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1 Introduction

The notion of hypercyclicity was first introduced by operator theorists studying the connections between
cyclic vectors and the invariant subspace problem, which, for Hilbert spaces (Banach spaces where the
norm is induced from an inner product), remains an open problem (Enflo constructed a Banach space and
a linear operator that does not a have nontrivial invariant subspace [7]). The invariant subspace problem
asks if every bounded linear operator on a space possesses a nontrivial, closed invariant subspace. A vector
is cyclic with respect to a bounded linear operator if the span of its orbit is dense in the containing space.
Hypercyclic vectors are a special case of cyclic vectors and are related to a similar problem called the
invariant subset problem, although, this isn’t discussed in this paper

In 1969, S. Rolewicz posed the problem “Does an infinite-dimensional, separable Banach space support a
hypercyclic operator?” [6]. It was proven later that the answer is the affirmative. In this paper, we
examine and summarize a proof of this existence result, which was given by L. Bernal-González [1]. We
begin by setting preliminary definitions and terminology [1][4]. Then, we provide some related intermediate
results and then present the existence theorem. A proof is given using those intermediate results.
Afterwards, we present some results on hypercyclicity in a related context along with open problems and
discuss applications of hypercyclicity to dynamics and chaos.

2 Preliminaries

We begin this paper by laying out the necessary preliminary definitions that will be needed.

2.1 Metric Spaces and Completeness

Definition 2.1. Let X be a nonempty set. A metric (or distance function) is a function d : X ×X → R
that satisfies the following properties:

• d(x, y) = 0 if and only if x = y

• d(x, y) ≥ 0 for all x, y ∈ X (non-negativity)

• d(x, y) = d(y, x) for all x, y ∈ X (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (Triangle Inequality)

The pair (X, d) is called a metric space. When there is no ambiguity, X will be used instead to denote a
metric space.

Definition 2.2. Let X be a metric space. A sequence of points {xn} in X converges to a point x ∈ X if
for every ε > 0, there exists N ∈ N such that d(xn, x) < ε for all n > N .

Definition 2.3. Let X be a metric space. A sequence of points {xn} in X is Cauchy if for any ε > 0, there
exists N ∈ N such that d(xm, xn) < ε for all m,n ∈ N .

Remark. Convergent sequences are Cauchy. Choose N ∈ N large such that d(xn, x) < ε/2 when n > N .
Then, d(xm, xn) ≤ d(xm, x) + d(x, xn) < ε/2 + ε/2 = ε for all m,n > N .

Definition 2.4. A metric space is said to be complete if every Cauchy sequence of points {xn} in X
converges to a point x ∈ X.

2.2 Linear Spaces and Norms

Definition 2.5. A linear space (or vector space) V over a scalar field K (for our purposes, K = R or
K = C) is a set of points (or vectors) on which element addition and scalar multiplication are defined.
They must satisfy the addition axioms given above as well as the following.

1. If x, y ∈ V and λ, µ ∈ K, then λx+ µy ∈ V (closure under vector addition and scalar multiplication)

2



2. If x, y ∈ V and λ, µ ∈ K, then λ(µx) = (λµ)x, λ(x+ y) = λx+ λy and (λ+ µ)x = λx+ µx.

Definition 2.6. If V is a linear space, then a seminorm on V is a function f : V → R with following
properties:

• f(x) ≥ 0 for all x ∈ V (non-negativity)

• If x ∈ V and λ ∈ K, then f(λx) = |λ|f(x)

• f(x+ y) ≤ f(x) + f(y) for all x, y ∈ V (Triangle Inequality)

If, in addition, f(x) = 0 if and only if x = 0, then f is called a norm and is more commonly denoted by
|| · || : V → R. Intuitively, norms define a notion of vector “length” or “magnitude”. In cases of possible
confusion, we write ||x||V instead of ||x|| to denote the norm of x ∈ V with respect to the norm defined on
V .

Definition 2.7. A normed linear space is a pair (V, || · ||), where V is a linear space and || · || is a norm.
Normed linear spaces are metric spaces with respect to the metric d(x, y) = ||x− y||.

Definition 2.8. Let X be a linear space and S = {v1, . . . , vn} ⊂ X. A vector w is a linear combination of
the vectors v1, . . . , vn if there exist scalars c1, . . . , cn ∈ K such that

w =

n∑
k=1

ckvk

Definition 2.9. Let X be a linear space and S ⊂ X. We define the span of S to be

span S = {w : w = c1v1 + · · ·+ ckvk for v1, . . . , vk ∈ S and c1, . . . , ck ∈ K}

Note that in the above definition, the linear combinations are taken over a finite set of vectors, even if S is
infinite.

2.3 Separability

Definition 2.10. Let X be a metric space and E be a subset of X. A point x ∈ X is a limit point of E if
there exists a sequence of points {xn} in E that converge to x.

Definition 2.11. Let E be a subset of a metric space X. E is dense in X if every point of X is a limit
point of E. Equivalently, E is dense in X if E = X since E is the union of E and all of its limit points.

Definition 2.12. A metric space X is separable if there exists a dense subset E ⊂ X that is countable.

2.4 Banach Spaces, Linear Operators and Dual Spaces

Definition 2.13. A Banach space is a complete, normed linear space.

Definition 2.14. Let X and Y be Banach spaces over a scalar field K. T : X → Y is a linear operator if

• T (x+ y) = T (x) + T (y) for all x, y ∈ X

• T (λx) = λT (x) for all x ∈ X and λ ∈ K

We often write Tx instead of T (x). It is clear that compositions of linear operators are linear. Indeed, if
S : X → Y and T : Y → Z are two linear operators, where X, Y and Z are Banach spaces, then

(S ◦ T )(x+ y) = S(T (x+ y)) = S(T (x) + T (y)) = S(T (x)) + S(T (y)) = (S ◦ T )(x) + (S ◦ T )(y)

and

(S ◦ T )(λx) = S(T (λx)) = S(λT (x)) = λS(T (x)) = λ(S ◦ T )(x)

so that the composition S ◦ T of S and T is also a linear operator.
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Definition 2.15. Let X and Y be two Banach spaces. A linear operator T : X → Y is bounded if there
exists positive C ∈ R such that ||Tx|| ≤ C||x|| for all x ∈ X. Otherwise, T is unbounded. We denote the set
of linear operators by L(X,Y ) and the set of bounded linear operators by B(X,Y ). If X = Y , we simply
write L(X) and B(X), respectively.

In general, it isn’t obvious that all linear operators are bounded. For finite-dimensional spaces, this is the
case. However, there are many examples of unbounded linear operators in infinite-dimensional spaces; the
boundedness also depends on the norms used.

As an example, let C1([0, 1]) be the set of continuously differentiable functions [0, 1] and C0([0, 1]) be the
set of continuous functions on [0, 1]. If both are equipped with the sup-norm ||f ||∞ = supx∈[0,1] |f(x)|, then

the differentiation operator D : C1([0, 1])→ C0([0, 1]) is unbounded. To see this, note that the set of
pn(x) = xn (n ≥ 1) is a subset of C1[0, 1]. Furthermore, ||pn|| = 1 for all n. However,

||Dpn||∞ = ||npn−1||∞ = n||pn−1||∞ = n

which is unbounded. If instead, we equip C1([0, 1]) with the C1 norm, given by

||f ||C1 = sup
x∈[0,1]

|f(x)|+ sup
x∈[0,1]

|f ′(x)|

(and C0([0, 1]) with the sup-norm), then D : C1([0, 1])→ C0([0, 1]) is bounded. To see this,

||Df ||∞ = sup
x∈[0,1]

|f ′(x)| ≤ sup
x∈[0,1]

|f(x)|+ sup
x∈[0,1]

|f ′(x)| = ||f ||C1

So, ||D|| = 1 in this case.

Definition 2.16. If T : X → Y is a bounded linear operator, then we define the operator norm (or
uniform norm) ||T || of T by

||T || = inf{M : ∀x ∈ X, ||Tx|| ≤M ||x||}

The operator norm defines a norm on B(X,Y ), which can be verified as follows. Since X and Y have
norms defined on them so that ||x|| ≥ 0 and ||y|| ≥ 0 for all x ∈ X and y ∈ Y , it is clear that
{M : ∀x ∈ X, ||Tx|| ≤M ||x||} consists only of nonnegative real numbers. So, the operator norm is
nonnegative. Furthermore, ||T || = 0 if and only if T maps all x ∈ X to 0 ∈ Y . If λ ∈ K, then,
||λTx|| = λ||Tx|| so that

||λT || = inf{M : ∀x ∈ X, ||λTx|| ≤M ||x||} = inf

{
M : ∀x ∈ X, ||Tx|| ≤ M

|λ|
||x||

}
= |λ| · ||T ||

Let A = {M : ∀x ∈ X, ||(S + T )(x)|| ≤M ||x||}, where S, T ∈ B(X,Y ) and (S + T )(x) = Sx+ Tx. Then,

||(S + T )(x)|| = ||Sx+ Tx|| ≤ ||Sx||+ ||Tx|| ≤ ||S|| · ||x||+ ||T || · ||x|| = (||S||+ ||T ||) · ||x||

So, ||S||+ ||T || ∈ A. Since ||S + T || = inf A, ||S + T || ≤ ||S||+ ||T ||.

An immediate and useful consequence of this definition is that ||Tx|| ≤ ||T || · ||x|| for all x ∈ X. T is
bounded if ||T || finite. The converse is also true. If T is bounded, S = {M : ∀x ∈ X, ||Tx|| ≤M ||x||} is
nonempty and is bounded below. By the greatest-lower-bound property of the reals, inf S exists and is
finite. So, ||T || exists and is finite.

Theorem 2.1. If S : X → Y and T : Y → Z are two bounded linear operators, where X, Y and Z are
Banach spaces, then ||ST || ≤ ||S|| · ||T ||.

Proof. Let A = {M : ∀x ∈ X, ||(S ◦ T )x|| ≤M ||x||}. Fix x ∈ X. Then,

||(S ◦ T )x|| = ||S(Tx)|| ≤ ||S|| · ||Tx|| ≤ ||S|| · ||T || · ||x||

This shows that ||S|| · ||T || ∈ A. The desired inequality follows immediately since ||ST || is a lower bound of
A by definition.
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Corollary 2.1.1. If T ∈ B(X), then ||Tn|| ≤ ||T ||n, for any n ∈ N0.

Definition 2.17. Let X be a Banach space. A linear functional (or linear form) on X is a linear operator
T : X → R. The set of linear functionals L(X,R) is called the algebraic dual space of X and the set of
bounded linear functionals B(X,R) is called the topological dual space of X. For our purposes, we’ll denote
the topological dual space of X by X∗ and shorten the term to “dual space”.

Theorem 2.2. Let T : X → Y be a linear operator. Then, T is bounded if and only if T is continuous.

Proof. Suppose T is bounded. Then, ||T || = M is well-defined and finite. Given ε > 0, choosing δ = ε/M
shows us

||Tx− Ty|| = ||T (x− y)|| ≤ ||T || · ||x− y|| < M · ε
M

= ε

so that T is continuous.

Suppose T is continuous. Then, T is continuous at 0 ∈ X. T (0) = 0 by linearity. Take ε = 1 in the
continuity definition. Then, there exists δ > 0 such that if ||x|| < δ, then ||Tx|| < ε = 1. For any x 6= 0,
define x̃ = αδx/||x|| (any 0 < α < 1 will do). Then, ||x̃|| = |αδ| · ||x||/||x|| = αδ < δ so that ||T x̃|| < 1. By
linearity,

||Tx|| =
∣∣∣∣∣∣∣∣T ( ||x||x̃αδ

)∣∣∣∣∣∣∣∣ =
||x||
αδ
||T x̃|| < 1

αδ
||x||

Since x ∈ X was chosen arbitrarily, {M : ∀x ∈ X, ||Tx|| ≤M ||x||} is nonempty and has an infimum. Hence,
T is bounded.

Continuing the example following Definition 2.15, we see that the derivative operator on the set of
continuously differentiable functions on the interval [0, 1] equipped with the sup-norm is discontinuous.

2.5 Orbits and Hypercyclicity

Definition 2.18. Let X be a Banach space and T : X → X be a bounded linear operator. We define the
orbit of a vector x ∈ X with respect to T by

Orb(T, x) = {Tnx : n ∈ N0}

where the notation Tn denotes a composition of T with itself n times. Note that Orb(T, x) is an “at most
countable” set. Orbits can be defined similarly for nonlinear and unbounded operators as well.

Definition 2.19. Let X be a separable Banach space and T : X → X be a bounded linear operator. A
vector x ∈ X is hypercyclic for T if Orb(T, x) is dense in X. A bounded linear operator T is hypercyclic if
it has a hypercyclic vector.

Remark. The assumption of separability for the existence of a hypercyclic operator is necessary since if X
isn’t separable, then X has no countable dense subset and hence, Orb(T, x) cannot be dense in X,
regardless of the operator T and vector x chosen. Non-separable spaces do not have hypercyclic operators.

Interestingly, linear hypercyclicity also occurs only on infinite-dimensional spaces. It was shown by
Rolewicz that no linear operator is hypercyclic on any finite-dimensional space [6].

3 The Existence Theorem and its Proof

3.1 Intermediate Results

We are now ready to discuss the results that lead up to the proof of the existence theorem. First, a couple
useful lemmas are given. Next, two intermediate results (Theorem 3.3 and Theorem 3.4) necessary for
the proof of the main existence theorem are stated, the proofs of which, are not given. Instead, we refer to
their original authors (see [3] and [2], respectively). For convenience, we define N0 = N ∪ {0}.
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Lemma 3.1. Let X be a Banach space. Let S : X → X be a linear operator and I be the identity operator.
Define T = I + S. Then, Tn =

∑n
k=0

(
n
k

)
Sk, where S0 = I.

Proof. We proceed by induction on n. The base case is already proven by the definition of T since

T 1 = T = I + S =

(
1

0

)
S0 +

(
1

1

)
S1 =

1∑
k=0

(
1

k

)
Sk

Suppose Tn =
∑n
k=0

(
n
k

)
Sk for some n. Then,

Tn+1 = T (Tn) = T

(
n∑
k=0

(
n

k

)
Sk

)
= I

(
n∑
k=0

(
n

k

)
Sk

)
+ S

(
n∑
k=0

(
n

k

)
Sk

)
=

n∑
k=0

(
n

k

)
Sk +

n∑
k=0

(
n

k

)
Sk+1 =

n∑
k=0

(
n

k

)
Sk +

n+1∑
k=1

(
n

k − 1

)
Sk = S0 +

n∑
k=1

[(
n

k

)
+

(
n

k − 1

)]
Sk + Sn+1 =

n+1∑
k=0

(
n+ 1

k

)
Sk

We conclude that Tn =
∑n
k=0

(
n
k

)
Sk for all n ∈ N by induction.

Lemma 3.2. Let {xk} be a dense sequence in a separable metric space X, with metric d. Suppose {yk} is
another sequence in X such that limk→∞ d(yk, xk) = 0. Then, {yk} is dense in X.

Proof. Fix w ∈ X. Since {xk} is dense in X, w is a limit point of {xk}. Let Nr(w) denote an open ball
(neighborhood) of radius r > 0, centered around w. If there exists some ε > 0 such that Nε(w) only
contains finitely many points xk1 , . . . , xkn of {xk}, then choosing ε′ < min{ε, d(w, xk1), . . . , d(w, xkn)}, we
see that Nε′(w) contains no points of {xk}. But then w isn’t a limit point of {xk}, a contradiction. So,
every neighborhood of w contains infinitely many points of {xk}.

Let ε > 0 be given. Let {xkj} be the subset (subsequence) of {xk} such that {xkj} ⊂ Nε/2(w) (j ∈ N).
Since limk→∞ d(yk, xk) = 0, there exists J large such that if j > J , d(ykj − xkj ) < ε/2. Then, for all j > J ,

d(ykj − w) ≤ d(ykj − xkj ) + d(xkj − w) <
ε

2
+
ε

2
= ε

Hence, we see that Nε/2(w) contains infinitely points in {yk}. Since ε was chosen arbitrarily, w is also a
limit point of {yk}. Since w was chosen arbitrarily in X, it follows that all points of X are limit points of
{yk}. Hence, {yk} is also dense in X.

Theorem 3.3. Let X be an infinite-dimensional, separable Banach space and let X∗ be the dual space of
X. Then, there exists sequences {en}∞0 ⊂ X and {ϕn}∞0 ⊂ X∗ with the following properties:

1. ϕn(em) = δmn for all m,n ∈ N, where δmn = 1 if m = n and 0 if m 6= n, is the Kronecker delta.

2. span{en : n ∈ N0} = X

3. If ϕn(x) = 0 for all n ∈ N0, then x = 0.

4. ||en|| = 1 for all n ∈ N0 and supn∈N0
||ϕn|| <∞.

Theorem 3.4. Let Cn be a 2k × 2k matrix, whose entries are given by Cij(n) =
(

n
2k+j−i

)
. Let Bn be a

column vector with 2k entries, whose ith entry bi(n) is a polynomial in n such that deg bi(n) ≤ 2k − i.
Then, for sufficiently large n, there exists a solution Xn to the equation Bn = CnXn. Furthermore, the
entries of Xn satisfy |xi(n)| ≤ C/ni, where C is a constant dependent on k.
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3.2 The Existence Theorem

Theorem 3.5. Let X be an infinite-dimensional, separable Banach space. Then, there exists T ∈ B(X)
such that T is hypercyclic.

Proof. Let I be the identity operator Ix = x. Let {an}∞1 be a sequence of positive real numbers such that∑∞
k=1 an converges. Define S : X → X by

Sx =

∞∑
k=0

ak+1ϕk+1(x)ek (1)

where {en}∞0 ⊂ X and {ϕn}∞0 ⊂ X∗ are furnished by Theorem 3.3. Since supn∈N0
||ϕn|| = C <∞ and

||en|| = 1 (see Property 4 from Theorem 3.3),

||S|| ≤
∞∑
k=0

||ak+1ϕk+1ek|| ≤
∞∑
k=0

ak+1||ϕk+1|| · ||ek|| ≤ C
∞∑
k=0

ak+1 <∞

where we take operator norms above. So, S ∈ B(X). Now, we claim that T = I + S is a hypercyclic
operator on X. To do this, we construct a hypercyclic vector y ∈ X for T .

From Property 2 from Theorem 3.3, since span{en : n ∈ N0} is dense in X, we can choose a dense

sequence {zk}∞1 ⊂ X, where each zk is given by a linear combination of the en’s; zk =
∑2k−1
i=0 zi,kei, for

well-chosen scalars zi,k. Our goal is to construct an increasing sequence of positive integers {nj}∞1 and

vectors yj =
∑2j+1−1
i=2j biei (j ∈ N) such that

||yj || ≤ 2−j(1 + ||T ||)−nj−1 (2)

and ∣∣∣∣∣
∣∣∣∣∣Tnj

(
j∑

k=1

yk

)
− zj

∣∣∣∣∣
∣∣∣∣∣ ≤ 2−j (3)

for which we then show that y =
∑∞
k=1 yk is hypercyclic for T . The construction of {nj}∞1 and {yj}∞1

follows inductively. For the sake of convenience, define n0 = 0 and b0 = b1 = 0.

We begin by noting that by Property 1 from Theorem 3.3, Sei = aiei−1 for i ∈ N and Se0 = 0. We can
see inductively that

Smei =

{(∏m−1
k=0 ai−k

)
ei−m,m ≤ i

0,m > i
(4)

To construct y1 = b2e2 + b3e3 and n1 in the base case n = 1, we must satisfy the following:

||y1|| = ||b2e2 + b3e3|| ≤ 2−1(1 + ||T ||)−n0 =
1

2

and

||Tn1y1 − z1|| = ||b2Tn1e2 + b3T
n1e3 − z0,1e0 − z1,1e1|| ≤

1

2

Expanding Tn1y1 using (4) and Lemma 3.1,

Tn1y1 = b2

(
e2 +

(
n1
1

)
a2e1 +

(
n1
2

)
a2a1e0

)
+ b3

(
e3 +

(
n1
1

)
a3e2 +

(
n1
2

)
a3a2e1 +

(
n1
3

)
a3a2a1e0

)
=

[(
n1
2

)
b2a2a1 +

(
n1
3

)
b3a3a2a1

]
e0 +

[
n1b2a2 +

(
n1
2

)
b3a3a2

]
e1 + [b2 + n1b3a3] e2 + b3e3
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Then, we obtain the following for Tn1y1 − z1, noting that z1 = z0,1e0 + z1,1e1.[(
n1
2

)
b2a2a1 +

(
n1
3

)
b3a3a2a1 − z0,1

]
e0 +

[
n1b2a2 +

(
n1
2

)
b3a3a2 − z1,1

]
e1 + [b2 + n1b3a3] e2 + b3e3 (5)

Since we only require one solution triplet (b2, b3, n1) that satisfies (2) and (3), we impose the following
condition to simplify our search,

ϕα(Tn1y1 − z1) = 0 for α = 0, 1

so that Tn1y1 − z1 = (b2 + n1b3a3)e2 + b3e3. Since ϕ0(ei) = 0 for i = 1, 2, 3, ϕ1(ei) = 0 for i = 0, 2, 3, and
ϕ0(e0) = 1 = ϕ1(e1) = 1 (see Property 1 from Theorem 3.3), the equations ϕ0(Tn1y1 − z1) = 0 and
ϕ1(Tn1y1 − z1) = 0 give the following linear system.(

n1
2

)
b2a2a1 +

(
n1
3

)
b3a3a2a1 = z0,1 =⇒

(
n1
2

)
b2 +

(
n1
3

)
b3a3 =

z0,1
a2a1

n1b2a2 +

(
n1
2

)
b3a3a2 = z1,1 =⇒ n1b2 +

(
n1
2

)
b3a3 =

z1,1
a2

We can rewrite this system as follows.

CnXn =

[ (
n1

2

) (
n1

3

)(
n1

1

) (
n1

2

) ] [ b2
b3a3

]
=

[
z0,1/a2a1
z1,1/a2

]
= Bn

Having written the system in this form, we can apply Theorem 3.4 since the entries of Bn are
polynomials in n1 of degree 0 (which is less than 2k − i = 2− i, where i is the row index of a component in
Bn). For n1 sufficiently large, there exists a constant P such that the above system has a solution [b2, b3a3]
and |b2| ≤ P/n1 and |b3a3| ≤ P/n2

1. We choose n1 large so that b2 and b3 are determined,

||b2e2 + b3e3|| ≤ ||b2||+ ||b3|| ≤
∣∣∣∣ Pn1

∣∣∣∣+

∣∣∣∣ P

a3n21

∣∣∣∣ ≤ 1

2

and

||Tn1y1 − z1|| = ||(b2 + n1b3a3)e2 + b3e3|| ≤ ||b2||+ ||n1b3a3||+ ||b3|| ≤
∣∣∣∣ Pn1

∣∣∣∣+

∣∣∣∣ Pn1
∣∣∣∣+

∣∣∣∣ P

a3n21

∣∣∣∣ ≤ 1

2

Thus, we have found y1 and n1 that satisfy (2) and (3) and the base case is established.

Now, suppose n0 < · · · < nk−1 and y1, . . . , yk−1 have been found such that they satisfy (2) and (3). We

wish to find yk =
∑2k+1−1
j=2k bjej and nk that satisfy (2) and (3). Again, we impose the following condition.

ϕp

Tnk

 k∑
j=1

yi

− zk
 = 0 for p = 0, 1, . . . , 2k − 1 (6)

Expanding the left side by applying linearity of ϕp and Tnk , and Lemma 3.1,

ϕp

Tnk

 k∑
j=1

yi

− zk
 =

k∑
i=1

ϕp(T
nkyi)− ϕp(zk)

=

k∑
i=1

2i+1−1∑
j=2i

bjϕp(T
nkej)− ϕp

2k−1∑
i=0

zi,kei


=

2k+1−1∑
j=2

bjϕp(T
nkej)−

2k−1∑
i=0

zi,kϕp(ei)

=

2k+1−1∑
j=2

bjϕp

[
nk∑
r=0

(
nk
r

)
Srej

]
− zp,k
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From here, we apply (4) (for j ≥ r since all terms where j < r are zero by (4)). Furthermore, by Property
1 from Theorem 3.3, ϕp(ej−r) = 0 for j − r 6= p and ϕp(ej−r) = 1 for j − r. So, r = j − p. Then,

2k+1−1∑
j=2

bjϕp

[
nk∑
r=0

(
nk
r

)
Srej

]
− zp,k =

2k+1−1∑
j=2

nk∑
r=0

bj

(
nk
r

) j∏
q=j−r+1

aq

ϕp(ej−r)− zp,k
=

2k+1−1∑
j=2

bj

(
nk
j − p

)[ j∏
q=p+1

aq

]
− zp,k

= 0

Separating the unknown variables bj (j = 2k, . . . , 2k+1 − 1) from the known values bj (j = 2, . . . , 2k − 1),

2k+1−1∑
j=2k

bj

(
nk
j − p

)[ j∏
q=p+1

aq

]
= zp,k −

2k−1∑
j=2

bj

(
nk
j − p

)[ j∏
q=p+1

aq

]
=⇒

 2k∏
q=p+1

aq

 2k+1−1∑
j=2k

bj

(
nk
j − p

) j∏
q=2k+1

aq

 = zp,k −
2k−1∑
j=2

bj

(
nk
j − p

)[ j∏
q=p+1

aq

]
=⇒

2k+1−1∑
j=2k

bj

(
nk
j − p

) j∏
q=2k+1

aq

 =
1[∏2k

q=p+1 aq

]
zp,k − 2k−1∑

j=2

bj

(
nk
j − p

)[ j∏
q=p+1

aq

]
Denote the entire right-hand side of the above equation by αp. Since p = 0, 1, . . . , 2k − 1, we have a linear
system of 2k equations, which can be expressed in the following way.

CnXn =


(
nk

2k

)
. . .

(
nk

2k+1−1
)

...
. . .

...(
nk

1

)
. . .

(
nk

2k

)



b2k
a2k+1b2k+1

...(∏2k+1−2
j=2k+1 aj

)
b2k+1−2(∏2k+1−1

j=2k+1 aj

)
b2k+1−1


=

 α0

...
α2k−1

 = Bn

Note that (
nk
j − p

)
=

nk!

(nk − j + p)!(j − p)!
=

1

(j − p)!

(
nk!

(nk − j + p)!

)
= CP (nk)

where C is a constant and P (nk) is a polynomial in nk of degree j − p. If i indexes the components of Bn,
then αp = αi−1. Furthermore, since max{j} = 2k − 1,

max{j − p} = (2k − 1)− (i− 1) = 2k − i

Hence, each αi−1 is a polynomial in nk of degree at most 2k − i. Applying Theorem 3.4 is now justified.
For nk sufficiently large (and nk ≥ nk−1), CnXn = Bn has a solution. Furthermore, there exists a constant

P such that
∣∣∣(∏2k+i

j=2k+1 aj

)
b2k+i

∣∣∣ ≤ P/nik, where i = 0, 1, . . . , 2k − 1. Using these facts, we now find nk and

9



bj (i = 2k, . . . , 2k+1 − 1) such that (2) and (3) are satisfied. First, we expand Tnk

(∑k
j=1 yj

)
− zk.

Tnk

 k∑
j=1

yj

− zk =

k∑
j=1

Tnkyj −
2k−1∑
j=0

zj,kej

=

k−1∑
j=1

2j+1−1∑
i=2j

biT
nkei +

2k+1−1∑
j=2k

bjT
nkej −

2k−1∑
j=0

zj,kej

=

2k−1∑
j=2

bj

(
nk∑
i=0

(
nk
i

)
Siej

)
+

2k+1−1∑
j=2k

bj

(
nk∑
i=0

(
nk
i

)
Siej

)
−

2k−1∑
j=0

zj,kej

=

2k−1∑
j=2

nk∑
i=0

bj

(
nk
i

)
Siej −

2k−1∑
j=0

zj,kej +

2k+1−1∑
j=2k

nk∑
i=j+1

bj

(
nk
i

)
Siej

+

2k+1−1∑
j=2k

j∑
i=0

bj

(
nk
i

)
Siej

Consider the first two sums. Since j = 0, . . . , 2k − 1, using our requirement from (6), we see that they drop
out. Furthermore, using (4), the third summation term drops out since i > j. So, we see that

Tnk

 k∑
j=1

yj

− zk =

2k+1−1∑
j=2k

j∑
i=0

bj

(
nk
i

)
Siej

From here, we apply Property 4 from Theorem 3.3 and Corollary 2.1.1 to obtain∣∣∣∣∣∣
∣∣∣∣∣∣Tnk

 k∑
j=1

yj

− zk
∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
2k+1−1∑
j=2k

j∑
i=0

bj

(
nk
i

)
Siej

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
2k+1−1∑
j=2k

j∑
i=0

|bj |
(
nk
i

)
||S||i · ||ej ||

=

2k+1−1∑
j=2k

(
j∑
i=0

(
nk
i

)
||S||i

)
|bj |

Recall that ||S|| ≤ supn∈N0
||ϕn||

∑
ak <∞ so that ||S||i is well defined. Furthermore, as stated earlier, as

a consequence of Theorem 3.4, each |bj | ≤ P/nik (j = 2k + i− 1, where i is the component index of bj in
Bn), for some constant P . Hence, the sum of all |bj | is bounded above by Q/nk, for some constant Q (it is
clear that the bound is of order n−1k since |b2k | ≤ P/nk has the highest order). So,∣∣∣∣∣∣

∣∣∣∣∣∣Tnk

 k∑
j=1

yj

− zk
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ Q

nk

Now, choose nk sufficiently large, with nk > max{2kQ,nk−1}, so that the bj ’s are all determined and
|bj | ≤ 4−k(1 + ||T ||)−nk−1 (j = 2k, . . . , 2k+1 − 1). We require nk > nk−1 so that {nk} forms an increasing
sequence of natural numbers. We require nk > 2kQ so that∣∣∣∣∣∣

∣∣∣∣∣∣Tnk

 k∑
j=1

yj

− zk
∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ Q

nk
<

Q

2kQ
= 2−k
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which is condition (3). Using Property 4 from Theorem 3.3, the third condition on nk that gives the
bound for |bj | gives

||yk|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
2k+1−1∑
j=2k

bjej

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

2k+1−1∑
j=2k

|bj | · ||ej || =
2k∑
j=1

|b2k+j−1|

≤ 4−k(1 + ||T ||)−nk−1

 2k∑
j=1

1

 = 2−k(1 + ||T ||)−nk−1

This is condition (2). Thus, yk satisfies (2) and (3). The induction is complete and so is the construction of
{yk}∞1 and {nk}∞1 .

Now, take y =
∑∞
k=1 yk. To show that y is a hypercyclic vector for T , it suffices to show that Orb(T, y) has

a dense subset by showing limk→∞ ||Tnky − zk|| = 0, using the fact that {zk} is dense in X and Lemma
3.2. Then, note the following.

||Tnky − zk|| =

∣∣∣∣∣∣
∣∣∣∣∣∣Tnk

 ∞∑
j=1

yj

− zk
∣∣∣∣∣∣
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣Tnk

 k∑
j=1

yj

− zk + Tnk

 ∞∑
j=k+1

yj

∣∣∣∣∣∣
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∣∣∣∣∣∣Tnk

 k∑
j=1

yj

− zk
∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣Tnk

 ∞∑
j=k+1

yj

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 2−k +

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

j=k+1

Tnkyj

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 2−k +

∞∑
j=k+1

||Tnk || · ||yj ||

≤ 2−k +

∞∑
j=k+1

2−j(1 + ||T ||)nk(1 + ||T ||)−nj−1

≤ 2−k +

∞∑
j=k+1

2−j = 2−k + 2−k
∞∑
j=1

2−j = 2−k + 2−k = 2−k+1

Sending k →∞, 2−k+1 → 0 so that ||Tnky − zk|| → 0. So, Orb(T, y) is dense in X. Hence, y is a
hypercyclic vector for T and T is a hypercyclic operator on X.

4 Hypercyclicity in a Different Context

4.1 Hypercyclicity in F-Spaces

A more general framework under which hypercyclicity has been more extensively studied is that of the
F-space. Loosely speaking, a F-space is a topological vector space (vector space endowed with some
topology) that is metrizable, that is, its topology is compatible with some metric d so that the open sets in
the topology are unions of open balls Br(x0) = {x ∈ X : d(x, x0) < r}; the metric is translation invariant
and the space is complete with respect to d. Banach spaces are F-spaces since they are complete by
definition and metrics induced by norms are translation invariant.

d(x, y) = ||x− y|| = ||(x+ z)− (y + z)|| = d(x+ z, y + z)

In the 1980s, a useful characterization of hypercyclicity was found, independently by Kitai [11] and
Gethner and Shapiro [12], called the Hypercyclicity Criterion. It provides a set of sufficient conditions for a
continuous linear operator to be hypercyclic. A slightly weaker form of the criterion due to Bès and Peris
[14] is given below.
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Theorem 4.1. Let X be a separable F-space and T be a continuous linear operator on X. Suppose there
are dense subsets X0 ⊂ X and Y0 ⊂ X, an increasing sequence of positive integers {nk} and a sequence of
mappings Snk

: Y0 → X such that as k →∞,

1. for every x ∈ X0, Tnkx→ 0

2. for every y ∈ Y0, Snk
y → 0

3. for every y ∈ Y0, (Tnk ◦ Snk
)(y)→ y

Then, T is hypercyclic on X.

As an example to show the applications of this criterion, we (informally) show that the differentiation
operator D defined on the set of analytic functions on the open unit disk O(D) (with a norm chosen so that
D is bounded) is hypercyclic. D is linear and continuous. Let P(D) ⊂ O(D) be the set of polynomials
defined on D. Since analytic functions are given by a power series, every function O(D) can be
approximated uniformly by a sequence of polynomials. In particular, P(D) is dense in O(D). Define
Sf =

∫ z
0
f(ζ) dζ, z ∈ D. S is also linear. Since f is analytic and D is star-shaped, it has a complex

primitive on D so S is a well-defined operator, sending O(D) to itself since the primitive is analytic on D by
definition. Define Sn = Sn. Fix p ∈ P(D). Dnp→ 0 as n→∞ just by repeated differentiation (since
exponents are finite). Snp→ 0 as n→∞ as well since the coefficients of each term in Snp tend to zero as
n→∞ and |z|n+1 ≤ |z|n in D. Finally, D and S are inverse operations by construction so (Tn ◦ Sn)(p) = p
for all n. Hence, D satisfies the hypercyclicity criterion. So, D is hypercyclic.

MacLane showed that there exists an entire function f such that {f (n)} is dense in the set of entire
functions O(C) [13]. In particular, the derivative operator D is hypercyclic on the space of entire functions.

4.2 Open Problems

Hypercyclicity is an area of active research. There is still much we don’t understand. Below, we present
some open problems mentioned in [9].

1. Does every hypercyclic operator on a Banach/Hilbert space satisfy the Hypercyclicity Criterion?

2. Does there exist a continuous linear operator T on a Hilbert space X such that every vector x ∈ X is
hypercyclic for T?

3. Do all separable, infinite-dimensional F-spaces support a hypercyclic operator?

4. What are the common characteristics of topological vector spaces that support a hypercyclic
operator?

5 Dynamics and Chaos

Finally, we discuss some of the applications of hypercyclicity to dynamical systems and, in particular,
chaos. Dynamical systems have tremendous applications as they provide tools to model various physical
phenomena. They can describe the motion of various objects in Euclidean space, the flow of fluids, various
engineering systems, etc.

5.1 Dynamics

Dynamics is the study of the evolution of the states of a system. The states are elements of some metric
space X and the evolution is described by a continuous operator T : X → X. In the discrete case, the
progression of the states of the system are often indexed by some countable set. If xn ∈ X is the current
system’s state, then xn+1 = Txn gives the system’s next state. Usually, when X is clear, the dynamical
system (X,T ) is simply written as T : X → X.
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T : X → X is a linear dynamical system when T is a continuous linear map. Naturally, studying a given
discrete linear system’s set of states and its evolution after an arbitrary number of iterations given an
initial state x0 will involve studying the orbit of the initial state with respect to T ; each element in
Orb(T, x0) is some future state that will be achieved after a certain number of (time) steps. Intuitively,
hypercyclic operators already model some rather interesting behavior since Orb(T, x0) is dense in the X.
Any state in the state space can be approximated to arbitrary precision by some state in Orb(T, x0) given
that one “waits long enough”.

5.2 Chaos

A subtopic in linear dynamics is that of a chaotic system. Despite being deterministic, chaotic systems are
characterized by rather erratic and unpredictable behavior and extreme sensitivity to the initial conditions.
Small changes in the system often lead to wildly different behavior.

Chaotic systems are subject of great interest as there are many naturally occurring phenomena that exhibit
chaotic behavior and have applications to other fields as well. Solutions of the Lorenz equations in
modeling atmospheric conditions are chaotic. The logistic map, used for modeling population
growth/decline, is chaotic. In physics, the motion of the double pendulum (a pendulum with another
pendulum on its end) and the magnetic pendulum is chaotic. In computer science, pseudo-random number
generation is derived from chaotic systems [8].

To define chaos, we first need a characterization of “sensitivity” to the initial conditions. For this, we have
the property of sensitive-dependence on initial conditions.

Definition 5.1. Let (X, d) be a metric space and T be a continuous map of X to X. The dynamical
system T : X → X has sensitive-dependence on initial conditions if there exists δ > 0 such that for every
x ∈ X and ε > 0, there exists x′ ∈ X such that d(x, x′) < ε and d(Tnx, Tnx′) > δ, for some n. Such a δ is
referred to as a sensitivity constant for T .

Intuitively, if a dynamical system is sensitive to its initial conditions, a slight change in the initial state can
lead to states with significantly different characteristics after some number of time steps or evolutions. In
view of this, the above definition simply says that there is some “distance between states” δ > 0
(measuring how different states are) such that no matter how “close” the initial states x and x′ are, their
evolved states after applying T a certain number n times iteratively to x and x′ result in states that are at
least δ apart in distance.

A couple more definitions are required to fully characterize chaos.

Definition 5.2. Let T : X → X be a linear dynamical system. A point x ∈ X is a periodic point of T if
Tnx = x for some n. x is a fixed point of T if n = 1 (Tx = x).

Definition 5.3. A dynamical system T : X → X is topologically transitive if for any pair of nonempty
open sets U ⊂ X and V ⊂ X, there exists n ≥ 0 such that Tn(U) ∩ V 6= ∅. T : X → X is called mixing if
this occurs for all n > N , for some N .

With the above definitions, we are ready to state a commonly accepted definition of chaos that was
proposed by Devaney in 1986.

Definition 5.4. A dynamical system T : X → X is chaotic if it has sensitive-dependence on initial
conditions, T is topologically transitive and T has a dense set of periodic points.

Remark. It can be shown that if the metric space X has no isolated points, then, if T is topologically
transitive and has a dense set of periodic points, then T : X → X has sensitive-dependence on initial
conditions.

When chaos theory was first being developed, chaotic behavior was associated with nonlinearity as linear
systems were believed to be “predictable” and “well-behaved”. However, with the discovery of linear
operators that have dense orbits, albeit on infinite-dimensional spaces (hypercyclicity), the study of chaos
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in a linear setting became a subject of significant interest. In the case of linear dynamical systems,
topological transitivity is equivalent to hypercyclicity (see Birkhoff Transitivity Theorem).
Furthermore, it can be shown that hypercyclicity by itself implies sensitive-dependence on initial
conditions. By Theorem 3.5 proven above, on any Banach space, we can find some linear operator that is
hypercyclic and has sensitive-dependence on initial conditions. Such an operator already exhibits most
characteristics of chaotic behavior.

6 Conclusion

We’ve seen that hypercyclicity plays a crucial role in the study of chaotic systems and linear dynamical
systems in general. Chaotic operators have widespread applications as they can be used to model the
behavior of various systems found in nature. Hypercyclicity is a subject of current research and there are
still many open problems concerning it. Related concepts of interest that weren’t mentioned include ideas
that generalize hypercyclicity, such as multi-hypercyclicity, supercyclicity, cyclicity and universality. In this
paper, I have only skimmed the surface on the applications of hypercyclicity as well as related concepts
such as topological transitivity.
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