336 First Midterm Solutions

1. Let $\alpha=a-i b$. Then $\alpha f=a u+b v+i(a v-b u)$. Since $\Re(\alpha f)$ is constant, αf is constant. Since $\alpha \neq 0, \frac{1}{\alpha} \alpha f=f$ is constant.
2. Since u is harmonic on $\mathbb{C}, u=\Re(f)$, where $f \in \mathcal{O}(\mathbb{C})$. Let $h=e^{f}$. Then $|h(z)|=e^{u}$ and since $u(z) \rightarrow 0$ as $z \rightarrow \infty,|h(z)| \rightarrow 1$ as $z \rightarrow \infty$. So h is a bounded entire function and by Liouville's theorem, h is constant. Next $0=h^{\prime}=f^{\prime} h$ and since $h(z) \neq 0, f^{\prime}=0$ (identically). Thus f is constant, so u is constant. Since $u(z) \rightarrow 0$ as $z \rightarrow \infty, u(z)=0$ for all z.
3.

$$
\begin{align*}
\int_{|z|=1} \frac{d z}{(2 z-1)(z-2)} & =\frac{1}{2} \int_{|z|=1} \frac{d z}{(z-1 / 2)(z-2)} \tag{1}\\
& =\frac{1}{2} \int_{|z|=1} \frac{f(z) d z}{(z-1 / 2)} \tag{2}\\
& =\frac{1}{2} 2 \pi i f(1 / 2) \tag{3}\\
& =-\frac{2 \pi i}{3}, \tag{4}
\end{align*}
$$

by Cauchy's integral formula since $f(z)=1 /(z-2)$ is analytic in $|z| \leq 1$.
4. When $z \neq 0, f(z)=e^{-z^{-4}}$ is a composition of two analytic functions and hence $f \in \mathcal{O}(\mathbb{C}-0)$. On the x-axis, $y=0, v=\Im(f)=0, u=\Re(f)=e^{-x^{-4}}$. Hence $v_{x}(0,0)=0$ and

$$
\begin{align*}
u_{x}(0,0) & =\lim _{h \rightarrow 0} \frac{e^{-h^{-4}}-0}{h} \tag{5}\\
& =\lim _{t \rightarrow \infty} \frac{t}{e^{t^{4}}}(\operatorname{let} t=1 / x) \tag{6}\\
& =0 \text { by l'Hopital's rule. } \tag{7}
\end{align*}
$$

Similarly $u_{y}(0,0)=0=v_{y}(0,0)$. Thus the Cauchy-Riemann equations are satisfied at $(0,0)$. But f is not even continuous at 0 . For example, approach 0 along the ray $t e^{\frac{i \pi}{4}}$. Then

$$
\begin{equation*}
\lim _{t \rightarrow 0} e^{t^{-4}}=\infty \tag{8}
\end{equation*}
$$

