Math $336 \mathfrak{F i n a l E x a m}, ~ 8: 30$ am, June 10,2013

Name:

One notebook-size page of notes is allowed (each side may be used).

1. Prove that $\sum_{1}^{\infty} \frac{\sin n z}{2^{n}}$ represents an analytic function on $|\Im(z)|<\log 2$.
2. Is there an analytic function f that maps $|z|<1$ into $|z|<1$ such that $f\left(\frac{1}{2}\right)=\frac{3}{4}, f\left(\frac{1}{4}\right)=\frac{1}{3}$?
3. Suppose that u is a harmonic function and v is its conjugate harmonic function. Suppose $u^{2}+v^{2}$ is never 0 . Prove that $\log \left(u^{2}+v^{2}\right)$ is harmonic.
4. Prove that there is no entire function f with $f\left(\frac{i}{n}\right)=\frac{1}{n+1}$ for all n. Hint: show that this implies that $f(z)=\frac{z}{z+i}$.
5. (a) Prove that if $\prod\left(1+z^{k}\right)$ converges uniformly on compact subsets of $\{|z|<1\}$.
(b) Give an example to show that convergence of $\sum a_{k}$ does not imply convegence of $\prod\left(1+a_{k}\right)$.
6. Let f and g be entire functions so that satisfy $f^{2}+g^{2}=1$. Prove that there is an entire function h so that $f=\cos (h), g=\sin (h)$.
7. Let $u(x, y), v(x, y)$ be continuously differentiable as functions of (x, y) in a domain Ω. Let $f(z)=u(z)+i v(z)$. Suppose that for every $z_{0} \in \Omega$ there is an r_{0} (depending on z_{0}) such that

$$
\int_{\left|z-z_{0}\right|=r} f(z) d z=0
$$

for all r with $r<r_{0}$. Prove that f is analytic in Ω. Hint: Show that f satisfies the Cauchy-Riemann equations in Ω.
8. Does there exist a function f, which is analytic in a neighborhood of 0 , for which:
(a) $f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{2}}$ for all large integers n ?
(b) $f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{3}}$ for all large integers n ?

In each case, either give an example or prove no such example exists.

