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1 Introduction

The Riemann hypothesis, the statement that the nontrivial zeros of the Rie-
mann zeta function have real part 1

2 , is usually viewed as one of the most
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important unsolved problems in mathematics, in no small part due to the re-
markably wide variety of number-theoretic consequences that can be deduced
from it. One of the simplest and best-known of these is an equivalent state-
ment about the asymptotics of the Mertens function, the cumulative sum of
the Möbius function.

While the Mertens function appears erratic at first glance, it can be rep-
resented fairly simply as the determinant of a matrix (the Redheffer matrix)
defined in terms of divisibility, and this has spurred some research into the
eigenvalues of the matrix. Some early results were presented by Barrett, For-
cade, and Follington in their paper “On the Spectral Radius of a (0, 1) Matrix
Related to Mertens’ Function”[1], which gave an easy proof that most of the
eigenvalues are 1, and showed asymptotics on the largest one.

This paper will outline the properties and importance of the Möbius and
Mertens functions, then introduce the Redheffer matrix and describe its prop-
erties proved in the paper of Barrett et al.

1.1 Notations

This paper uses the following notations:

• a | b means b is divisible by a. a - b is the negation.

• bxc, the floor of x, is the greatest integer less than x.

• <(z) is the real part of z.

2 Number-Theoretic Background

2.1 Motivation: The Riemann Hypothesis

Recall that the Riemann zeta-function is defined for <(s) ≥ 1, s 6= 1 by the
Dirichlet series

ζ(s) =
∞∑
n=1

1

ns

The function is analytic on this domain, and it can be analytically continued to
the entire complex plane with the exception of a simple pole at s = 1.

The zeta function’s connection to number theory comes from its factoriza-
tion into the Euler Product Form:

ζ(s) =
∏

p prime

1

1− p−s

Bernhard Riemann famously used this representation to obtain an explicit
formula for the quantity of primes less than a given number, using the zeroes
of the zeta function. As a result, information on the zeroes of ζ translates into
information on the distribution of the prime numbers.
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It is known that, besides the trivial zeroes of ζ, the ones occurring at neg-
ative even integers, the zeroes must lie in the critical strip {s : 0 ≤ <(s) ≤ 1},
and that they are symmetrical about the line <(s) = 1/2. In the same pa-
per in which he derived his formula, Riemann also made the following, much
stronger conjecture:

The Riemann Hypothesis. All of the nontrivial zeroes of the Riemann zeta function
have real part 1/2.

In combination with Riemann’s and other estimates for number theoretic
functions based on the zeta function, the Riemann hypothesis would effec-
tively allow the tightest possible bounds to be obtained on the error of these
estimates.

(These facts, and several other properties of the ζ function cited in this pa-
per, come from E. C. Titchmarsh’s The Theory of the Riemann Zeta-function. [4])

3 The Möbius and Mertens functions

3.1 The Möbius Function

The Möbius function µ : N→ {−1, 0, 1} is given by

µ(n) =


0 n has a repeated prime factor (that is, a square factor)
1 n has an even number of nonrepeated prime factors
−1 n has an odd number of nonrepeated prime factors

So in particular, µ(1) = 1; µ(p) = −1 for any prime p; µ(6) = 1, since it has
an even number of prime factors; µ(12) = 0, since it is divisible by a square.

While this definition may seem somewhat arbitrary, µ has a variety of use-
ful properties, which relate to the following basic fact of the Riemann ζ func-
tion. [4]

Theorem 1.
1

ζ(s)
=

∞∑
n=1

µ(n)

ns

Proof (sketch). Given the Euler product form of ζ:

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s

then
1

ζ(s)
=

∏
p prime

(1− p−s)

Consider the series formed by multiplying out this infinite product; each of the
terms produced will be of the form (−p−s1 )(−p−s2 ) . . . (−p−sk ) for some collec-
tion of distinct primes p1, . . . , pk. Then the coefficient of the term n−s in the
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resulting sum will be 0 if it has any repeated prime factors (it will not appear
at all in the product), 1 if it has an even number of distinct prime factors, and
-1 if it has an odd number. This is the definition of the Möbius function.

From this, and an important lemma on Dirichlet series, a more directly
number-theoretic property of µ can be derived:

Lemma 1 ([2]). Let
cn =

∑
d|n

adbn/d

Then
∞∑
n=1

an
ns

∞∑
n=1

bn
ns

=

∞∑
n=1

cn
ns

Proof. The terms in the product of the two series will be given by ajbk
(jk)s . As

such, the terms with denominator ns will have coefficient adbn/d, where d is an
arbitrary divisor of n. Summing these terms gives the result.

Corollary 1. ∑
i|n

µ(i) =

{
1 n = 1

0 otherwise

Proof (sketch). On one hand, the product 1
ζ(s)ζ(s) is clearly 1. On the other

hand, it has a Dirichlet series which can be calculated using Theorem 1 and
Lemma 1, with coefficients given by∑

i|n

µ(i)

Comparing this with the coefficients found above (1 if n = 1, 0 otherwise) gives
the result.

While there exist alternative proofs of this result, this method of proof is
remarkably quick and lends itself to a wide variety of identities. It will return
in section 6.

3.2 The Mertens Function

The Mertens function M : N → Z is defined to be the cumulative sum of the
Möbius function:

M(n) =

n∑
k=1

µ(k)

The most important feature of the Mertens function is its connection with the
Riemann hypothesis:
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Theorem 2. The Riemann hypothesis is true if and only if

M(n) = O(n1/2+ε)

for any ε > 0.

The “if” direction of this equivalence is shown in Appendix A. The “only
if” direction uses more complicated zeta-function machinery, which is detailed
in Titchmarsh [4, p. 370].

Roughly speaking, this result states that an equivalent condition for the Rie-
mann hypothesis is that the Mertens function does not grow significantly faster
than the square root. As such, results on the growth of the Mertens function
are useful to the general study of prime numbers and the zeta function.

4 The Redheffer Matrix

4.1 Definition

The Redheffer matrix An = {aij} is defined by aij = 1 if j = 1 or i | j, and
aij = 0 otherwise. For example, the 6× 6 matrix is

A6 =


1 1 1 1 1 1
1 1 0 1 0 1
1 0 1 0 0 1
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1


To account for the initial column of 1s, An is sometimes represented as a sum
An = Cn +Dn: the matrix Dn = {dij}, with dij = 1 if and only if i | j, and the
matrix Cn = {cij}, with cij = 1 if and only if j = 1 and i 6= 1:

1 1 1 1 1 1
1 1 0 1 0 1
1 0 1 0 0 1
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

 =


0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

+


1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


4.2 The Determinant of An

Barrett et al.’s calculation of the determinant of the Redheffer matrix depends
on a minor lemma regarding the inverse of the matrix Dn.

Lemma 2. The inverse matrix D−1n = {δij} is given by

δij =

{
µ(j/i) if i | j
0 otherwise
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For example,
1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



−1

=


1 −1 −1 0 −1 1
0 1 0 −1 0 −1
0 0 1 0 0 −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


Proof. The ijth entry of the product of the matrices, pij , is

pij =

n∑
k=0

dikδkj .

The term dikδkj is 0 unless i | k and k | j, so in particular, if i - j, pij = 0. If i | j,

pij =
∑

k with i|k,k|j

µ

(
j

k

)
=

∑
k′|(j/i)

µ

(
j/i

k′

)
=

{
1 j/i = 1

0 otherwise

where this last equality follows from Corollary 1. But then pij = 1 exactly
when i = j, so DnD

−1
n = In, as required.

Theorem 3.
det(An) =M(n)

Proof. By Lemma 2, det(D−1n ) = 1. Thus

det(An) = det(D−1n An) = det(D−1n (Cn +Dn)) = det(D−1n Cn + In)

All of the columns of Cn but the first are identically 0, so all of the columns of
the product D−1n Cn but the first are identically 0. Thus D−1n Cn is lower trian-
gular, and so is D−1n Cn + In; then its determinant is given by the product of its
diagonal entries. All of these entries but the first are 1, since only In contributes
to them. It is easily seen that the first diagonal entry of D−1n Cn is

∑n
k=2 µ(k),

which means that the first diagonal entry, and thus the determinant, of the
matrix is M(n).

In particular, this means that the product of the eigenvalues of An is M(n).
So information about the eigenvalues could be used to obtain information on
M(n).

5 The Eigenvalues of An

5.1 A Graph-Theoretic Interpretation

Instead of directly using the characteristic polynomial pn(x) = det(xIn − An)
to obtain information on the eigenvalues of An, Barrett et al. investigate the
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closely related polynomial qn(x) = det(xIn + (An − In)). For example, q6(x) is
the determinant of 

x 1 1 1 1 1
1 x 0 1 0 1
1 0 x 0 0 1
1 0 0 x 0 0
1 0 0 0 x 0
1 0 0 0 0 x


Note that

pn(x) = det(xIn −An) = (−1)n det(An − xIn)
= (−1)n det((1− x)In +An − In) = (−1)nqn(1− x)

As such, the eigenvalues {rj} of An are simply given by {1− r′j}, where the
r′js are the roots of qn(x). It will thus suffice to consider qn(x) for the remainder
of the paper, converting the roots to eigenvalues when necessary.

A key insight into determining the properties of this polynomial comes
from viewing the matrix An − In as corresponding to a certain graph.

Definitions. A directed graph consists of a set of vertices and a set of ordered pairs
of vertices, denoting edges between them.

Given any square matrix, all of whose entries are 0 or 1, a directed graph
can be associated with it by assigning a vertex to each row (or column, equiv-
alently) and including an edge between the ith and jth vertices if and only if
aij = 1. For example, A6 − I6

0 1 1 1 1 1
1 0 0 1 0 1
1 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


corresponds to the graph

1 2 3 4 5 6

Note that in the case of the Ans, subtracting In has the effect of removing
edges that loop from a node to itself in the graph.

Returning to the polynomial qn(x) = det(xIn+(An− In)), the determinant
calculation allows facilitation by a formulation in terms of permutations:
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Lemma 3 ([5]). Given an n× n matrix A = {aij},

det(A) =
∑
σ

a1,σ(1)a2,σ(2) . . . an,σ(n)sign(σ)

where the sum is taken over all permutations of n elements, and sign(σ) is 1 if the
permutation is formed by an even number of transpositions, -1 if it is formed by an odd
number.

Now, the result of applying this formula to xIn + An − In can be broken
down by looking at the cycles of the permutation. Given a permutation of a
finite set, a cycle is a sequence of elements of the permuted set e1, e2, . . . , en
such that σ(e1) = e2, σ(e2) = e3, . . . , and σ(en) = e1. A permutation can then
be written down in terms of its cycles. For example, given the permutation
that sends 1, 2, 3, 4, 5, 6 to 2, 4, 6, 1, 5, 3, its cycles are given by 1 → 2 → 4 → 1,
3→ 6, and 5→ 5. This cyclic form of the permutation is commonly notated as

(1 2 4)(3 6)(5)

From the perspective of cycles, we can make some general statements about
the terms in the above form of the determinant. The key point is that the term
in the above sum corresponding to a specific permutation σ will vanish unless
all of the terms ai,σ(i) are nonzero. And in the specific case of xIn + An − In,
ai,σ(i) will be nonzero exactly when σ(i) = 1 or i | σ(i). So, given a permutation
σ,

• If σ has a nontrivial cycle that does not contain 1, then the term is 0.
Any nontrivial cycle must contain a number i such that σ(i) < i (since if
σ(i) = i for any number, the cycle is trivial, and if σ(i) > i for every i in
the cycle, it would never return to the beginning). However, if σ(i) < i,
it cannot be that i | σ(i), and since the cycle does not contain 1, σ(i) 6= 1,
so ai,σ(i) = 0 and the whole term is 0.

• If σ has no nontrivial cycles at all, then it is just the identity permutation.
The sign is 1, and for any i, ai,σ(i) = ai,i = x, so the identity permutation
contributes the term xn to the determinant.

• The remaining possibility is that σ has exactly one nontrivial cycle, and it
contains 1, since any other nontrivial cycle would not contain 1. For this
permutation to contribute a nonzero term, it must be that for each i in the
cycle, either i | σ(i) or σ(i) = 1. But this is equivalent to saying that for
each i in the cycle, there is an edge going from i to σ(i) in the directed
graph corresponding to An − In constructed above. This means that the
permutations producing nonzero terms in the determinant formula are
the ones whose nontrivial cycle containing 1 corresponds to a cycle in the
graph, a sequence of vertices with edges pointing from each one to the
next and looping around, containing 1.
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Because of the way the graph is constructed, its cycles are chains of the form
1→ a→ ab→ abc→ . . .→ 1, where each number is a multiple of the previous
one, and the cycle can return to 1 at any time.

Then consider the permutation σ having such a cycle as its only nontrivial
cycle (acting as the identity elsewhere). For i in the cycle, ai,σ(i) = 1, and for
all other i, ai,σ(i) = ai,i = x. In general, a permutation with a single nontrivial
cycle of length k can be obtained as a sequence of k − 1 transpositions (by
exchanging the first element of the cycle with each of the following ones in
turn) so the sign of the permutation is (−1)k−1. So the term that the cycle
contributes is

a1,σ(1)a2,σ(2) . . . an,σ(n)sign(σ) = (−1)k−1xn−k

Putting this all together with the term produced by the identity permuta-
tion, we get a useful form for the polynomial qn [1]:

Theorem 4.

qn(x) = xn +

n∑
k=1

(−1)k−1c(n, k)xn−k

where c(n, k) is the number of cycles of length k in the graph corresponding toAn−In.

Once again, we consider the example of n = 6:

• c(6, 1) = 0, since as pointed out above, the graph contains no self-loops,
or equivalently, there are no 1s on the diagonal of An − In. In general,
c(n, 1) = 0.

• c(6, 2) = 5. Any 2-cycle can be portrayed as starting from 1, going to any
other number (since 1 will divide it) and returning to 1, and there are 5
other numbers. In general, c(n, 2) = n− 1.

• c(6, 3) = 3. A 3-cycle will consist of 1, some other number, and then some
multiple of that number, which then returns to 1. These cycles are given
by 1, 2, 4; 1, 2, 6; and 1, 3, 6.

• c(6, k) = 0 for k > 3. A cycle of length 4 would have to contain 4 num-
bers, each a nontrivial multiple of the last, but the smallest possible 4th
number in the cycle would be 8 (1, 2, 4, 8) which is greater than n.

Thus q6(x) = x6 − 5x4 + 3x3. The roots of this polynomial are -2.49, 0, 0, 0,
0.66, and 1.83 (approximately); thus the eigenvalues of A6 are -0.83, 0.34, 1, 1,
1, and 3.49.

The last bullet point above extends to give one of the important results of
the paper of Barrett et al.

Theorem 5. The matrix An has eigenvalue 1 with multiplicity n− blog2 nc − 1.
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Proof. In general, in the graph corresponding to some n, the longest cycle is
1 → 2 → 4 → . . . → 2blog2 nc → 1, since every entry in the cycle must be a
nontrivial multiple of the previous one, and multiplying by 2 each time grows
the cycle’s elements as slowly as possible. This cycle contains blog2 nc+1 num-
bers, which means that c(n, k) = 0 for k > blog2 nc+ 1. Then the lowest power
of x occurring in qn is xn−blog2 nc+1, meaning qn has the root 0 with multiplicity
n− blog2 nc+ 1. The correspondence between the roots of qn and pn gives the
result.

5.2 The Spectral Radius

After establishing that most of the eigenvectors of An are 1, Barrett et al. go on
to consider the spectral radius of the matrix: the maximum absolute value of
any of its eigenvalues. The Perron-Frobenius theorem [3] states that a matrix
with nonnegative entries and the additional property of irreducibility has a
positive eigenvalue whose absolute value is the spectral radius. The Redheffer
matrix satisfies this irreducibility condition, and thus it has the largest positive
eigenvalue given by the theorem. Now consider the polynomial

fn(x) = pn(x+ 1) = (−1)nqn(−x) = xn −
n∑
k=1

c(n, k)xn−kn

Clearly the largest root of pn will correspond to the largest root of fn, so say
xn is this root of fn; then ρn = xn + 1 is the largest eigenvalue. It suffices to
consider xn. First,

x2n =

n∑
k=1

c(n, k)x2−kn

(obtained from simply dividing both sides by xn−2n ).
One can then leverage this equality to prove the following asymptotic result

about the largest eigenvalue of An:

Theorem 6.
lim
n→∞

ρn√
n
= 1

This result is interesting in comparison with Theorem 2’s restatement of the
Riemann Hypothesis, because it suggests that the Hypothesis is equivalent to
the rough statement that the product of all the other eigenvalues of An grows
very slowly with n—that is, it is O(nε) for any ε > 0.

Barrett et al. prove this result using the squeeze theorem. The lower bound
x2n > n− 1 simply follows from the fact that c(n, 2) = n− 1, so

x2n = n− 1 + additional positive terms

An upper bound on x2n then comes from the following bound on the c(n, k):
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Lemma 4.

c(n, k) < n
(log n)k−2

(k − 2)!

for k ≥ 3.

Proof (sketch). By induction. The base case can be determined from the defini-
tion; recall as discussed above that 3-cycles in the divisibility graph are triplets
1 → a → ab where ab ≤ n. The number of cycles starting with a fixed a is
bn/ac − 1, the number of nontrivial multiples less than n. So

c(n, 3) =

n−1∑
a=2

(⌊n
a

⌋
− 1
)
≤

(
n

n−1∑
a=2

1

a

)
− n+ 2 ≤ n log n

which follows from bounding the sum using the corresponding integral. Then,
assume the induction hypothesis for a fixed k. We can obtain a recursive for-
mula for c(n, k+1) by expressing the number of cycles of length k+1 in terms
of those of length k. Consider the k + 1-cycles having a fixed penultimate ele-
ment w. Then such a cycle can be built up by choosing a k-cycle ending on w,
and adding a multiple vw, where v can be chosen from among 2, 3 . . . , bn/wc.
The number of k-cycles ending on w is given by c(w, k)−c(w−1, k), so putting
this together,

c(n, k + 1) =

n∑
w=2k−1

(c(w, k)− c(w − 1, k))
(⌊ n
w

⌋
− 1
)

(The sum is taken from w = 2k−1 since no k-cycle can end up on a number any
lower, as discussed in the previous section.) Rearranging the sum and applying
the induction hypothesis, Barrett et al. get

n∑
w=2k−1

(c(w, k)− c(w − 1, k))
(⌊ n
w

⌋
− 1
)
≤ n

(k − 2)!

n−1∑
w=2k−1

(logw)k−2

w

They then take advantage of where the summand is increasing and decreas-
ing to bound it above by the integral

n

(k − 2)!

∫ n

1

(logw)k−2

w
dw = n

(log n)k−1

(k − 1)!

which completes the proof.

Having proven this, they can conveniently say that

x2n =

n∑
k=1

c(n, k)x2−kn <

∞∑
k=3

n
(log n)k−2

(k − 2)!

√
n− 1

2−k

= n(e(logn)/
√
n−1 − 1) = n(n1/

√
n−1 − 1)

which also tends asymptotically to n.
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6 Observations on the Eigenvectors of An

The natural alternative path towards learning about the eigenvalues of An is
to consider its eigenvectors. This section collects some miscellaneous observa-
tions in that area.

First, a quick statement can be made regarding eigenvectors with the mul-
tiple eigenvalue 1.

Theorem 7. The eigenspace of An with eigenvalue 1 has dimension dn/2e − 1.

In particular, An is non-diagonalizable for n ≥ 5.

Proof. This can be seen simply by row-reducingAn−In to determine its nullity.
Because of the way An− In is constructed, it is already almost in echelon form.
For reference, consider again the matrix A6 − I6:

0 1 1 1 1 1
1 0 0 1 0 1
1 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


Note that in general, the (bn/2c + 1)th row of An − In and all rows below it
consist of a 1 followed by 0s, since all nontrivial multiples of bn/2c + 1 are
greater than n. Then this row can be subtracted from all but the first to remove
the other 1s in the first column, and then permuted to the top of the matrix, so
that it looks like this: 

1 0 0 0 0 0
0 1 1 1 1 1
0 0 0 1 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


For any n, the resulting matrix will be in echelon form because of the wayAn is
constructed: after the second row, the first nonzero entry in each row will occur
two columns after the previous row. Since all the rows beneath the (bn/2c+1)th
are zeroed out, the required nullity is n− (bn/2c+ 1) = dn/2e − 1.

However, it is easier to make further statements about the eigenvectors of
ATn (or equivalently, the left/row eigenvectors of An). These are still relevant
because the eigenspaces of An and ATn are isomorphic, and they have an inter-
pretation in terms of important number-theoretic operations, stemming from
the following description:

Lemma 5. (a1, a2, . . . , an) is an eigenvector of ATn with eigenvalue λ if and only if:

• for n ≥ 2,
∑
d|n ad = λan, and
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•
∑n
k=1 ak = λa1

Proof. This follows directly from the definitions of An and eigenvectors.

Note that if an eigenvalue λ 6= 1, then given a value for a1, the remaining ajs
are uniquely determined by the lemma, since they can be computed recursively
as

aj =
1

λ− 1

∑
d|j,d 6=j

ad

This result immediately follows:

Theorem 8. Every eigenspace of An with eigenvalue not equal to 1 has dimension 1.

So now define the function vλ : N → R for an arbitrary λ 6= 1 using this
recursive formula:

vλ(n) =

{
1 n = 1
1

λ−1
∑
d|n,d6=n vλ(d) otherwise

Then Lemma 5 can be reformulated as a statement about eigenvalues.

Theorem 9. λ is an eigenvalue of An if and only if

n∑
k=1

vλ(k) = λ

Proof. If λ is an eigenvalue, then in particular there is a corresponding eigen-
vector with first component 1. By the discussion above, its coefficients ak must
be given by vλ(k), so by Lemma 5, they satisfy the given relation. And, if the
vλ(k) satisfy the given relation, then by Lemma 5, they are the components of
an eigenvector with eigenvalue λ.

6.1 The Dirichlet Series of vλ

A major advantage of vλ’s definition in terms of sums over divisors is an inter-
esting interaction between its Dirichlet series

Vλ(s) =

∞∑
n=1

vλ(n)

ns

and the ζ function. (Note that in the following proof sketches using this series,
it will be manipulated strictly algebraically. To make the proofs fully rigorous
would require a consideration of convergence. However, the convergence and
analyticity of Dirichlet series are well understood. Some general results on
convergence can be found in Gamelin [2, p. 376-378].)

Theorem 10.
Vλ(s) =

λ− 1

λ− ζ(s)
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Proof. By Lemma 1,

Vλ(s)ζ(s) =

∞∑
n=1

∑
d|n

vλ(d)

 1

ns
=

( ∞∑
n=1

λvλ(n)

ns

)
− λ+ 1 = λVλ(s)− λ+ 1

since the identity
∑
d|n vλ(d) = λvλ(n) holds for all n except 1, thus accounting

for the additional constant term. Solving for Vλ(s) gives the result.

Theorem 11. Let ak(n) be the number of ways of expressing n as a product of k
factors, order mattering. Then if λ > 1,

vλ(n) =

(
1− 1

λ

) ∞∑
k=0

ak(n)

λk

Proof. Rearranging Theorem 10,

Vλ(s) =

(
1− 1

λ

)
1

1− ζ(s)
λ

For s sufficiently large, 1 < ζ(s) < λ, and

Vλ(s) =

(
1− 1

λ

) ∞∑
k=0

ζ(s)k

λk

Now note ak(n) satisfies the recursive definition

ak(n) =


1 k = 0, n = 1

0 k = 0, n 6= 1∑
d|n ak−1(n/d) k > 0

since the number of expressions of n as a product of k factors with a specific
first factor d is the number of ways of expressing n/d as a product of k − 1

factors. Then
∑∞
n=1

a0(n)
ns = 1, and applying Lemma 1 repeatedly gives

ζ(s)k =

∞∑
n=1

ak(n)

ns

This implies

Vλ(s) =

(
1− 1

λ

) ∞∑
k=0

1

λk

∞∑
n=1

ak(n)

ns
=

(
1− 1

λ

) ∞∑
n=1

( ∞∑
k=0

ak(n)

λk

)
1

ns

and comparing coefficients gives the result.

Combining this result with Theorem 9 and bounds on the ak(n) could lead
to an alternate proof of the result on the spectral radius in the paper of Barrett
et al.
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7 Conclusion

The Redheffer matrix provides an interesting alternate perspective on ques-
tions of divisibility. Like the Riemann zeta-function (to which it is intimately
connected), it effectively bundles together the divisibility properties of many
numbers into a single object, which can be studied using the techniques of lin-
ear algebra. The readily attainable results on the eigenvalues presented here
suggest that the matrix provides a fruitful line of inquiry.

A The Relationship Between the Mertens Function
and the Riemann Hypothesis

Theorem 12. If
M(n) = O(n1/2+ε)

for all ε > 0, then all zeroes of ζ(s) have real part 1/2.

Proof. The idea is to show that, if the given bound on the Mertens function
holds, the series

∑∞
k=1

µ(k)
ks converges to an analytic function for <(s) > 1/2.

By Theorem 1, this function is equal to 1/ζ(s), so if the series converges for a
given s, ζ(s) 6= 0. The zeroes of ζ in the critical strip are mirrored about the line
<(s) = 1/2, so having shown there are no nontrivial zeroes with <(s) > 1/2,
there can be no nontrivial zeroes with <(s) < 1/2 either.

Let s = 1/2+ε for 0 < ε < 1/2. Then recall the summation by parts formula

m∑
k=1

akbk =

(
m−1∑
k=1

(ak − ak+1)Bk

)
+ amBm

where Bk =
∑k
j=1 bj . Then in particular,

m∑
k=1

µ(k)

ks
=

(
m−1∑
k=1

(
1

ks
− 1

(k + 1)s

)
M(k)

)
+
M(m)

ms

Assuming the given condition on the Mertens function, there is a constant
C such that |M(k)| < Ck1/2+ε/2 for all k. Then∣∣∣∣( 1

ks
− 1

(k + 1)s

)
M(k)

∣∣∣∣ = ∣∣∣∣ (k + 1)s − ks

(k2 + k)s
M(k)

∣∣∣∣ < |(k + 1)s − ks|
∣∣∣∣Ck1/2+ε/2k2s

∣∣∣∣
< sks−1

Ck1/2+ε/2

k1+2ε
= Csk−1−ε/2 < Ck−1−ε/2

Since
∑
C/k1+ε/2 converges for ε > 0, the series converges. The uniform con-

vergence over the required domain can now be established using a general
theorem on convergence of Dirichlet series [2, p. 377]:

15



Theorem 13. If a series
∑
an/n

s converges at s = s0, then it converges uniformly
in any sector {| arg(s− s0)| ≤ π/2− ε} for ε > 0.

Here, under the assumption,
∑
µ(n)/ns converges for any s > 1/2, and by

the theorem, for any point s with <(s) > 1/2, there is a set containing s on
which it converges uniformly. Thus 1/ζ(s) is analytic on the required domain,
and ζ(s) can have no zeroes there.

This theorem is interesting in that a weaker big-O statement about M(n)
leads to a weaker statement about the zeroes of ζ:

Theorem 14. If
M(n) = O(nα+ε)

for some fixed real α and any ε > 0, and s is a nontrivial zero of ζ, then 1 − α ≤
<(s) ≤ α.

This follows from simply replacing “1/2” in the above proof with α.
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