maximum stuff

January 22, 2012

We have a holomorphic function $f: D \rightarrow S=\{u+i v:|u| \leq 1\}$. Let's compose with the map $g(w)=\tan \left(\frac{\pi w}{4}\right)$ which maps S to D. We use Schwarz on $h(z)=g(f(z))$. So $|h(z)| \leq|z|$ and we get $=$ if and only if $h(z)=c z$, where $|c|=1$.

Let's do a little translating. $g(w)=\tan \left(\frac{\pi w}{4}\right)=\frac{1}{i} \frac{e^{\frac{\pi i w}{2}}-1}{e^{\frac{\pi i w}{2}}+1}$ and in this we substitute $w=f(z) . f=$ $g^{-1}(h(z)$ and carry out all the algebra we get

$$
f(z)=\frac{2}{\pi i} \log \left(\frac{1+i h(z)}{1-i h(z)}\right), \text { where }|h(z)| \leq|z| \text {. }
$$

So $\left|v\left(z_{0}\right)\right| \leq \frac{2}{\pi} \log \left(\frac{1+r}{1-r}\right)$ where $r=\left|z_{0}\right|$. And this max of v is achieved when $f(z)=\frac{2}{\pi i} \log \left(\frac{1+z}{1-z}\right)$, and at $z=r$. Since the real part of f is 0 at this point this is also the value of $|f(r)|$.

