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1 Introduction

We pose the following problem: Imagine that you are presented with two envelopes containing
a positive amount of money. However, one of the envelopes contains an amount twice as
much as the other. After picking an envelope and inspecting the contents, you are given
a choice between keeping the contents or exchanging it for the other envelope. We discuss
the paradoxical nature of a mathematical calculation of the solution, and then add the
assumption that we have knowledge of the conditional probability that the envelope you
picked contained more money than the remaining envelope, given that you have inspected the
contents. This assumption allows us to calculate a General Exchange Condition under which
you are able to determine whether or not it would be in your best interest to switch envelopes
(assuming that you wish to maximize your return). We then discuss the relationship of
monetary returns to utility theory, and examine an assumption posed by the domain of
mathematical economics regarding boundedness.
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2 Definitions

Definition A random variable is a variable that may take on a set of possible values
(either discrete or continuous) with an associated probability of taking on each possible
value (this is a somewhat informal definition, but sufficient for the scope of the paper).

Definition Given a discrete random variable X, the expected value is given by
∑∞

i=1 xipi
where the xi are the possible values X may assume and the pi are the related probabilities of
assuming those values. if X is continuous, then the expected value is given by

∫∞
−∞ xf(x)dx

where f(x) is a function that denotes the probability that X assumes the value x.

Definition A person’s utility refers to their total satisfaction from a good or service.

Definition A conditional probability gives the probability of an event, given that another
event has occurred. For example, if we denote A and B as two events, then Pr(A|B) is the
conditional probability of event A, given that the event B has occurred.

Definition Bayes’ theorem states that if A1, A2, ..., Aj are mutually exclusive events that
form the set of all possible outcomes of an experiment, then

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

Definition A probability distribution is a function that assigns a probability to all
possible outcomes of a random variable.

Definition The cumulative distribution function of a random variable X is given by
FX(x) = P (X ≤ x). That is, given some value x, the cumulative distribution function the
random variable X is the probability that it assumes a value less than or equal to x.

Definition If X is a continuous random variable, then the probability density function,
denoted as f(x), is such that for some values a and b,

Pr(a ≤ X ≤ b) =

∫ b

a

f(x)dx

3 The Paradoxical Solution

If we do not assume knowledge of any conditional probabilities, one might take a proba-
bilistic approach of deciding whether to switch or not. If we open our envelope and see that
it contains $x, then there is a 1

2
probability that the other envelope contains $2x and a 1

2

probability it contains $x
2
. If we calculate the expected value of switching, we would find

that
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E[X] =
1

2
(2x) +

1

2

(
x

2

)
=

5

4
x

where X is a random variable denoting the dollar amount received from the other
envelope. We then find that we should expect to gain more from switching envelopes. But
this result is puzzling, as it implies that regardless of the amount found in the first envelope,
we should always decide to switch envelopes. It suggests that the information about the
amount of money in the envelope we have picked was not necessary, and we will essentially
pick an envelope at random with the expectation that it was the best possible decision. To
address this issue, we add the assumption that information about the amount of money
in the envelope we picked is useful in determining the probability that the other envelope
contains more money, conditioning on the fact that we have observed the contents of the
first envelope.

4 Deriving the Exchange Condition

Let us denote the random variables L as the larger amount of money of the two envelopes,
and S as the smaller of the two amounts, where L and S are positive. Then see that S = L

2
,

so we may write that

Pr(L ≤ x) = Pr

(
S ≤ x

2

)
where x ∈ (0, ∞). Denote the first envelope we pick as E1 and the other envelope as

E2. Additionally, denote the amount contained in E1 as the random variable X and the
amount contained in E2 as the random variable Y . Because we pick E1 at random, the
probability that X is equal to L is the same as the probability that X is equal to S. Upon
opening envelope E1, we observe the contents and see that X = x. Then the condition under
which we should decide to switch envelopes is

E[Y |X = x] =

(
x

2

)
Pr(X = L|X = x) + (2x)Pr(X = S|X = x) > x

or equivalently,

(
1

2

)
Pr(X = L|X = x) + (2)Pr(X = S|X = x) > 1
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Note that X 6= L since we wish to determine the condition under which to switch en-
velopes, which implies that X = S. See that

Pr(X = S|X = x) = 1− Pr(X = L|X = x)

These two expressions then yield

(
1

2

)
Pr(X = L|X = x) + 2[1− Pr(X = L|X = x)] > 1

or equivalently,

(
3

2

)
Pr(X = L|X = x) < 1

And so we denote the General Exchange Condition as

Pr(X = L|X = x) <
2

3
(1)

We conclude that given knowledge of the underlying probability distribution and the
observed value of X = x, we should switch envelopes if and only if the General Exchange
Condition is satisfied [1].

5 Discrete and Continuous Probability Distributions

In this section, we derive specific conditions under which to switch envelopes when the
distribution of dollar amounts in the envelopes assume either discrete or continuous values.

5.1 Discrete Distributions

In the discrete case, the random variable may only assume a countable number of distinct
values. So let X,L, and S be discrete random variables. Now we make the assumption
that there exists some fixed m ∈ Z+ such that the amount of money in the chosen envelope
can be written as $2km for some k ∈ Z. We denote the prize values in this way so that
it facilitates the expression of dollar amount contained in the other unknown envelope as
either half or double the value in the chosen envelope. Then we define the probability
distribution

pk = Pr(X = 2km|X = L)

where k ∈ Z. Since we want that {..., p−1, p0, p1, ...} defines a probability distribution,
assume that pk ≥ 0 and

∑∞
−∞ pk = 1. Recall that since S = L

2
, it follows that
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pk+1 = Pr(X = 2k+1m|X = L) = Pr(X = 2km|X = S)

Now suppose we play the game with this knowledge, and pick an envelope containing the
amount X = 2km. Now having observed the amount inside, see that

pk + pk+1 = Pr(X = 2km|X = L) + Pr(X = 2km|X = S) > 0

We then use Bayes’ Theorem to show that

Pr(X = L|X = 2km) =
Pr(X = 2km|X = L)Pr(X = L)

Pr(L = 2km|X = L)Pr(X = L) + Pr(S = 2km|X = S)Pr(X = S)

=
pk

pk + pk+1

Then by using the General Exchange Condition, we can show that the Exchange Condi-
tion for Discrete Distributions is

pk
pk + pk+1

<
2

3

or equivalently,

pk < 2pk+1 (2)

This result implies that it is profitable to switch envelopes if and only if the uncondi-
tional probability that of picking the “larger” envelope is less than twice the unconditional
probability the “smaller” envelope [1].

5.2 Continuous Distributions

Now in the continuous case, the random variables X,L, and S assume an uncountable
infinite number of values. Recall that

Pr(S ≤ x) = Pr(L ≤ 2x)

We can also see that the cumulative distribution functions of L and S are such that

FS(x) = FL(2x)

Differentiating a cumulative distribution function yields its respective probability
density function
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fS(x) = 2fL(2x)

To return to our question at hand, suppose that we pick envelope E1 and observe that
X satisfies the expression x ≤ X ≤ x + dx. Then given this observation, the conditional
probability that E1 is the “larger” envelope is analogous to the discrete case, and

Pr(X = L|x ≤ X ≤ X + dx) =
fL(x)dx

fL(x)dx + fS(x)dx

=
fL(x)

fL(x) + 2fL(2x)

So similarly, we will find that the Exchange Condition for Continuous Distributions is
given by

fL(x)

fL(x) + 2fL(2x)
≤ 2

3

or equivalently,

fL(x) < 4fL(2x) (3)

We thus conclude that switching is profitable if and only if the unconditional density of
L at x (or the observed value of X) is less than four times the unconditional density of L at
twice the observed value of X [1].

6 Utility Theory

6.1 Boundedness of Utility

Let us return to the original statement of the problem in which we came to the paradoxical
solution of always choosing to switch envelopes. Instead of money, we instead replace the
prize of the envelopes with utility. We assert that if it is true that the best choice is to
always switch, then our utility must be unbounded. We show this by contradiction. If we
suppose that utility is bounded, then there exists a number c such that the value L now
denoting the utility of the “larger” envelope is such that

Pr(L > c) = 0, P r
( c

2
< L ≤ c

)
> 0

but then see that

Pr(X = L| c
2
< L ≤ c

)
= 1
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which implies that Pr( c
2
< L ≤ c

)
> 0, and the General Exchange Condition would

fail with positive probability. In order for switching envelopes to always be the profitable
solution, it must be that the utility of the other envelope is unbounded. However, it is
puzzling to consider that there exists an envelope yielding an unbounded utility gain. In an
attempt to propose a solution to this issue, mathematician Daniel Bernoulli developed key
ideas in the area of utility theory [2]. Bernoulli states that the value of an item does not
necessarily stem from its price, but rather its utility it yields to a specific person. That is,
the price of an object may be determined taking into consideration only the object itself, but
the utility of the object depends upon the circumstances of the person evaluating the object
[2, pg 24]. In order to briefly demonstrate this, Bernoulli gives the example that a poor
man would receive more utility from an item than a rich man, and that a rich prisoner who
needs two thousand more ducats (early European currency) to be bailed from prison would
receive more utility from gaining this amount than a poor prisoner who might need four
thousand ducats [2, pg 25]. In addition, he claims that any amount of increase in wealth will
always result in an increase in utility inversely proportionate to the quantity of goods already
possessed [2, pg 25]. Furthermore, utility is mathematically modeled as a logarithmic curve
as a function of a person’s wealth. Doing so incorporates the characteristic of diminishing
returns to utility, yielding a bound to the proposed utility function. If we assume that utility
is bounded, we can then see that it is not logical to always switch envelopes in the original
statement of the two envelope problem.

6.2 St. Petersburg Paradox

Say we have the following problem: Peter tosses a coin and continues to do so until it should
land “heads” when it comes to the ground. He agrees to give Paul one ducat if he gets
“heads” on the very first throw, two ducats if he gets it on the second, four if on the third,
eight if on the fourth, and so on, so that with each additional throw the number of ducats
he must pay is doubled. Suppose we seek to determine the value of Paul’s expectation. So,
letting X denote a discrete random variable which describes Paul’s yield, it is easy to see
that

E[X] = (1)

(
1

2

)
+ (2)

(
1

4

)
+ (4)

(
1

8

)
+ ...

=
1

2
+

1

2
+

1

2
+ ...

=∞

Given this expected winnings, is it reasonable for Peter to charge Paul twenty ducats
as fee for playing the game? Around the same time that Bernoulli wrote on utility theory,
mathematician Gabriel Cramer studied the problem and explained that it seemed absurd
to charge this large fee for playing the game [2, pg 33]. In order to examine this discrep-
ancy, Cramer explains that “in theory, mathematicians evaluate money in proportion to its
quantity while, in practice, people with common sense evaluate money in proportion to the
utility they can obtain from it” [2, pg 33]. Although our monetary gain would double at
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each successful throw, according to our theory of utility, we would not expect Paul’s utility
to always double as the number of successful throws approaches infinity. Problems such as
the Two Envelopes Problem and the St. Petersburg Paradox highlighted a conflict between
mathematical theory and actual practice, leading to a development of utility and risk theory
by mathematicians and economists.
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