Math 535-Complex Analysis: Problem Set 15

Gill

Due: Friday February 24, 2012 3pm

Problem 1

(a) Show that for $k \geq 2$ the product $\prod_{n=k}^{\infty}\left(1+\frac{(-1)^{n}}{n}\right)$ converges, and find its value.
(b) Determine convergence or divergence of $\prod_{n=1}^{\infty}\left(1+\frac{i}{n}\right)$ and of $\prod_{n=1}^{\infty}\left|1+\frac{i}{n}\right|$.

Problem 2

Let D be a proper subdomain of \mathbb{C}^{*}, and $\left\{z_{n}\right\}$ be a seqence of distinct points in D with no limit point in D and $\left\{m_{n}\right\}$ be a sequence of positive integers. Complete the proof started in class that there exists $f \in H(D)$ which has a zero of order m_{n} at each z_{n} and no other zeros in D.

Problem 3

Let there be given a sequence $\left\{z_{n}\right\}$ of distinct points in \mathbb{C} with $\lim _{n \rightarrow \infty} z_{n}=\infty$, and sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ in \mathbb{C}. Prove that there exists an entire function f such that $f\left(z_{n}\right)=a_{n}$ and $f^{\prime}\left(z_{n}\right)=b_{n}$ for all $n \geq 1$.

Problem 4

Let $\left\{z_{n}\right\}$ be a sequence of not necessarily distinct complex numbers in \mathbb{D} satisfying the Blaschke condition

$$
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right) \leq \infty
$$

Prove that there exists a function $f \in H^{\infty}(\mathbb{D})$ such that $f\left(z_{n}\right)=0$ for $n \geq 1$ and f has no other zeros in \mathbb{D}.

Problem 5

Find a constant C such that

$$
|\log | e^{i \theta}-1 \left\lvert\, \leq \log \frac{\pi}{|\theta|}+C\right., \quad \theta \in[-\pi, \pi]
$$

Find the best constant if you can.

Problem 6

Let $f \in H(\mathbb{D}(0, R))$, and $0<r<s<R$.
(a) Prove that

$$
\log ^{+} M(r, f) \leq \frac{s+r}{s-r} T(s, f)
$$

(b) Give an example of $f \in H(\mathbb{D})$ for which f is unbounded in \mathbb{D} but $\sup _{0<r<1} T(r, f)<\infty$. Examples like the ones in (b) show, in contrast to (a), there can be no absolute constant for which $\log ^{+} M(r, f) \leq C T(r, f)$, for every $f \in H(\mathbb{D}(0, R))$ and $0<r<1$.

Problem 7 Extra Do Not Turn In

Give an example of a nonconstant bounded holomorphic function in \mathbb{D} such that every point of $\partial \mathbb{D}$ is a limit point of zeros of f.

