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1 Introduction

Gonzalez-Velasco’s paper “The Lebesgue Integral as a Riemann Integral” pro-
vides a non-standard, direct construction to the Lebesgue Integral that is meant
to be accessible to the reader who is already familiar with the Riemann Inte-
gral. Standard treatment of the theory typically relies on a wealth of basic
concepts that must be assimilated first, before the reader can begin to appre-
ciate the power of the Lebesgue Integral. Gonzalez-Velasco chooses instead to
define the Lebesgue Integral as a (possibly improper) Riemann Integral, and in
doing so, provides a background that is immediately familiar to the reader. The
theory will be constructed for functions defined over sets of arbitrary measure,
which will necessitate a unique set of proofs, including a unique approach to the
Lebesgue Dominated Convergence Theorem, which will emphasize the role of
uniform convergence. Our end-goal will be to leave the reader comfortable with
approaching simple integrals that were otherwise intractable when constrained
to Riemann integration.

2 The Lebesgue Measure and Integrable
Functions

Firstly, by a rectangle in Rn we shall mean the product space of n bounded
intervals, be they open, closed, or neither. We denote the volume v of a rectangle
R to be the product of the lengths of its component intervals.

Definition 1 The outer measure of a set E ⊂ Rn is

m(E) := inf
∑

v(Ri)

where the infimum is taken over all finite or countable collections of open rect-
angles {Ri} such that E ⊂ Ri.
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Definition 2 A set E ⊂ Rn is called measurable if and only if for any set
S ⊂ Rn then m(S) = m(S∩E)+m(S∩Ec). If E is measurable then we denote
m(E) as the Lebesgue measure of E.

We note that from these definitions it follows that

(1) m(Rn) =∞, and the empty set has Lebesgue measure zero.

(2) A set S is measurable if and only if Sc is measurable.

(3) Lebesgue measure is monotonic, i.e. if E and F are measurable with F ⊂
E ⇒ m(F ) ≤ m(E).

Theorem 1

(1) If E is a finite or countable set then m(E) = 0.

Proof: Let us enumerate the elements of E as {a0, a1, ...}. Given some

ε > 0, we cover each aj with an open set Oj of volume
ε

2j
. Therefore,

the set {a0, a1, ...} ⊂
∞⋃
j=1

Oj ≤ ε, and it is now known that every countable

union of open sets is a Lebesgue measurable set.

(2) If {Ei} is a finite or countable collection of measurable sets then their union⋃
Ei is measurable and m(

⋃
Ei) ≤

∑
m(Ei). If the Ei are disjoint then

equality holds.

(3) If {Ei} is a finite or countable collection of measurable sets then their in-
tersection

⋂
is measurable. If we have that m(E1) <∞ and Ei+1 ⊂ Ei ∀ i

then m(Ei)→ m(
⋂
Ei) as i→∞.

(4) If E and F are measurable then E − F := {x ∈ E : x /∈ F} is measurable.
If m(E) < ∞ and F ⊂ E then we have additivity, i.e. m(E − F ) =
m(E)−m(F ).

(5) Every half space in Rn is measurable.

(6) Every rectangle in Rn is measurable, and its Lebesgue measure is its volume.

(7) Open and closed sets are measurable.

Definition 3 A function f : E ⊂ Rn → R is measurable if and only if E is
measurable and for any y ∈ R the set {x ∈ E : f(x) > y} is measurable.

Theorem 2 The following statements are equivalent:

(1) For each y ∈ R the set {x ∈ E : f(x) > y} is measurable.

(2) For each y ∈ R the set {x ∈ E : f(x) ≥ y} is measurable.
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(3) For each y ∈ R the set {x ∈ E : f(x) < y} is measurable.

(4) For each y ∈ R the set {x ∈ E : f(x) ≤ y} is measurable.

Theorem 3 Let E ⊂ Rn be a measurable set.

(1) If f, g : E → R are measurable then f + g is measurable.

(2) If {fn} is a sequence of measurable functions on E and if fn → f on E then
f is measurable.

Egorov’s Theorem Let E ⊂ Rn be a measurable set and let {fn} be a sequence

of measurable functions on E such that fn → f on E. For any δ > 0 there is a
subset G of E with m(G) < δ and such that fn → f uniformly on E −G.

3 The Lebesgue Integral.

Given a function f : E ⊂ Rn → R, we first partition its range (as opposed to
Riemann integration, where we partition the domain of f). Consider measurable
set E where m(E) <∞ and a measurable function f : E → R whose values are
between zero and M > 0. If 0 = y0 < y1 < ... < yk = M is a partition of [0,M ],
and if we define Si = {x ∈ E : f(x) > yi} for i = 0, ..., k, then f is said to be
integrable on E if and only if

sup

k∑
i=1

m(Si)(yi − yi−1) = inf

k∑
i=1

m(Si−1)(yi − yi−1),

where the supremum and infimum are taken over all partitions of [0,M ]. When

equality is attained, we will denote the common value by

∫
E

f .

Definition 4. Let E ⊂ Rn be a measurable set and let f : E → R be a
measurable function. The measure function of f on E is the function µf defined
by

µf =

{
m{x ∈ E : f(x) > y} if y > 0

− m{x ∈ E : f(x) > y} if y < 0

To provide motivation for the definition of our measure function, consider E ⊂
Rn where m(E) <∞. Then consider nonnegative measurable function f : E →
R with bound M . Given partition 0 = y0 < y1 < ... < yk = M of [0,M ], and
noticing that m(Si) = µf (yi) with µf decreasing, we have that

k∑
i=1

m(Si)(yi − yi−1) and

k∑
i=1

m(Si−1)(yi − yi−1),
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are the lower and upper Riemann sums of µf , respectively. Because µf is
Riemann integrable on [0,M ], we have that∫

E

f = R

∫ M

0

µf ,

where R indicates Riemann Integral. Furthermore, if instead f is nonpositive,
we simply take its integral on E to equal the opposite of the integral −f , so∫

E

f = −R
∫ M

0

µ−f = R

∫ 0

−M
µ−f = R

∫ 0

−M
− µ−f (−y)dy ,

and we have a capable measure function. If m(E) = ∞, then our measure
function can have infinite values, but otherwise it is Riemann integrable on every
bounded subinterval of (−∞, 0) or (0,∞), and then the improper integrals

R

∫ 0

−∞
µf = −∞ or R

∫ ∞
0

µf =∞

exist.

Definition 5. Let E ⊂ Rn be a measurable set, f : E → R a measurable
function, and µf the measure function of f on E. Then the Lebesgue integral
of f on E is defined to be∫

E

f = R

∫ 0

−∞
µf + R

∫ ∞
0

µf = R

∫ ∞
−∞

µf

if the right-hand side exists. If the right-hand side is finite then f is said to be
Lebesgue integrable on E and we write f ∈ L(E).

We can now proceed to demonstrate the use of the Lebesgue Integral, first with
two standard improper Riemann Integrals, and third with an integral that is
otherwise intractable when constrained to Riemann integration.

Example 1 If E = {x ∈ R : 0 < x < 1} and f(x) =
1

x
, then µf (y) = 0 if y < 0,

µf (y) = 1 if 0 < y < 1, and µf (y) =
1

y
if y ≥ 1. So we have

∫
E

f = R

∫ 1

0

dy + R

∫ ∞
1

1

y
dy =∞.

Example 2 If E = {x ∈ R : 0 < x < 1} and f(x) =
1√
x

, then µf (y) = 0 if

y < 0, µf (y) = 1 if 0 < y < 1, and µf (y) =
1

y2
if y ≥ 1. So we have
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∫
E

f = R

∫ 1

0

dy + R

∫ ∞
1

1

y2
dy = 2.

Example 3 If E = {x ∈ R : 0 < x < 1} and

f(x) =

{
1 x rational

0 x irrational

then µf (y) = 0 for all y 6= 0 and we have R

∫
E

f = 0.

4 Basic Properties of the Lebesgue Integral

Here we will establish some basic properties of our measure function µf . In the
case that we are operating over some specific domain E of f , then we shall write
µE
f instead.

Theorem 5 Let E,F ⊂ Rn be measurable sets, let f, g : E → Rn be measurable
functions and let c ∈ R. Then if the integrals below exist,

(1) f ≤ g ⇒
∫
E

f ≤
∫
E

g. In the case that we also have f ≥ 0,

then g ∈ L(E)⇒ f ∈ L(E).

(2)

∫
E

cf = c

∫
E

f and then f ∈ L(E)⇒ cf ∈ L(E).

(3) If F ⊂ E then f ∈ L(E)⇒ f ∈ L(F ). If in addition f ≥ 0 then

∫
F

f ≤
∫
E

f .

(4) If c > 0 and if f c := min{f, c} then

∫
E

f c →
∫
E

f as c→∞.

Theorem 6 Let E1, ..., EN be a finite collection of disjoint measurable sets in
Rn, let E =

⋃
Ei and let f : E → R be a measurable function. Then∫

E

f =
∑∫

Ei

f .

Furthermore, if f has a constant value ci on each Ei, then∫
E

f =
∑

cim(Ei) .

Theorem 7 Let E ⊂ Rn be a measurable set and let f : E → R be a measurable

function. If

∫
E

f exists, then
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∣∣∣∫
E

f
∣∣∣ ≤ ∫

E

|f | .

Also, f ∈ L(E)⇒ |f | ∈ L(E).

5 The Convergence Theorems

Consider a sequence of functions {fn} such that fn → f . We will demonstrate

when it is the case that

∫
E

fn →
∫
E

f . In the case of Riemann integration the

uniform convergence of this sequence is sufficient. A similar result can be found
for the Lebesgue integral.

Proposition 1. Let S ⊂ Rn be a measurable set with m(S) <∞ and let {fn}
be a sequence of measurable functions such that fn ∈ L(S) and fn → f ∈ L(S)
uniformly on S. Then ∫

S

fn →
∫
S

f .

Proof. Given ε > 0 there is a K ∈ Z+ such that f − ε ≤ fN ≤ f + ε, and then
µf−ε ≤ µfN ≤ µf+ε, for N > K. For y > 0 and N > K,

µf (y + ε) = m{x ∈ S : f(x) > y + ε}
= m{x ∈ S : f(x)− ε > y}
= µf−ε(y)

≤ µfN (y)

and then

R

∫ ∞
0

µf − ε m(S) ≤ R

∫ ∞
ε

µf = R

∫ ∞
0

µf (y + ε)dy ≤ R

∫ ∞
0

µfN .

For y > ε and N > K,

µfN (y) ≤ µf+ε(y) = m{x ∈ S : f(x) + ε > y}
= m{x ∈ S : f(x) > y − ε}
= µf (y − ε)

and then
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R

∫ ∞
0

µfN ≤ εm(S) +R

∫ ∞
ε

µfN

≤ εm(S) +R

∫ ∞
ε

µf (y − ε)dy

= εm(S) +R

∫ ∞
0

µf .

Thus, given ε > 0 there is a K ∈ Z+ such that

−εm(S) ≤ R

∫ ∞
0

µfN −R
∫ ∞
0

µf ≤ εm(S)

for N > K and, since ε is arbitrary,

R

∫ ∞
0

µfN → R

∫ ∞
0

µf

as N →∞. Similarly,

R

∫ 0

−∞
µfN → R

∫ 0

−∞
µf

as N → ∞. From these last two limits, and Definition 5, we have established
our desired convergence. Q.E.D.

The reader should now note the superiority of this facet of Lebesgue theory;
rather than requiring the uniform convergence of fN , we have established con-
vergence with merely the condition that the fN be uniformly bounded. With
said weaker condition we may allow the domains of these functions to have
arbitrary Lebesgue measure.

The Lebesgue Dominated Convergence Theorem Let E ⊂ Rn be a mea-
surable set and let {fN} be a sequence of integrable functions on E that con-
verges to an integrable function f on E. If there is a function g ∈ L(E) such
that |fN | ≤ g for all N ∈ Z+, then∫

E

fN →
∫
E

f

as N →∞.

We begin by establishing two lemmas.

Lemma 1 Let E ⊂ Rn be a measurable set and let g ∈ L(E). For any ε > 0
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there is a subset F of E with m(F ) <∞ such that∣∣∣∫
E−F

g
∣∣∣ < ε .

Lemma 2 Let F ⊂ Rn be a measurable set, let g ∈ L(F ) and let G be a subset
of F . For any ε > 0 there is a δ > 0 such that if m(G) < δ then∣∣∣∫

G

g
∣∣∣ < ε .

Because of Lemma 1, we now have that for all functions defined out a set F
of finite measure, their integrals are negligible, i.e. less than epsilon. Lemma
2 shows the same is true for a sufficiently small subset G of F . By Egorov’s
theorem we may choose a set G so that fN → f uniformly on F − G. With
the last Proposition in hand, we will proceed with the proof of the Lebesgue
Dominated Convergence Theorem.

Proof: Given ε > 0 define F as in Lemma 1 with respect to E, and choose δ
in the spirit of Lemma 2 with respect to ε, and finally choose G as in Egorov’s
Theorem. By the Triangle Inequality and Theorems 6 and 7,

∣∣∣∫
E

fN −
∫
E

f
∣∣∣ ≤ ∣∣∣∫

F

fN −
∫
F

f
∣∣∣ +

∫
E−F
|fN | +

∫
E−F
|f |

≤
∣∣∣∫

F

fN −
∫
F

f
∣∣∣ + 2

∫
E−F

g

≤
∣∣∣∫

F−G
fN −

∫
F−G

f
∣∣∣ +

∫
G

|fN | +

∫
G

|f | + 2

∫
E−F

g

≤
∣∣∣∫

F−G
fN −

∫
F−G

f
∣∣∣ + 2

∫
G

g + 2

∫
E−F

g

≤
∣∣∣∫

F−G
fN −

∫
F−G

f
∣∣∣ + 4ε .

By Proposition 1, we can choose N sufficiently large such that the first term on
the right in the last inequality is smaller than ε, and the result follows. Q.E.D.

Conclusion The original article was written in a rather terse manner, as is
referenced in the very abstract. This summary was meant to include the primary
facets of the Lebesgue Integral, including a bare-bones construction of Measure
Theory. Though many of the proofs were omitted, it is this author’s hope that
the reader will have gained insight into a novel approach to Lebesgue integration.
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