Math $336 \mathfrak{M i d t e r m}$, April 29, 2013

Name:
One notebook sized page of notes is allowed on the test.

1. Let $f(z)=u(z)+i v(z), u=\operatorname{Re}(f(z)), v=\operatorname{Im} f((z))$ be analytic on an open connected set Ω. Suppose there are real numbers a, b, c with $a^{2}+b^{2} \neq 0$ so that $a u(z)+b v(z)=c$ for all $z \in \Omega$. Prove that f is constant.
2. Suppose u is harmonic on \mathbb{C}. Prove that if $u(z) \rightarrow 0$ as $|z| \rightarrow \infty$ then $u(z)=0$ for all z.
3. Compute

$$
\int_{|z|=1} \frac{d z}{(2 z-1)(z-2)}
$$

4. Let $f(z)=e^{-z^{-4}}$ if $z \neq 0, f(0)=0$. Prove that f is analytic at z if $z \neq 0$ and that the CauchyRiemann equations are satisfied at 0 . Is f analytic at 0 ?
