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Abstract

The hyperreals are a number system extension of the real number
system. With this number system comes many advantages in the use
of analysis and applications in calculus. Non-standard analysis refers
to the use of infinitesimals in doing analysis instead of the usual epsilon
and distance functions.

The machinery we will build in this papaer will allow us to prove
some elementary analytic results. This paer will go through how to
construct number systems via equivalence classes, how the hyperreals
are constructed, how the hyperreals function, and finally how to use
them to prove some theorems about uniform convergence and Rie-
mann Integration.
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1 Introduction

Historically when Leibniz invented calculus the use of infinitesimals was
somewhat careless, not many people questioned the vailidity of them as
mathematical objects. Besides some detractors, namely George Berkeley
in his scathing article about infinitesimals, no one really questioned the intu-
tive nature of them. For instance Euler proved many theorems infinitesimals
without much regard for the foundations of the ojects he was working with.
For example if one were to calculate the derivative of f(x) = x2, the calcu-
lation would be as follows:

(x+ ε)2 − x2

ε
=

2xε+ ε2

ε
= 2x+ ε

however ε is an infinitesiamal and thus disregarded, so the answer is 2x.
The quest for absolute rigor lead to the demise of infinitesimals in the 19th
century, it was during this time that Wierstrass gave his ε, δ definition of
limit. It wasnt until advances in model theory for Robinson in the 1960s
that the full theory of infinitesimals was rigorously defined.

2 Number System Construction

2.1 Axiomatic Set Theory

To begin understanding the construction of the non-standard reals we must
be familiar with how number systems are constructed. We construct the
natural numbers from axiomatic set theory using two axioms, union and the
existence of an inductive set. Start with the empty set, ∅ , and define the
sucessor operation S on a set x such that S(x) = x ∪ {x}, for instance 0
is associated with the empty set, ∅, and so 1 is associated with {∅, {∅}}.
The set with the inductive property, that being of closed under the successor
operation, we intentionally call N.

Defintion 2.1. Equivalence Relation: An Equivalence Relation, ∼ is a
relation on sets such that the three following properties hold:

1. Reflexivity: a ∼ a

2. Symmetry: a ∼ b implies b ∼ a
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3. Transitivity: a ∼ b and b ∼ c implies a ∼ c

Defintion 2.2. Equivalence Class An equivalence class is the set of objects
satisfing some equivalence relation.

The integers, Z, is constructed by equivalence classes from orderd pairs
of naturals. The rationals, Q, are constructed from equivalence classes on
integers.1 The interesting part comes in constructing the reals, R, from the
rationals, where we no longer talk about ordered pairs but infinite sequences.
There are two ways of defining the reals one way is consider Dedekind cuts
and the other is to look at equivalence classes of Cauchy Sequences of rational
numbers. The Cauchy sequence method is more appropriate for what is being
done here, as the hyperreals, *R, are defined in such a way from real numbers.

2.2 Integers Z
Example 2.1. Lets constuct the integers from the naturals as simple demon-
stration of taking an equivalence class. Z = N × N/ ∼, i.e. we identify an
integer as an equivalence class or the set of ordered pairs of natural numbers
that satisfy the following equivalence relation. Where ∼ is the equivalence
relation (a, b) ∼ (c, d) if a + d = b + c. We verify this is an equivalence
relation by showing reflexivity, symmetricity, and transitivity:

(a, b) ∼ (a, b)

(a, b) ∼ (c, d)→ (c, d) ∼ (a, b)

(a, b) ∼ (c, d), (c, d) ∼ (e, f)→ (a, b) ∼ (e, f)

Obviously these hold by the commutativity and identity properties of the nat-
ural numbers, the details are left for the reader.

We construct the hyperreals the same way via the set of all real valued
sequences indexed by the natural numbers. Now to the construction

1See Enderton Chapter 5 for details.[2]
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3 Hyperreal Construction

3.1 Preliminaries

The construction of hyperreals requires taking an equivalence classes on RN,
the set of infinite real valued sequences.2 The relation we have to define for
the hyperreals is going to be a special kind of equivalence relation which will
need some set theoretic machinery. The first object we will need is what is
called an ultrafilter. An ultrafilter, F , on a a set X is a set of subsets of
X. The ultrafilter tests for size of the of subsets of X. When we get to the
construction we will use size and real number equality as our equivalence
relation. As would be guessed, our intuitive defintion of ultrafilter fits with
the formal defintion. An ultrafilter acts like a sieve that filters out small sets,
when big sets are desired.

Defintion 3.1. Power Set :The power set P(X) of a set X is defined to
be {x|x ⊂ X}.

Defintion 3.2. Cofinite: Given set Y ⊂ X, Y is cofinite if X \Y is finite.

Defintion 3.3. Ultrafilter:An ultrafilter F on a set X is a collection of
subsets of X that satisfy the following properties:

1. X ∈ F

2. ∅ /∈ F

3. If A,B ∈ F then A ∩B ∈ F

4. If A ⊂ X then either A ∈ F or X \ A ∈ F

5. If A ∈ F and A ⊂ B then B ∈ F .

3.2 The Equivalence Relation ≡
The equivalence relation we want to take is on the set of all infinite real
sequences, RN, will use an ultrafilter to grab sets that are equivalent. We
will say that two hyper real numbers are equal if their real number sequences
differ by at most a finite number of terms.

2This constuction is taken from Goldblatt Chapter 3.[3]
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Defintion 3.4. Define a relation, ≡, on RN, by saying that (rn) ≡ (sn) if
and only if {n ∈ N|rn = sn} ∈ F .

This equivalence relation captures the idea of ’agreeing almost every-
where.’ Since the hyperreals are constructed using real numbers we should
use real number equality since we know how that works. We say x = y
in the hyperreals if the parts of the real number sequences defining x and
y differ at only finitly many terms. For example let x = (1, 2, 3, 4, ...) and
y = (1, 2, 2, 4, ...), if these sequences progressed in the natural way then we
could say that x = y because each sequence only differs by finite terms,
namely one term. The less than relation is defined similarly we want the
terms for which the xj 6 yj to be only finite to say that yj < xj. The
cofinite equality of the real number sequences is captured by the ultrafilter.

Defintion 3.5. Hyperreal Arithmetic is defined componentwise.

[r] + [s] = [(rn + sn)]

[r] · [s] = [(rn · sn)]

Defintion 3.6. The set of equivalence classes of an ultrafilter is called an
ultraproduct and r ∈ RN under ≡ denoted by [r] will be

[r] = {s ∈ RN|r ≡ s}.

This leads to the definition of the hyperreals from RN/ ≡.

∗R = {[r]|r ∈ RN}

3.3 Transfer Principle

Statements about hyperreals require the use of first-order logic. First-order
logic discuss quantification over objects, whereas second-order logic allows
quantification over predicates or relations.

Defintion 3.7. First Order Formula is a formula involving quantification
over objects in the domain of discourse.

Example 3.1. Let X be the set of students in 336, and let φ be the formula
so that φ(x) says that ’x does analysis.’ Then we can say that ∀xφ(x) is a
first order forumla about students.
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Theorem 3.1. Transfer Principle: Any appropriately formulated statement
φ about R holds iff *φ holds for *R.

Proof. The rigorous proof uses sophisticated model theory or axiomatic de-
ductions and is beyond the scope of this paper. The idea of why this holds
is straightforward. Consider the ultrafilter U on a cartesian product of sets,
Mi: ∏

i∈N

Mi/U

Then if a first-order formula, φ, holds for each Mi and is captured by the
ultrafilter, then φ holds in the ultraproduct. �

Here appropriately formulated means statements in first-order logic. The
transfer principle allows statements about the reals to be equivalent state-
ments of the hyperreals and vice versa. For example commutativity is an
appropriate statement about the reals and so it is an appropriate statement
about the hyperreals. The details of all the properties of the reals that trans-
fer to the hyperreals are too tedious for this paper.

3.4 Ordered Field

Defintion 3.8. An Ordered Field, F, is an algebraic stucture with a set,
F , two operations, {+, ·}, and an ordering relation, {6} that satisfy the
following properties:

1. F is associative in both operations

2. F is invertable in both operations

3. F has an identity element in both operations

4. F is closed under both operations

5. F has a well defined notion of order

The Transfer Principle justifies this. For our purpose it is enough to say
that since the reals are a ordered field then the hyperreals are an ordered
field.
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3.5 Infinitesimals and Unlimiteds

The reals are a subfield of the hyperreals, in a similar sense that the rationals
are a subfield of the reals. The reals in the hyperreals are identified with
infinte sequences of themselves, so in the hyperreals 0 is identified with the
infinite sequence of 0’s, (0, 0, 0...) and π with (π, π, π, ...). Infinitesimals are
defined by seqences of real numbers approaching 0, for instance we may take
ε = (1

2
, 1
4
, 1
8
, ...). This number is less than any real number in the hyperreals:

Theorem 3.2. There exists ε ∈*R, called an infinitesimal, such that ε > 0
and for all x ∈ R, ε < x.

Proof. Let ε = (1
2
, 1
4
, 1
8
, ...), with each term called εn and 0 = (0, 0, 0, ...), with

each term called 0n, then εn > 0n for all n, so ε > 0. Take x = (x, x, x, ...)
with each term called xn, then since each xn is equal there exists n0 such
that for all n > n0 then εn < xn, so there are infinitely many terms such that
εn < xn, therefore ε < x. �

Theorem 3.3. There exists ω ∈*R, called unlimited, such that ω > x for all
x ∈ R.

Proof. Let ω = (1, 2, 3, ...) with each term ωn and take x = (x, x, x, ...) with
each term called xn, then there exists n0 such that for all n > n0 then
ωn > xn. �

Let’s recap what just happened. First we considered the set of infinite
sequences of real numbers. Then we defined an ultrafilter that picked out
elements of those sequences that were defined to be equivalent if they differed
by at most finite number of terms. This defined the hyperreals as an object
of study. Next the arithmetic of how the equivlence classes would be worked
with in terms of addition and multiplication was defined in terms of infinite
sequences. The transfer principal said that any well formulated statement
about the reals would hold for the hyperreals, this happened because of model
theory. This gave the arithmetic and ordering properties of the hyperreals
as objects themselves. Finally we showed that this set had the infinitesimals
and unlimited numbers that were desired.
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4 Working With *R

4.1 Arithmetic in *R
Let x ∈*R, x is called finite if a < x < b for a, b ∈ R, and x is not infinitesimal.
A number ε is called infinitesimal if ε < x for all x ∈ R+ and ε > x for all
x ∈ R−. Here ε can be positive or negative, but it is not necessary to
worry about for the purposes of this paper. One way to think about an
infinitesimal is that if the limit of the terms of the real number sequence
defining the hyperreal number goes to zero then it will define an infintesimal.
Suppose ε, δ are infinitesimal, x, y are finite and ω, α are unlimited then the
following is true:

1. ε+ δ is infinitesimal

2. x+ ε is finite

3. x+ y is appreciable possible infinitesimal

4. ε · δ is infintesimal

5. ε · x is infinitesimal

6. ω + x is unlimited

7. 1
ε

is unlimited

8. 1
ω

is infinitesimal

Several indeterminate forms arise when working with operations of hy-
perreal numbers:

1. ε
δ

2. ω
α

3. ω · ε

4. ω + α
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4.2 The ’Arbitrarily Close’ Equivalence Relation

Defintion 4.1. Let ', be an equivalence relation on *R such that x ' y
means that x− y is infinitesimal or 0.

Checking this is a well defined equivalence relation is straightforward and
left to the reader. It immediately follows that ε ' 0, this will be important
because it captures of idea of ”arbitrary close” that lies at the heart of usual
ε, δ type proofs in analysis.

4.3 Set Enlargement

Defintion 4.2. Set Enlargement: A set I ⊂ R can be extended to a set
*I ⊂*R if for each r ∈ RN then

[r] ∈ ∗A↔ {n ∈ N|rn ∈ A} ∈ F

The ultrafilter gives us the concept of almost all, by the cofinite definition
of equality. So we can extend an interval to be a hyperreal interval by saying
that a hyperreal number is in the interval if the real valued sequence defining
it is almost all in the real interval.

4.4 Least Upper Bound Property

The least upper bound (LUB) property for the real number states that every
set of real numbers with an upper bound has a least upper bound. This
is also called the dedekind completeness property or Cauchy completeness.
This has problems in the language of the transfer princple, since here we are
not quantifying over objects, but sets of objects. This means that the LUB
property is not expressable in first-order language. But the properties of the
hyperreals give us an equivalent statement.

Theorem 4.1. Because Every limited hypereral is infinitely close to a real
number implies the completeness of R.3

Proof. Let s : N→ R be a Cauchy sequence, so there exists k ∈ N so that

∀m∀n ∈ N(m,n > k → |sm − sn| < 1).

3[3] pg 55
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This is a first-order statement(only quantified over numbers, not sets), so
the transfer principle applies in a sequence with an unlimited hyperreal N .
Take N unlimited so k,N > k then |sk − sN < 1|, and so sN is limited. By
assumption that every limited hyperreal is infinitely close to a real number
then say that sN ' L for L ∈ R. Now we show that the the original sequence
s→ L.

Let ε > 0, since s is Cauchy then there exists j0 ∈ N so that for j > j0
then:

∀m∀n ∈ N(m,n > j → |sm − sn| < ε).

We can show that beyond sj that all the terms are within ε of L. This
is because all such terms are within ε of sN , which is itself with in ε of L.
Let m ∈ N be such that m > j then m,N > j so by transfer principle then
|sm − sN | < ε. Pushing the inequalities this becomes:

|sm − L| < |sm − sN |+ |sN − L| < ε+ δ.

Where here δ is another infinitesimal. And since Cauchy sequence con-
vergence implies completeness, this completes the proof. �

The last result is interesting in that it shows how transfer can be used in
ingenous ways to give us properties that we might have lost. In this case we
might lose the LUB property since it is a second-order formula, but the first-
order formulation of convergent sequences gave use that property. Though
the work of showing that Cauchy Completeness is equivalent to LUB and to
Dedekind completeness is taken as given here.

5 Non-Standard Calculus

5.1 Continuity

Defintion 5.1. Let f(x) be a real-valued function on [a, b], then say that
f(x) is continuous if when x ' c then f(x) ' f(c) for all x ∈ [a, b]. 4

Example 5.1. All lines of the form y = mx+ b are continuous.
Suppose x ' c then x = c+ ε and:

f(x)− f(c) = m(c+ ε) + b− (mc+ b) = mε ' 0.

4These defintions are taken from Keisler[4]
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This simple example shows the power of infinitesimal caluclus. In reg-
ular continuity proofs, much inequality pushing was necessary and finding
appropriate bounding inequalities could be very difficult. But here we ap-
peal to the intuition that Leibniz and many great mathematicians had, but
that intuition now has a very rigorous foundation that could be laid out at
any time. No longer is it necessary in many cases to find a δ because that δ
exists.

5.2 Derivative

Defintion 5.2. Let f(x) be real valued, the derivative of f(x) denoted f ′(x)
is given by

f ′(x) =
f(x+ ε)− f(x)

ε

provided that the function is defined at x and f ′(x) ' f ′(x) + ε.

5.3 Riemann Sum

Defintion 5.3. Let f(x) be defined on I = [a, b] and let π = {x0, x1, ..., xω}
be a partition of I, and let α = {α1, α2, ..., αω}, where xj 6 αj 6 xj+1, then
define

S(π, α) =
ω∑
j=0

f(αj)(xj+1 − xj) '
∫ b

a

f(x)dx.5

Since there exists unlimited numbers in the hyperreals we can use those
to capture the idea ”for sufficiently large” in a rigourous sense.

6 Non-Standard Analysis

We know present some theorems from introductory analysis from a non-
standard point of view. The goal here is to see simplications that come from
not having to choose ε or ’sufficiently large n.’

5[5] Pg 71-72

12



6.1 Uniform Convergence

Defintion 6.1. Uniform Convergence of a Sequence of Functions
A sequence of functions fn is said to converge uniformly to f on I if

fn ' f for n unlimited.6

6.2 Adapted Analysis Proofs

Theorem 6.1. Cauchy Criterion for Uniform Convergence
Let fn be a sequence of bounded funtions on I ⊂ R. Then this sequence

converges uniformly on I to a bounded function f if and only if for unlimited
n and m then fn − fm ' 0.7

Proof. Suppose fn converges uniformly to f on I, then for unlimited n and
m, fn ' f and fm ' f . So by transitivity fm − fn ' 0. Now suppose that
fm − fn ' 0, so for each x ∈ I then fn(x) − fm(x) ' 0. Because fn(x) adn
fm(x) are cauchy they both converge to f(x). So fn(x) converges to f(x) for
each x ∈ I then fn converges uniformly to f on I. �

Theorem 6.2. Suppose fn is a sequence of continuous functions on and
fn → f uniformly on I, then f is continous I.8

Proof. Take x ' c and n unlimited then fn(x) ' fn(c) for all n from the
assumption of continuity of each fn. Because of uniform convergence fn(x) '
f(x) and fn(c) ' f(c). So then by transitivity f(x) ' f(c). �

We know that for ∫ b

a

f = lim
n→∞

∫ b

a

fn

to hold then fn must converge uniformly to f on [a, b], we prove that now
using non-standard analysis. Where n → ∞ is replaced with the unlimited
hyperreal number ω.

Theorem 6.3. Let fn be a sequence of functions in R[a, b] and suppose fn
converges uniformly on [a, b] to f . Then f ∈ R[a, b].9

6[5] Pg 130-131
7[1] Pg 246
8[6] Pg 443-444
9[1] Pg250-251
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Proof. Since Riemann integrable functions are bounded then by the Cauchy
Criterion for uniform convergence we know that for x ∈ [a, b] that fm−fn ' 0
for n,m > ω, so then fm converges and this implies that∫ b

a

fm ' I.

Now take m > ω so that fm(x)− f(x) ' 0 for all x ∈ [a, b]. And consider
a significant partition, π, of [a, b] then:

S(π, fm)− S(π, f) '
ω∑
i=1

(fm(xi)− f(xi))(xi − xi−1) ' 0(b− a) ' 0.

Considering the fact that for unlimited n that:∫ b

a

fm − I ' 0.

And we can say that because each fm is Riemann integrable∫ b

a

fm − S(π, fm) ' 0.

We finally get:

S(π, f)− I ' S(π, f)− S(π, fm) + S(π, fm) +

∫ b

a

fm −
∫ b

a

fm − I ' 0.

�

7 Conclusions

The importance in non-standard analsis comes from its simplification of
proofs. No triangle inequality, no adding and subtracting terms, and no
ingenuity when trying to find inequalties. You could say that inequalities are
in the equivalence relation, ', but its function is almost that of equality.

Non-Standard Analysis works great for heuristic arguments when it comes
to analysis. If we want to show something, it could suffice to show that it
does work for the hyperreals and use the transfer principle to claim that it
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workds for the reals too, though this can be tricky. This paper left alot out
because of the nature of the paper, and the deep topic that Non-Standard
Analysis is. Goldblatt’s book is a very are lecture ntoes for a course that he
taught on this subject.

In 1976, Kielser, who was involved in the development of the some of
the machinery that helped developed for the hyperreals, wrote a book called
”Elementary Calculus.” This book, is a textbook style calculus text, that
uses the hyperreal number system for its proofs. Though it never caught on,
this could be a great teaching method for those people learning elementary
calculus, since it relies more on the intuitions and less on the seemily criptic
analytical definitions of calculus topics.
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