein equations and the Schwarzschild solution
to the equations and understand their implications on physical phenomena.

1.1 Tensor Notations

An arbitrary tensor Aµν that acts on 4-vectors (which is what is used for
space-time vectors) is given by

Aµν =


A00 A10 A20 A30

A01 A11 A21 A31

A02 A12 A22 A32

A03 A13 A23 A33


Which is the standard size used in General Relativity, where the first columns
(0, 1, 2, 3) correspond to (t, x, y, z).

A vector V µ is called a covariant vector, it is analogous to a normal vec-
tor. A vector with the index is the subscript Vµ is called contravariant and
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instead acts like a differential form. Multiplying these two types of vectors
gives a form of dot product.

When two vectors or tensors with upper and lower indices are multiplied, a
sum sign is implied:

Aθθ =
3∑

n=0

Ann = Tr(A)

df =
∂f

∂xα
dxα =

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

The metric tensor giving the Lorentz transformation metric is gµν . This
tensor is symmetric;

gµν = gνµ

And has the form

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Such that ds2 = − dt2 + dx2 + dy2 + dz2 = gµν dx

µ dxν .
Tensor transformation laws to primed coordinates take the form

gµ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν′
gµν

The inverse of gµν is signified by gµν , such that

gαγgγβ = δαβ

(The metric tensor will be expanded upon in the derivation of the Einstein
Field Equations [Section 3]) A more in depth discussion of this topic can be
found in [5].

1.2 Manifolds

Manifolds are a necessary topic of General Relativity as they mathemat-
ically define the curvature and surface characteristics of a space that the
mathematician/physicist is working in. General Relativity asserts that all
space-time takes place on a curved manifold, where particles move along
geodesics (shortest path between two points) in the curvature of space-time.

2



The following introduction is adapted from [2].

A manifold is created by local mappings from a coordinate system (open
set U ⊂ M) into the vector space in question. A collection of local map-
pings (usually denoted ϕi : Ui → Rn) that completely covers a manifold
with open sets is called an atlas.
Locally, every manifold (the ones we will consider in General Relativity)
looks flat, so analysis can be done.

A consequence of the definition of a tensor is that the partial derivative of a
tensor does not output a tensor. Therefore, a new derivative must be defined
so that tensors moving along geodesics can have workable derivative-like op-
erators; this is called the covariant derivative. The covariant derivative on
a contravariant vector is defined as

∇µV ν = ∂µV
ν + ΓνµλV

λ

or
∇µVν = ∂µVν − ΓλµνVλ

for a covariant vector; for tensors a matching connection coefficient is added
for each index.
∂µV

ν is the partial derivative and ΓνµλV
λ is the correction to keep the deriva-

tive in tensor form. Γνµλ is the connection coefficient, which is given by the
metric. Connection coefficients are antisymmetric in their lower indices.

The connection derived from this metric is called the Levi-Civita connec-
tion, or the Riemannian connection. It is simple to prove existence and
uniqueness of the connection coefficient:

Proof. First expand the equation for metric compatibility (∇ρgµν = 0) in
three different permutations of the indices:

∇ρgµν = ∂ρgµν − Γλρµgλν − Γλρνgµλ = 0

∇µgνρ = ∂µgνρ − Γλµνgλρ − Γλµρgνλ = 0

∇νgρµ = ∂νgρµ − Γλνρgλµ − Γλνµgρλ = 0

Subtracting the last two equalities from the first and using the symmetric
nature of the connection coefficients results in

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γλµνgλρ = 0
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Solving for the connection by multiplying by gσρ:

Γµνσ =
1

2
gµλ (gλν,σ + gλσ,ν − gνσ,λ)

where gµν,λ = ∂λgµν .

This means that each connection symbol is unique and can be calculated
from the metric.

2 Lorentz Transformations

Moving from introduction to analysis of the physical aspects of the theory,
the Lorentz Transformations take into account the effects of general relativ-
ity on a flat space-time, and make up the basis of Einstein’s special relativity.
Einstein initially formulated these equations, and then took many years to
develop the analog to these transformations on a curved space-time.

2.1 Characteristic equations

Before Einstein, Newtonian relativity was taken as fact, which accounted
for the 3 spatial dimensions:

ds2 = dx2 + dy2 + dz2

which assumes no change under rotation of coordinates and preservation of
norm for all coordinate systems, and relative velocities are simply added and
subtracted between frames of reference.

V x′ = V x − v

V y′ = V y

V z′ = V z

For a change in velocity v between frames, using Newtonian addition of ve-
locities.

This notion was changed after the Michelson-Morley experiment, which used
two light beams in an interferometer; one rotated at high speeds and was
compared to a reference beam in order to detect a change in frequency of
the light according to the thought at the time that light traveled through
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a medium. Since no difference was detected, the Newtonian addition of ve-
locities was inaccurate in the case of light.

Einstein suggested that light’s speed was an invariant, and that the Galilean
coordinate transformations were flawed at near light velocities; replacing
them with the Lorentz Transformations. These transformations keep the
space-time interval constant, defined as

s2 = c2t2 − x2 − y2 − z2 (1)

Which gives the definition of distance in Minkowski (Lorentz invariant space)

ds2 = dt2 − dx2 − dy2 − dz2 (2)

Einstein’s simple proof of the Lorentz transformations [4]:

Proof. Assume without loss of generality that the particle in question is
moving along the x axis.
Take a light signal traveling along the x axis:

x = ct⇒ x− ct = 0

Since the speed of light is invariant;

x′ = ct′ ⇒ x′ − ct′ = 0

Events in any frame must fulfill either equation, so the equations must fulfill
the relation

(x′ − ct′) = λ(x− ct)

For light running in the negative direction on the x axis, the relations be-
comes

(x′ + ct′) = µ(x+ ct)

Redefining the constants as

γ =
λ+ µ

2
, b =

γ − µ
2

x′ = γx− bct, ct′ = γct− bx

Taking x′ to be the system at the origin, the relative velocity can be found
by

0 = ax− bct⇒ x

t
=
bc

a
= v
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Rearranging the equations gives the Lorentz transformations

x′ = γ(x− vt)

t′ = γ
(
t− v

c2
x
)

y′ = y

z′ = z

Gamma is given by the fact that at t = 0:

x′ = γx

While at t′ = 0:

0 = γ
(
t− v

c2
x
)
, x′ = γ(x− vt)⇒ t =

x′ − γx
−vγ

Subbing in for t:

0 = γ

(
x′ − γx
−vγ

− v

c2
x

)
⇒ x′ = γ

(
1− v2

c2

)
x

Since x′

x = x
x′ by the relativistic assumption,

1

γ
= γ

(
1− v2

c2

)
⇒ γ =

1√
1− v2

c2

These transformations show that as the velocity of a particle approaches
the speed of light, the relative length of the particle will be contracted in
a stationary observer’s reference frame, while the stationary observer will
observe more time passing in the particle’s frame of reference.

2.2 Minkowski Space

Minkowski Space is four dimensional real space coordinatized by (t, x, y, z),
where the inner product is given by the space-time interval given above:
s2 = −c2t2 + x2 + y2 + x2. This encodes the Lorentz transformations along
just the x axis to 4 dimensional flat space, which is the space we live in.
This space is simply a local representation of the space that our universe
is set in, such that Einstein’s postulate on the invariance of the speed of
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causality is invariant.

Minkowski Space represents space-time with zero curvature: it only rep-
resents special relativity. However, on every manifold of General Relativity
local regions look like Minkowski Space.

A Minkowski Diagram displays the light cone of an observer at 45 degrees–it
shows what evens could be causally related to the observer (anything out-
side the light cone could in no way communicate with the observer). The
diagrams can be transformed to new coordinates with Lorentz boosts, but
the speed of light with always point at 45 degrees in a light cone from the
observer.

Sample Minkowski Diagram:

Light Cone
t

x

t’

x’

The central dot is the observer, while the t′ and x′ lines show the transfor-
mation of coordinates under a Lorentz transform. The speed of light c = 1
for simplicity. Points correspond to events, and events above the light cone
have a time like space-time interval (s2 < 0), while events below the light
cone have a space like space-time interval (s2 > 0). Points along the light
cone have light-like or null space-time interval (s2 = 0).

3 Derivation of the Einstein Field Equations

3.1 Calculus of Variations

This introduction is paraphrased from [1].
Moving from flat spaces to curvature, a method for finding the shortest path
along a manifold becomes a non-trivial pursuit. A new method must be
derived to find the shortest path, and that method is Calculus of variations.
Calculus of variations was developed with the purpose of finding a method
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to solve for the shortest path between two points on a curved surface. It is
equivalent to finding stationary points of the integral

I =

∫ x2

x1

F (x, y, y′) dx

(
y′ =

dy

dx

)
Assuming that all curves are of the form

Y (x) = y(x) + εη(x),

where y(x) is the geodesic and η(x) are small variations from the minimum
value. η(x) = 0 at the endpoints of each curve.

The geodesic is the solution where I is minimized when ε = 0, or equiv-
alently solving

dI

dε
= 0, and ε = 0

simultaneously.

Solving in generality the integral we can arrive at Euler’s equation:

Proof.

I(ε) =

∫ x2

x1

F (x, Y, Y ′) dx

Differentiating under the integral (which is valid since F is sufficiently smooth
in regards to x, y, and y′.

∂I

∂ε
=

∫ x2

x1

[
∂F

∂Y

dY

dε
+
∂F

∂Y ′
dY ′

dε

]
dx

(
dY

dε
= η(x) and

dY ′

dε
= η′(x) from Y (x) = y(x) + εη(x)

)
∂I

∂ε
=

∫ x2

x1

[
∂F

∂Y
η(x) +

∂F

∂Y ′ η
′(x)

]
dx

Solving for ε = 0 gives Y (x) = y(x) and
∂I

∂ε
= 0:

∂I

∂ε
=

∫ x2

x1

[
∂F

∂y
η(x) +

∂F

∂y′
η′(x)

]
dx
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Assuming y′′ is continuous (which is usually the case in physical systems)
the second term can be integrated by parts:∫ x2

x1

∂F

∂y′
η′(x) dx =

∂F

∂y′
η(x)

∣∣∣∣x2
x1

−
∫ x2

x1

d

dx

(
∂F

∂y′

)
η(x) dx

Since η(x) is defined as zero at the endpoints, the first integrated term
disappears. This leaves∫ x2

x1

[
∂F

∂y
− d

dx

∂F

∂y′

]
η(x) dx = 0

Since η(x) is arbitrary, the other term must be identically equal to zero:

d

dx

∂F

∂y′
− ∂F

∂y
= 0

which is Euler’s equation.

The notation

δI =
dI

dε
dε

is the classical notation that this paper will use.

3.2 Einstein-Hilbert Action

Sources used were [8], and [2]. David Hilbert realized that he could use
classical mechanics of geodesic calculation to create Einstein’s field equations
on a mathematical basis. The Lagrangian (denoted L) is a function that
encodes all the dynamics of a system, and when integrated gives an action,
denoted as S.

S =

∫
L d4x

The action is a functional that takes the trajectory (also called path or his-
tory) of an object as an argument and returns a scalar. The principle of
least action states that objects in motion follow the path which minimizes
the action (δS = 0, this uses calculus of variations).

Hilbert observed that the action of space-time must take the form

S =

∫ [
1

2κ
R+ LM

]√
−g d4x
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where R is the Ricci scalar and LM is the contributions from mass densities
to the Lagrangian. g is the determinant of the metric.
Since objects travel through space-time along geodesics, the least action
principle should describe motion in space-time:

δS =

∫ [
1

2κ

δ(
√
−gR)

δgµν
+

R√
−g

δ(
√
−gLM )

δgµν

]
δgµν d4x = 0

=

∫ [
1

2κ

(
δR

δgµν
+

R√
−g

δ
√
−g

δgµν

)
+

1√
−g

δ(
√
−gLM )

δgµν

]
δgµν
√
−g d4x

Since the equation should be true for all variations δgµν , this implies that

δR

δgµν
+

R√
−g

δ
√
−g

δgµν
= −2κ

1√
−g

δ(
√
−gLM )

δgµν

The right hand side of the above equation is defined as proportional to the
stress energy tensor:

Tµν = −2
1√
−g

δ(
√
−gLM )

δgµν
= −2

δLM
δgµν

+ gµνLM

3.3 Calculation of the Variation of the Ricci Tenosr and
Scalar

The Riemann curvature tensor

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

is needed to find the variation of the Ricci tensor and scalar. First the
variation δRρσµν will be calculated and then contracted into the needed
objects.

δRρσµν = ∂µδΓ
ρ
νσ − ∂νδΓρµσ + δΓρµλΓλνσ + ΓρµλδΓ

λ
νσ − δΓ

ρ
νλΓλµσ − ΓρνλδΓ

λ
µσ

using the product rule and linearity of derivatives.
δΓρνµ is the difference of two Christoffel symbols and is therefore a tensor,
so it has a covariant derivative:

∇λ
(
δΓρνµ

)
= ∂λδΓ

ρ
νµ + ΓρσλδΓ

σ
νµ − ΓσνλδΓ

ρ
σµ − ΓσµλδΓ

ρ
νσ

In terms of the above equation for covariant derivatives, the variation of the
Riemann curvature tensor is

δRρσµν = ∇µ
(
δΓρνµ

)
−∇ν

(
δΓρµσ

)
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Contracting gives

δRµν ≡ δRρµρν = ∇ρ
(
δΓρνµ

)
−∇ν

(
δΓρρµ

)
For the Ricci Scalar, R = gµνRµν :

δR = Rµνδg
µν + gµνδRµν

= Rµνδg
µν +∇σ

(
gµνδΓσνµ − gµσδΓρρµ

)
which is true from the equation of the variation of the Ricci scalar and the
fact that ∇σgµν = 0. ∇σ

(
gµνδΓσνµ − gµσδΓ

ρ
ρµ

)
disappears for unbounded

solutions, so

∴
δR

δgµν
= Rµν

Jacobi’s formula describs the method for differentiating a determinant:

δg = δdet(gµν) = ggµνδgµν

Using this on the
√
−g component:

δ
√
−g = − 1

2
√
−g

δg =
1

2

√
−g(gµνδgµν) = −1

2

√
−g(gµνδg

µν)

(the last equality is due to the fact that gµνδg
µν = −gµνδgµν)

∴
1√
−g

δ
√
−g

δgµν
= −1

2
gµν

3.4 The Einstein Equations

Simply plugging in the expressions derived in the the last section to

δR

δgµν
+

R√
−g

δ
√
−g

δgµν
= −2κ

1√
−g

δ(
√
−gLM )

δgµν

gives the equations that we are looking for:

Rµν −
1

2
Rgµν =

8πG

c4
Tµν

Where κ =
8πG

c4
so that the equations match the Newtonian limit.
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4 Derivation of Schwarzschild Metric

4.1 Assumptions

1. The Schwarzschild metric assumes that the system is spherically sym-
metric; it uses spherical coordinates along the metric to achieve this
symmetry (it can be seen with the r2 and r2 sin2 θ terms of the metric).

2. The solution assumes vacuum conditions (Tµν = 0), so that solutions

only have to solve Rµν −
1

2
gµνR = 0.

3. The solution assumes that the system is static and time invariant,
proven with Birkhoff’s theorem, which is too complicated of an ar-
gument for this paper which I leave the details to [7]. This allows
g00 = U(r, t) and g11 = −V (r, t) to be limited to functions of only r:
g00 = U(r), and g11 = −V (r).

4.2 Deriving the Christoffel Symbols

This follows the method presented in [6].
Using the spherical parameterization of the metric:

ds2 = gµν dx
µ dxν = dt2 − dr2 − r2 dθ2 − r2 sin2 θ dψ2

Where
gµµ = gµνgµν = 4

Generalizing this with functions on each of the infinitesimals

ds2 = U dt2 − V dr2 −Wr2 dθ2 −Xr2 sin2 θ dψ2

However, since it was assumed that the equations are spherically symmetric,
W = X = 1. Since the solution is for a static field, the functions have no
dependence on time, and since the only mass is located inside a point mass,
the stress energy tensor (Tµν) will vanish.

∴ ds2 = U(r) dt2 − V (r) dr2 − r2 dθ2 − r2 sin2 θ dψ2

However, the problem is reduced in complexity to solutions of

Rµν −
1

2
Rgµν = 0
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because Tµν = 0 from the assumptions.
By the above reasoning, the metric tensor gµν is defined as

g00 = U, g11 = −V, g22 = −r2, g33 = −r2 sin2 θ

and its inverse gµν :

g00 =
1

U
, g11 =

−1

V
, g22 =

−1

r2
, g33 =

−1

r2 sin2 θ

To find the Ricci Scalar and Tensor, the Riemann curvature tensor must be
calculated. It is given by

Rβνρσ = Γβνσ,ρ − Γβνρ,σ + ΓανσΓβαρ − ΓανρΓ
β
ασ

where variables after the comma signify derivatives Γβνσ,ρ = ∂
∂xρ Γβνσ, and

Γµνσ =
1

2
gµλ (gλν,σ + gλσ,ν − gνσ,λ)

as defined above.
To simplify the calculation of the Christoffel Symbols;

1. Any derivatives with respect to t are zero, as the solution is static and
does not depend on time.

2. gµν and gµν both equal zero when µ 6= ν (the metric is symmetric).

3. Γαµν = Γανµ (the Christoffel Symbols are symmetric in their lower in-
dices)

(indices µ and ν run from 0− 3, while i and j run from 1− 3 in the spatial
dimensions). Γ0

µν

Γ0
00 =

1

2
g00 (g00,0 + g00,0 − g00,0) = 0

Γ0
0i =

1

2
g00 (g00,i + g0i,0 − g0i,0) =

1

2
g00∂1g00 =

1

2

1

U
∂rU

Γ0
ij =

1

2
g00 (g00,0 + g00,0 − g00,0) = 0

13



Γ1
µν

Γ1
00 =

1

2
g11 (g10,0 + g10,0 − g00,1) = −1

2
g11∂1g00 =

1

2

1

V
∂rU

Γ1
0i =

1

2
g11 (g10,i + g1i,0 − g0i,1) = 0

Γ0
ij 6=i =

1

2
g11 (g00,0 + g00,0 − g00,0) = 0

Γ1
11 =

1

2
g11 (g11,1 + g11,1 − g11,1) =

1

2
g11∂1g11 =

1

2

1

V
∂rV

Γ1
22 =

1

2
g11 (g12,2 + g12,2 − g22,1) = −1

2
g11∂1g22 = − r

V

Γ1
33 =

1

2
g11 (g13,3 + g13,3 − g33,1) = −1

2
g11∂1g33 = − r

V
sin2 θ

Γ2
µν

Γ2
00 =

1

2
g22 (g20,0 + g20,0 − g00,2) = 0

Γ2
0i =

1

2
g22 (g20,i + g2i,0 − g0i,2) = 0

Γ2
ii =

1

2
g22 (g2i,i + g2i,i − gii,2) = −1

2
g22∂2g33 = − cos θ sin θ

Γ2
12 =

1

2
g22 (g21,2 + g22,1 − g12,2) =

1

2
g22∂1g22 =

1

r

Γ2
13 =

1

2
g22 (g21,3 + g23,1 − g13,2) = 0

Γ2
23 =

1

2
g22 (g22,3 + g23,2 − g23,2) = 0
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Γ3
µν

Γ3
00 =

1

2
g33 (g30,0 + g30,0 − g00,3) = 0

Γ3
0i =

1

2
g33 (g30,i + g3i,0 − g0i,3) = 0

Γ3
ii =

1

2
g33 (g3i,i + g3i,i − gii,3) = 0

Γ3
ij 6=i =

1

2
g33 (g3i,j + g3j,i − gij,3) =

1

2
g33 (g3i,j + g3j,i) :

Γ3
13 =

1

2
g33 (g31,3 + g33,1) =

1

2
g33∂1g33 =

1

r

Γ3
23 =

1

2
g33 (g32,3 + g33,2) =

1

2
g33∂2g33 =

cosθ

sin θ

All the non-vanishing terms: (primes denote ∂r)

Γ0
01 = Γ010 =

U ′

2U

Γ1
00 =

U ′

2V

Γ1
11 =

V ′

2V

Γ1
22 = − r

V

Γ1
33 = − r

V
sin2 θ

Γ2
12 = Γ021 =

1

r
Γ2
33 = − cos θ sin θ

Γ3
31 = Γ3

13 =
1

r

Γ3
23 = Γ3

32 =
cos θ

sin θ

4.3 The Ricci Tensor

The Ricci Tensor is a contraction of the Riemann curvature tensor;

Rµν = Rβµνβ = Γβµβ,ν − Γβµν,β + ΓαµβΓβαν − ΓαµνΓβαβ
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Rµν =Γ0
µ0,ν − Γ0

µν,0 + Γαµ0Γ
0
αν − ΓαµνΓ0

α0

+ Γ1
µ1,ν − Γ1

µν,1 + Γαµ1Γ
1
αν − ΓαµνΓ1

α1

+ Γ2
µ2,ν − Γ2

µν,2 + Γαµ2Γ
2
αν − ΓαµνΓ2

α2

+ Γ3
µ3,ν − Γ3

µν,3 + Γαµ3Γ
3
αν − ΓαµνΓ3

α3

Rµν , µ 6= ν

R0i =Γ0
00,i − Γ0

0i,0 + Γα00Γ
0
αi − Γα0iΓ

0
α0 → 0− 0 + Γα01Γ

1
αi − Γα0iΓ

1
α1

+ Γ1
01,i − Γ1

0i,1 + Γα01Γ
1
αi − Γα0iΓ

1
α1 → 0− 0 + 0− 0

+ Γ2
02,i − Γ2

0i,2 + Γα02Γ
2
αi − Γα0iΓ

2
α2 → 0− 0 + 0− 0

+ Γ3
03,i − Γ3

0i,3 + Γα03Γ
3
αi − Γα0iΓ

3
α3 → 0− 0 + 0− 0

Since either α = 0, which makes the terms vanish because Γ0
00 = 0, or α = j

where the second Christoffel symbol is equal to zero. Therefore, R0i = 0.

Rij 6=i =Γ0
i0,j − Γ0

ij,0 + Γαi0Γ
0
αj − ΓαijΓ

0
α0 → 0− 0 + Γαi0Γ

1
αj − ΓαijΓ

0
α0

+ Γ1
i1,j − Γ1

ij,1 + Γαi1Γ
1
αj − ΓαijΓ

1
α1 → 0− 0 + Γαi1Γ

1
αj − 0

+ Γ2
i2,j − Γ2

ij,2 + Γαi2Γ
2
αj − ΓαijΓ

2
α2 → 0− 0 + Γαi2Γ

2
αj − 0

+ Γ3
i3,j − Γ3

ij,3 + Γαi3Γ
3
αj − ΓαijΓ

3
α3 → Γ3

i3,j − 0 + Γαi3Γ
3
αj − ΓαijΓ

3
α3

Looking at the rest of the terms consists of casework to make each go to
zero.
Γαi0Γ

0
αj : If α or j = 2, 3 the second Christoffel symbol goes to zero. The

other options are α = 0, where i = 1 for it to not vanish. However the
condition that i 6= j forces j = 2, 3 and the symbol goes to zero. For α = 1,
i would have to be zero, however i is only indexed from 1 − 3, so the term
as a whole is zero.
−ΓαijΓ

0
α0: The only nonvanishing term is if α = 1 for the second symbol,

however Γ1
ij = 0⇒ −ΓαijΓ

0
α0 = 0

Γαi1Γ
1
αj : For terms to not immediately be zero α = j, this leaves Γ1

i1Γ
1
11 +

Γ2
i1Γ

1
22 + Γ3

i1Γ
1
33. Γ1

i1 = 0 because i 6= j. Γ2
i1 = 0 because i = 1, 3 which is a
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disappearing term, and Γ3
i1 = 0 for i = 1, 2, and the whole term is zero.

Γαi2Γ
2
αj : α 6= 0 or else the first symbol vanishes. If α = 1 then i = 2 for the

first term to survive, but j must equal 2 for the second term to not equal
zero. If α = 2 then i = j = 1, however i 6= j. For α = 3, i = j = 3, but
i 6= j.
Γ3
i3,j : only i = 2, 3 are nonvanishing. For i = 1, j = 2, 3, but derivatives not

with respect to r vanish. i = 2⇒ j = 1, 3 however then the function is only
of θ and it vanishes.
Γαi3Γ

3
αj : α 6= 0. For α = 1, i = j = 3 (not possible). For α = 2, i = j = 1. If

α = 3 then i = 1, 2, j = 2, 1, which does not vanish leaving Γ3
13Γ

3
32 + Γ3

23Γ
3
31.

−ΓαijΓ
3
α3: This term can only have α = 1, 2. α = 1 ⇒ i = j so it vanishes.

For α = 2 the terms do not vanish leaving −Γ2
12Γ

3
23 − Γ2

21Γ
3
23

The nonvanishing terms are

Γ3
13Γ

3
32 + Γ3

23Γ
3
31−Γ2

12Γ
3
23−Γ2

21Γ
3
23 =

1

r
cot θ+

1

r
cot θ− 1

r
cot θ− 1

r
cot θ = 0

Therefore Rµν = 0 for µ 6= ν. Solving for the diagonal terms:

R00 =Γ0
00,0 − Γ0

00,0 + Γα00Γ
0
α0 − Γα00Γ

0
α0 → 0 + 0

+ Γ1
01,0 − Γ1

00,1 + Γα01Γ
1
α0 − Γα00Γ

1
α1 → 0− Γ1

00,1 + Γ0
01Γ

1
00 − Γ1

00Γ
1
11

+ Γ2
02,0 − Γ2

00,2 + Γα02Γ
2
α0 − Γα00Γ

2
α2 → 0− 0 + 0− Γ1

00Γ
2
12

+ Γ3
03,0 − Γ3

00,3 + Γα03Γ
3
α0 − Γα00Γ

3
α3 → 0− 0 + 0− Γ1

00Γ
3
13

R00 = −Γ1
00,1 + Γ0

01Γ
1
00 − Γ1

00Γ
1
11 − Γ1

00Γ
2
12 − Γ1

0iΓ
3
13

= −U
′′

2V
+
U ′

4

V ′

V 2
+

(U ′)2

4UV
− 1

r

U ′

V

R11 =Γ0
10,1 − Γ0

11,0 + Γα10Γ
0
α1 − Γα11Γ

0
α0 → Γ0

10,1 − 0 + Γ0
10Γ

001− Γ1
11Γ

0
10

+ Γ1
11,1 − Γ1

11,1 + Γα11Γ
1
α1 − Γα11Γ

1
α1 → 0 + 0

+ Γ2
12,1 − Γ2

11,2 + Γα12Γ
2
α1 − Γα11Γ

2
α2 → Γ2

12,1 − 0 + Γ2
12Γ

221− Γ1
11Γ

2
12

+ Γ3
13,1 − Γ3

11,3 + Γα13Γ
3
α1 − Γα11Γ

3
α3 → Γ3

13,1 − 0 + Γ3
13Γ

3
31 − Γ1

11Γ
3
13
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R11 = Γ0
10,1 + Γ0

10Γ
001− Γ1

11Γ
0
10 + Γ2

12,1 + Γ2
12Γ

221− Γ1
11Γ

2
12 + Γ3

13,1 + Γ3
13Γ

3
31 − Γ1

11Γ
3
13

=
U ′′

2U
− (U ′)2

4U2
− U ′V ′

4UV
− V ′

V r

R22 =Γ0
20,2 − Γ0

22,0 + Γα20Γ
0
α2 − Γα22Γ

0
α0 → 0− 0 + 0− Γ1

22Γ
0
10

+ Γ1
21,2 − Γ1

22,1 + Γα21Γ
1
α2 − Γα22Γ

1
α1 → 0− Γ1

22,1 + Γ2
21Γ

1
22 − Γ1

22Γ
1
11

+ Γ2
22,2 − Γ2

22,2 + Γα22Γ
2
α2 − Γα22Γ

2
α2 → 0 + 0

+ Γ3
23,2 − Γ3

22,3 + Γα23Γ
3
α2 − Γα22Γ

3
α3 → Γ3

23,2 − 0 + Γ3
23Γ

3
32 − Γ1

22Γ
3
13

R22 = −Γ1
22Γ

0
10 − Γ1

22,1 + Γ2
21Γ

1
22 − Γ1

22Γ
1
11 + Γ3

23,2 + Γ3
23Γ

3
32 − Γ1

22Γ
3
13

=
rU ′

2UV
+

1

V
− rV ′

2V 2
− 1

R33 =Γ0
30,3 − Γ0

33,0 + Γα30Γ
0
α3 − Γα33Γ

0
α0 → 0− 0 + 0− Γ1

33Γ
0
10

+ Γ1
31,3 − Γ1

33,1 + Γα31Γ
1
α3 − Γα33Γ

1
α1 → 0− Γ1

33,1 + Γ3
31Γ

1
33 − Γ1

33Γ
1
11

+ Γ2
32,3 − Γ2

33,2 + Γα32Γ
2
α3 − Γα33Γ

2
α2 → 0− Γ2

33,2 + Γ3
32Γ

2
33 − Γ1

33Γ
2
12

+ Γ3
33,3 − Γ3

33,3 + Γα33Γ
3
α3 − Γα33Γ

3
α3 → 0 + 0

R33 = −Γ1
33Γ

0
10 − Γ1

33,1 + Γ3
31Γ

1
33 − Γ1

33Γ
1
11 − Γ2

33,2 + Γ3
32Γ

2
33 − Γ1

33Γ
2
12

=

(
rU ′

2UV
+

1

V
− rV ′

2V 2
− 1

)
sin2 θ = sin2 θR22
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4.4 The Ricci Scalar

The Ricci scalar is a contraction of the Ricci tensor;

R = Rµµ = g00R00 + g11R11 + g22R22 + g33R33 = g00R00 + g11R11 + g22R22 + g33 sin2 θR22

=
1

U
R00 −

1

V
R11 −

1

r2
R22 −

(
1

r2 sin2 θ

)
sin2 θR22

=
1

U
R00 −

1

V
R11 −

2

r2
R22

= − U
′′

UV
+
U ′

2

V ′

UV 2
+

(U ′)2

2U2V
− 2

r

U ′

UV
+

2

r

V ′

V 2
+

2

r2
(1− 1

V
)

4.5 Substituting into the Einstein Equations

Using the metric and the variables as defined, the four following equations
must be satisfied:

R00 −
1

2
g00R = 0 = R00 −

U

2
R

0 =
1

r

V ′

V 2
+

1

r2
(1− 1

V
)

R11 −
1

2
g11R = 0 = R11 +

V

2
R

0 = − U ′

rUV
+

1

r2
(1− 1

V
)

R22 −
1

2
g22R = 0 = R22 +

r2

2
R

0 = −U
′

U
+
V ′

V
− rU ′′

U
+
rU ′

2

V ′

UV
+
r(U ′)2

2U2

R33 −
1

2
g33R = 0 = sin2 θR22 +

r2 sin2 θ

2
R = R22 +

r2

2
R
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4.6 Solving and substituting into the metric

Notice R00 −
1

2
Rg00 = 0 is only in terms of V

0 =
V ′

V
+

1

r
(V − 1)

− dr
r

=
dV

V (V − 1)

Integrating both sides with the rule
∫

dx
ax+bx2

= − 1
a ln a+bx

x :

ln r + C ′ = ln
(V − 1)

V
C

r
=
V − 1

V

∴ V =
1

1− C
r

Inserting this solution into R11 −
1

2
g11R = 0

0 =
U ′

U
(1− C

r
)− 1

r
(1− (1− C

r
))

U ′

U
=

C

r2(1− C
r )

=
C

r2 − Cr
dU

U
=

C dr

r2 − Cr

Integrating both sides with the same formula as above:

lnU =
C

C
ln
r − C
r

and exponentiating

U = 1− C

r

This means that the Schwarzschild metric is

ds2 = (1− 2GM

c2r
)c2 dt2 − dr2

(1− 2GM
c2r

)
− r2 dθ2 − r2 sin2 θ dψ2

Where C = 2GM
c2

.
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5 Conclusion

These equations describe the space-time manifold around a point mass.
This equation shows that there are singular points when r = 0 and when

r =
2GM

c2
; the first is the center of the black hole–no particle can be in

exactly the same place as another. The second singular point represents
the event horizon of a black hole, and the Schwarzschild radius–the radius
at which a ball of mass M collapses into a black hole. This metric also
shows that the black hole consists of two connected sets of definition, that

within the black hole, and the area outside. The singularity at
2GM

c2
can

be removed using a different coordinatization (Kruskal-Szekeres coordinates
explained more in [7]), which gives the maximally extended solution and
shows that space inside and outside the black hole are not completely dif-
ferent regions. Other solutions expanding on the Schwarzschild derivation
account for charge (Reissner-Nordström solution) and rotating black holes
(Kerr-Newman). The really troubling component is that the only assump-
tion of spherically symmetric space produced a curvature singularity: this
baffled scientists of the time and Schwarzschild’s solution was thought to be
wrong. However, it holds still today and is used to investigate the curvature
around black holes, and even the fact that curvature like the equations de-
scribed exists in some form in nature is astounding–it’s the inspiration for
many a physicist to continue working to uncover other mysteries of nature.
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