336 First Midterm Solutions

- 1. Let $\alpha = a ib$. Then $\alpha f = au + bv + i(av bu)$. Since $\Re(\alpha f)$ is constant, αf is constant. Since $\alpha \neq 0, \frac{1}{\alpha} \alpha f = f$ is constant.
- 2. Since u is harmonic on \mathbb{C} , $u=\Re(f)$, where $f\in\mathcal{O}(\mathbb{C})$. Let $h=e^f$. Then $|h(z)|=e^u$ and since $u(z)\to 0$ as $z\to\infty$, $|h(z)|\to 1$ as $z\to\infty$. So h is a bounded entire function and by Liouville's theorem, h is constant. Next 0=h'=f'h and since $h(z)\neq 0$, f'=0 (identically). Thus f is constant, so u is constant. Since $u(z)\to 0$ as $z\to\infty$, u(z)=0 for all z.

3.

$$\int_{|z|=1} \frac{dz}{(2z-1)(z-2)} = \frac{1}{2} \int_{|z|=1} \frac{dz}{(z-1/2)(z-2)}$$
 (1)

$$= \frac{1}{2} \int_{|z|=1} \frac{f(z)dz}{(z-1/2)}$$
 (2)

$$= \frac{1}{2} 2\pi i f(1/2) \tag{3}$$

$$= -\frac{2\pi i}{3},\tag{4}$$

by Cauchy's integral formula since f(z) = 1/(z-2) is analytic in $|z| \le 1$.

4. When $z \neq 0$, $f(z) = e^{-z^{-4}}$ is a composition of two analytic functions and hence $f \in \mathcal{O}(\mathbb{C} - 0)$. On the x-axis, y = 0, $v = \Im(f) = 0$, $u = \Re(f) = e^{-x^{-4}}$. Hence $v_x(0,0) = 0$ and

$$u_x(0,0) = \lim_{h \to 0} \frac{e^{-h^{-4}} - 0}{h} \tag{5}$$

$$= \lim_{t \to \infty} \frac{t}{e^{t^4}} \text{ (let } t = 1/x) \tag{6}$$

$$= 0$$
 by l'Hopital's rule. (7)

Similarly $u_y(0,0) = 0 = v_y(0,0)$. Thus the Cauchy-Riemann equations are satisfied at (0,0). But f is not even continuous at 0. For example, approach 0 along the ray $te^{\frac{i\pi}{4}}$. Then

$$\lim_{t \to 0} e^{t^{-4}} = \infty. \tag{8}$$