Math 336 Final@ram, 8:30 am, June 10, 2013

Name:_

One notebook-size page of notes is allowed (each side may be used).

1. Prove that $\sum_{1}^{\infty} \frac{\sin nz}{2^n}$ represents an analytic function on $|\Im(z)| < \log 2$.

2. Is there an analytic function f that maps |z|<1 into |z|<1 such that $f(\frac{1}{2})=\frac{3}{4},f(\frac{1}{4})=\frac{1}{3}?$

3. Suppose that u is a harmonic function and v is its conjugate harmonic function. Suppose $u^2 + v^2$ is never 0. Prove that $\log(u^2 + v^2)$ is harmonic.

4. Prove that there is no entire function f with $f(\frac{i}{n}) = \frac{1}{n+1}$ for all n. Hint: show that this implies that $f(z) = \frac{z}{z+i}$. (b) Give an example to show that convergence of $\sum a_k$ does not imply convegence of $\prod (1 + a_k)$.

6. Let f and g be entire functions so that satisfy $f^2 + g^2 = 1$. Prove that there is an entire function h so that $f = \cos(h), g = \sin(h)$.

7. Let u(x, y), v(x, y) be continuously differentiable as functions of (x, y)in a domain Ω . Let f(z) = u(z) + iv(z). Suppose that for every $z_0 \in \Omega$ there is an r_0 (depending on z_0) such that

$$\int_{|z-z_0|=r} f(z)dz = 0,$$

for all r with $r < r_0$. Prove that f is analytic in Ω . Hint: Show that f satisfies the Cauchy-Riemann equations in Ω .

- 8. Does there exist a function f, which is analytic in a neighborhood of 0, for which:
 - (a) $f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^2}$ for all large integers n? (b) $f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^3}$ for all large integers n?

In each case, either give an example or prove no such example exists.