Math 336 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover through section IV.1 in Gamelin.

- 1. Let $f(z) = x^2 y^2 + i \log(x^2 + y^2)$. Find the points at which f is complex differentiable. Find the points at which g(z) = x iy is complex analytic.
- 2. Let f(z) = u(z) + iv(z), u = Re(f(z)), v = Imf((z)) be analytic on an open connected set Ω . Suppose there are real numbers a, b, c with $a^2 + b^2 \neq 0$ and au(z) + bv(z) = c for all $z \in \Omega$. Prove that f is constant.
- 3. Suppose that v is the harmonic conjugate of u and u is the harmonic conjugate of v. Show that u and v must be constant.
- 4. Let u be harmonic on W. Prove that $f(z) = u_x(z) iu_y(z)$ is harmonic.
- 5. Let a be a complex number and suppose |a| < 1. Let $f(z) = \frac{z-a}{1-\overline{a}z}$. Prove the following statements.
 - (a) |f(z)| < 1, if |z| < 1. (b) |f(z)| = 1, if |z| = 1.
- 6. Let $f(z) = e^{-z^{-4}}$ if $z \neq 0$, f(0) = 0. Prove that f is analytic at z if $z \neq 0$ and that the Cauchy-Riemann equations are satisfied at 0. Is f analytic at 0?
- 7. Let $z_j = e^{\frac{2\pi i j}{n}}$ denote the *n* roots of unity. Let $c_j = |1 z_j|$ be the n 1 chord lengths from 1 to the points $z_j, j = 1, \dots, n 1$. Prove that the product $c_1 \cdot c_2 \cdots c_{n-1} = n$. *Hint*: Consider $z^n 1$.
- 8. Suppose f is analytic on a connected open set. Assume $f^2 = \overline{f}$. Prove that f is constant. What are the possible values of the constant?
- 9. You will need to know the definitions of the following terms and statements of the following theorems.
 - (a) Modulus (absolute value) and argument of a complex number
 - (b) Complex derivative
 - (c) Complex analytic function

Sample Problems

- (d) Cauchy-Riemann equations
- (e) Harmonic functions and harmonic conjugate
- (f) Complex exponential function and trigonometric functions
- (g) Complex logarithm and powers
- (h) Linear fractional transformations
- (i) Mean value principle
- (j) Maximum principle
- (k) Complex line integrals
- 13. There may be homework problems or example problems from the text on the midterm.